Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Affiliation country
Publication year range
1.
Mol Biol (Mosk) ; 58(1): 3-21, 2024.
Article in Russian | MEDLINE | ID: mdl-38943577

ABSTRACT

Photochemical reactions in cell DNA are induced in various organisms by solar UV radiation and may lead to a series of biological responses to DNA damage, including apoptosis, mutagenesis, and carcinogenesis. The chemical nature and the amount of DNA lesions depend on the wavelength of UV radiation. UV type B (UVB, 290-320 nm) causes two main lesions, cyclobutane pyrimidine dimers (CPDs) and, with a lower yield, pyrimidine (6-4) pyrimidone photoproducts (6-4PPs). Their formation is a result of direct UVB photon absorption by DNA bases. UV type A (UVA, 320-400 nm) induces only cyclobutane dimers, which most likely arise via triplet-triplet energy transfer (TTET) from cell chromophores to DNA thymine bases. UVA is much more effective than UVB in inducing sensitized oxidative DNA lesions, such as single-strand breaks and oxidized bases. Of the latter, 8-oxo-dihydroguanine (8-oxodG) is the most frequent, being produced in several oxidation processes. Many recent studies reported novel, more detailed information about the molecular mechanisms of the photochemical reactions that underlie the formation of various DNA lesions. The information is mostly summarized and analyzed in the review. Special attention is paid to the oxidation reactions that are initiated by reactive oxygen species (ROS) and radicals generated by potential endogenous photosensitizers, such as pterins, riboflavin, protoporphyrin IX, NADH, and melanin. The review discusses the role that specific DNA photoproducts play in genotoxic processes induced in living systems by UV radiation of various wavelengths, including human skin carcinogenesis.


Subject(s)
DNA Damage , Pyrimidine Dimers , Ultraviolet Rays , Ultraviolet Rays/adverse effects , Humans , DNA Damage/radiation effects , Pyrimidine Dimers/metabolism , Pyrimidine Dimers/genetics , Pyrimidine Dimers/radiation effects , Reactive Oxygen Species/metabolism , DNA/radiation effects , DNA/metabolism , DNA/genetics , Animals , Apoptosis/radiation effects , Oxidation-Reduction/radiation effects , 8-Hydroxy-2'-Deoxyguanosine/metabolism
2.
Biochemistry (Mosc) ; 83(7): 787-794, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30200863

ABSTRACT

UVB radiation (290-320 nm) causes diverse effects in plant cells that vary with the fluence rate of exposure. High fluence rates of UVB radiation cause damage to DNA and formation of reactive oxygen species in mitochondria and chloroplasts, which lead to oxidation of membrane proteins and lipids and inhibition of cellular functions. In response to oxidative stress, mitochondrial transmembrane potential dissipates, resulting in cytochrome c release and activation of metacaspases. This leads to the apoptosis-like cell death. The signaling mechanism based on UVB DNA damage includes checkpoint activation, cell-cycle arrest, and finally programmed cell death with characteristic DNA fragmentation and morphological hallmarks typical of apoptotic cells. Recently, it was shown that among the components of this signaling mechanism the transcriptional factor SOG1 (suppressor of gamma response 1) plays a key role in regulation of programmed cell death in plants. In contrast to its damaging effects, UVB radiation at low fluence rates can act as a regulatory signal that is specifically perceived by plants to promote acclimation and survival in sunlight. The protective action of UVB is based on expression of various genes, including those encoding flavonoid synthesis enzymes that provide a UVB-absorbing sunscreen in epidermal tissues and DNA photorepair enzymes. These processes are mediated by the UVB photoreceptor UVR8, which has been recently characterized at the molecular level. Now progress is made in uncovering the UVR8-mediated signaling pathway mechanism in the context of UVB photon perception and revealing the biochemical components of the early stages of light signal transduction. In this review, attention is focused on the achievements in studying these UVB-induced signaling processes.


Subject(s)
Plant Cells/radiation effects , Signal Transduction/radiation effects , Ultraviolet Rays , Animals , Cell Death/radiation effects , Dose-Response Relationship, Radiation , Humans , Plant Cells/metabolism , Plant Proteins/metabolism
3.
Biochemistry (Mosc) ; 78(11): 1238-53, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24460938

ABSTRACT

Progress in understanding primary mechanisms of light reception in photoregulatory processes is achieved through discovering new biological photoreceptors, chiefly the regulatory sensors of blue/UV-A light. Among them are LOV domain-containing proteins and DNA photolyase-like cryptochromes, which constitute two widespread groups of photoreceptors that use flavin cofactors (FMN or FAD) as the photoactive chromophores. Bacterial LOV domain modules are connected in photoreceptor proteins with regulatory domains such as diguanylate cyclases/phosphodiesterases, histidine kinases, and DNA-binding domains that are activated by photoconversions of flavin. Identification of red/far-red light sensors in chemotrophic bacteria (bacteriophytochromes) and crystal structures of their photosensor module with bilin chromophore are significant for decoding the mechanisms of phytochrome receptor photoconversion and early step mechanisms of phytochrome-mediated signaling. The only UV-B regulatory photon sensor, UVR8, recently identified in plants, unlike other photoreceptors functions without a prosthetic chromophore: tryptophans of the unique UVR8 protein structure provide a "UV-B antenna". Our analysis of new data on photosensory properties of the identified photoreceptors in conjunction with their structure opens insight on the influence of the molecular microenvironment on light-induced chromophore reactions, the mechanisms by which the photoactivated chromophores trigger conformational changes in the surrounding protein structure, and structural bases of propagation of these changes to the interacting effector domains/proteins.


Subject(s)
Photoreceptors, Plant/metabolism , Ultraviolet Rays , Bacteria/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cryptochromes/chemistry , Cryptochromes/metabolism , Deoxyribodipyrimidine Photo-Lyase/chemistry , Deoxyribodipyrimidine Photo-Lyase/metabolism , Flavins/genetics , Flavins/metabolism , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Fungi/metabolism , Photoreceptors, Plant/chemistry , Phototropins/chemistry , Phototropins/metabolism , Phytochrome/chemistry , Phytochrome/metabolism , Plants/metabolism , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL