Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.101
Filter
Add more filters

Publication year range
1.
Nature ; 619(7970): 585-594, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37468583

ABSTRACT

Understanding kidney disease relies on defining the complexity of cell types and states, their associated molecular profiles and interactions within tissue neighbourhoods1. Here we applied multiple single-cell and single-nucleus assays (>400,000 nuclei or cells) and spatial imaging technologies to a broad spectrum of healthy reference kidneys (45 donors) and diseased kidneys (48 patients). This has provided a high-resolution cellular atlas of 51 main cell types, which include rare and previously undescribed cell populations. The multi-omic approach provides detailed transcriptomic profiles, regulatory factors and spatial localizations spanning the entire kidney. We also define 28 cellular states across nephron segments and interstitium that were altered in kidney injury, encompassing cycling, adaptive (successful or maladaptive repair), transitioning and degenerative states. Molecular signatures permitted the localization of these states within injury neighbourhoods using spatial transcriptomics, while large-scale 3D imaging analysis (around 1.2 million neighbourhoods) provided corresponding linkages to active immune responses. These analyses defined biological pathways that are relevant to injury time-course and niches, including signatures underlying epithelial repair that predicted maladaptive states associated with a decline in kidney function. This integrated multimodal spatial cell atlas of healthy and diseased human kidneys represents a comprehensive benchmark of cellular states, neighbourhoods, outcome-associated signatures and publicly available interactive visualizations.


Subject(s)
Gene Expression Profiling , Kidney Diseases , Kidney , Single-Cell Analysis , Transcriptome , Humans , Cell Nucleus/genetics , Kidney/cytology , Kidney/injuries , Kidney/metabolism , Kidney/pathology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Transcriptome/genetics , Case-Control Studies , Imaging, Three-Dimensional
2.
Nature ; 612(7940): 495-502, 2022 12.
Article in English | MEDLINE | ID: mdl-36450981

ABSTRACT

Fanconi anaemia (FA), a model syndrome of genome instability, is caused by a deficiency in DNA interstrand crosslink repair resulting in chromosome breakage1-3. The FA repair pathway protects against endogenous and exogenous carcinogenic aldehydes4-7. Individuals with FA are hundreds to thousands fold more likely to develop head and neck (HNSCC), oesophageal and anogenital squamous cell carcinomas8 (SCCs). Molecular studies of SCCs from individuals with FA (FA SCCs) are limited, and it is unclear how FA SCCs relate to sporadic HNSCCs primarily driven by tobacco and alcohol exposure or infection with human papillomavirus9 (HPV). Here, by sequencing genomes and exomes of FA SCCs, we demonstrate that the primary genomic signature of FA repair deficiency is the presence of high numbers of structural variants. Structural variants are enriched for small deletions, unbalanced translocations and fold-back inversions, and are often connected, thereby forming complex rearrangements. They arise in the context of TP53 loss, but not in the context of HPV infection, and lead to somatic copy-number alterations of HNSCC driver genes. We further show that FA pathway deficiency may lead to epithelial-to-mesenchymal transition and enhanced keratinocyte-intrinsic inflammatory signalling, which would contribute to the aggressive nature of FA SCCs. We propose that the genomic instability in sporadic HPV-negative HNSCC may arise as a result of the FA repair pathway being overwhelmed by DNA interstrand crosslink damage caused by alcohol and tobacco-derived aldehydes, making FA SCC a powerful model to study tumorigenesis resulting from DNA-crosslinking damage.


Subject(s)
DNA Repair , Fanconi Anemia , Genomics , Head and Neck Neoplasms , Humans , Aldehydes/adverse effects , Aldehydes/metabolism , DNA Repair/genetics , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Fanconi Anemia/pathology , Head and Neck Neoplasms/chemically induced , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Papillomavirus Infections , Squamous Cell Carcinoma of Head and Neck/chemically induced , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , DNA Damage/drug effects
3.
Genes Dev ; 34(11-12): 832-846, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32354836

ABSTRACT

DNA interstrand cross-links (ICLs) are a form of DNA damage that requires the interplay of a number of repair proteins including those of the Fanconi anemia (FA) and the homologous recombination (HR) pathways. Pathogenic variants in the essential gene BRCA2/FANCD1, when monoallelic, predispose to breast and ovarian cancer, and when biallelic, result in a severe subtype of Fanconi anemia. BRCA2 function in the FA pathway is attributed to its role as a mediator of the RAD51 recombinase in HR repair of programmed DNA double-strand breaks (DSB). BRCA2 and RAD51 functions are also required to protect stalled replication forks from nucleolytic degradation during response to hydroxyurea (HU). While RAD51 has been shown to be necessary in the early steps of ICL repair to prevent aberrant nuclease resection, the role of BRCA2 in this process has not been described. Here, based on the analysis of BRCA2 DNA-binding domain (DBD) mutants (c.8488-1G>A and c.8524C>T) discovered in FA patients presenting with atypical FA-like phenotypes, we establish that BRCA2 is necessary for the protection of DNA at ICLs. Cells carrying BRCA2 DBD mutations are sensitive to ICL-inducing agents but resistant to HU treatment consistent with relatively high HR repair in these cells. BRCA2 function at an ICL protects against DNA2-WRN nuclease-helicase complex and not the MRE11 nuclease that is implicated in the resection of HU-induced stalled replication forks. Our results also indicate that unlike the processing at HU-induced stalled forks, the function of the SNF2 translocases (SMARCAL1, ZRANB3, or HLTF), implicated in fork reversal, are not an integral component of the ICL repair, pointing to a different mechanism of fork protection at different DNA lesions.


Subject(s)
BRCA2 Protein/metabolism , Fanconi Anemia/genetics , Fanconi Anemia/physiopathology , BRCA2 Protein/genetics , Cell Line , DNA/chemistry , DNA Repair/drug effects , DNA Repair/genetics , DNA Replication/drug effects , Homologous Recombination/genetics , Humans , Hydroxyurea/pharmacology , Mutation , Protein Domains/genetics , Rad51 Recombinase/metabolism
4.
Mol Cell ; 69(1): 24-35.e5, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29290612

ABSTRACT

The protection and efficient restart of stalled replication forks is critical for the maintenance of genome integrity. Here, we identify a regulatory pathway that promotes stalled forks recovery from replication stress. We show that the mammalian replisome component C20orf43/RTF2 (homologous to S. pombe Rtf2) must be removed for fork restart to be optimal. We further show that the proteasomal shuttle proteins DDI1 and DDI2 are required for RTF2 removal from stalled forks. Persistence of RTF2 at stalled forks results in fork restart defects, hyperactivation of the DNA damage signal, accumulation of single-stranded DNA (ssDNA), sensitivity to replication drugs, and chromosome instability. These results establish that RTF2 removal is a key determinant for the ability of cells to manage replication stress and maintain genome integrity.


Subject(s)
Cell Cycle Proteins/metabolism , DNA Damage/genetics , DNA Replication/genetics , DNA-Binding Proteins/metabolism , DNA/genetics , Genomic Instability/genetics , Aspartic Acid Proteases/genetics , Cell Cycle/genetics , Cell Cycle Proteins/genetics , Cell Line, Tumor , DNA/biosynthesis , DNA Repair/genetics , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/genetics , HeLa Cells , Humans , RNA Interference , RNA, Small Interfering/genetics , Replication Origin/genetics , Stress, Physiological/genetics
5.
J Biol Chem ; 300(4): 105778, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38395307

ABSTRACT

The mechanistic target of rapamycin (mTOR) signaling is influenced by multiple regulatory proteins and post-translational modifications; however, underlying mechanisms remain unclear. Here, we report a novel role of small ubiquitin-like modifier (SUMO) in mTOR complex assembly and activity. By investigating the SUMOylation status of core mTOR components, we observed that the regulatory subunit, GßL (G protein ß-subunit-like protein, also known as mLST8), is modified by SUMO1, 2, and 3 isoforms. Using mutagenesis and mass spectrometry, we identified that GßL is SUMOylated at lysine sites K86, K215, K245, K261, and K305. We found that SUMO depletion reduces mTOR-Raptor (regulatory protein associated with mTOR) and mTOR-Rictor (rapamycin-insensitive companion of mTOR) complex formation and diminishes nutrient-induced mTOR signaling. Reconstitution with WT GßL but not SUMOylation-defective KR mutant GßL promotes mTOR signaling in GßL-depleted cells. Taken together, we report for the very first time that SUMO modifies GßL, influences the assembly of mTOR protein complexes, and regulates mTOR activity.


Subject(s)
Signal Transduction , Sumoylation , TOR Serine-Threonine Kinases , Humans , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , HEK293 Cells , SUMO-1 Protein/metabolism , SUMO-1 Protein/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism , Small Ubiquitin-Related Modifier Proteins/genetics , mTOR Associated Protein, LST8 Homolog/metabolism , mTOR Associated Protein, LST8 Homolog/genetics , Ubiquitins/metabolism , Ubiquitins/genetics , Lysine/metabolism
6.
Ann Neurol ; 93(5): 1012-1022, 2023 05.
Article in English | MEDLINE | ID: mdl-36695634

ABSTRACT

OBJECTIVE: Identification of genetic risk factors for Parkinson disease (PD) has to date been primarily limited to the study of single nucleotide variants, which only represent a small fraction of the genetic variation in the human genome. Consequently, causal variants for most PD risk are not known. Here we focused on structural variants (SVs), which represent a major source of genetic variation in the human genome. We aimed to discover SVs associated with PD risk by performing the first large-scale characterization of SVs in PD. METHODS: We leveraged a recently developed computational pipeline to detect and genotype SVs from 7,772 Illumina short-read whole genome sequencing samples. Using this set of SV variants, we performed a genome-wide association study using 2,585 cases and 2,779 controls and identified SVs associated with PD risk. Furthermore, to validate the presence of these variants, we generated a subset of matched whole-genome long-read sequencing data. RESULTS: We genotyped and tested 3,154 common SVs, representing over 412 million nucleotides of previously uncatalogued genetic variation. Using long-read sequencing data, we validated the presence of three novel deletion SVs that are associated with risk of PD from our initial association analysis, including a 2 kb intronic deletion within the gene LRRN4. INTERPRETATION: We identified three SVs associated with genetic risk of PD. This study represents the most comprehensive assessment of the contribution of SVs to the genetic risk of PD to date. ANN NEUROL 2023;93:1012-1022.


Subject(s)
Genome-Wide Association Study , Parkinson Disease , Humans , Parkinson Disease/genetics , Genome, Human , Whole Genome Sequencing , Genotype
7.
Glob Chang Biol ; 30(6): e17378, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923246

ABSTRACT

Understanding and predicting population responses to climate change is a crucial challenge. A key component of population responses to climate change are cases in which focal biological rates (e.g., population growth rates) change in response to climate change due to non-compensatory effects of changes in the underlying components (e.g., birth and death rates) determining the focal rates. We refer to these responses as non-compensatory climate change effects. As differential responses of biological rates to climate change have been documented in a variety of systems and arise at multiple levels of organization within and across species, non-compensatory effects may be nearly ubiquitous. Yet, how non-compensatory climate change responses combine and scale to influence the demographics of populations is often unclear and requires mapping them to the birth and death rates underlying population change. We provide a flexible framework for incorporating non-compensatory changes in upstream rates within and among species and mapping their consequences for additional downstream rates across scales to their eventual effects on population growth rates. Throughout, we provide specific examples and potential applications of the framework. We hope this framework helps to enhance our understanding of and unify research on population responses to climate change.


Subject(s)
Climate Change , Population Dynamics , Animals , Population Growth , Models, Biological
8.
Langmuir ; 40(15): 7835-7842, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38574181

ABSTRACT

Here, we compare the amount and morphology of silver (Ag) nanostructures electrodeposited at varied potentials and times in the presence of cetyltrimethylammonium bromide (CTAB) onto glass/indium tin oxide (glass/ITO) electrodes functionalized with mercaptopropyltrimethoxysilane (MPTMS) and coated or not coated with 4 nm average diameter Au nanoparticle (Au NP) seeds. There is a significantly larger amount of Ag deposited on the seeded electrode surface compared to that in the nonseeded electrode at potentials of -150 to -300 mV (vs Ag/AgCl) since the Au NP seeds act as catalysts for Ag deposition. At more negative overpotentials of -400 to -500 mV, the amount of Ag deposited on both electrodes is similar because the deposition kinetics are fast enough on glass/ITO that the Au seed catalyst does not make as big of a difference. Ag nanorods (NRs) and nanowires (NWs) form on the seeded surfaces, especially at more positive potentials, where deposition primarily occurs on the Au seed catalysts. Deposition of Ag onto the Au seeds appears as a separate peak in the voltammetry. This procedure mimics the seed-mediated growth of Ag NRs observed in solution in the presence of CTAB using ascorbic acid as a reducing agent. The yield, length, and aspect ratio of the Ag NRs/NWs depend on the deposition time and potential with the average length ranging from 300 nm to 3 µm for times of 30-120 min and potentials of -150 to -200 mV. The electrochemical seed-mediated growth of Ag NRs/NWs across electrode gaps could find use for resistive and surface-enhanced Raman-based sensing and molecular electronic applications.

9.
Brain ; 146(5): 1859-1872, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36370000

ABSTRACT

The association between glucocerebrosidase, encoded by GBA, and Parkinson's disease (PD) highlights the role of the lysosome in PD pathogenesis. Genome-wide association studies in PD have revealed multiple associated loci, including the GALC locus on chromosome 14. GALC encodes the lysosomal enzyme galactosylceramidase, which plays a pivotal role in the glycosphingolipid metabolism pathway. It is still unclear whether GALC is the gene driving the association in the chromosome 14 locus and, if so, by which mechanism. We first aimed to examine whether variants in the GALC locus and across the genome are associated with galactosylceramidase activity. We performed a genome-wide association study in two independent cohorts from (i) Columbia University; and (ii) the Parkinson's Progression Markers Initiative study, followed by a meta-analysis with a total of 976 PD patients and 478 controls with available data on galactosylceramidase activity. We further analysed the effects of common GALC variants on expression and galactosylceramidase activity using genomic colocalization methods. Mendelian randomization was used to study whether galactosylceramidase activity may be causal in PD. To study the role of rare GALC variants, we analysed sequencing data from 5028 PD patients and 5422 controls. Additionally, we studied the functional impact of GALC knockout on alpha-synuclein accumulation and on glucocerebrosidase activity in neuronal cell models and performed in silico structural analysis of common GALC variants associated with altered galactosylceramidase activity. The top hit in PD genome-wide association study in the GALC locus, rs979812, is associated with increased galactosylceramidase activity (b = 1.2; SE = 0.06; P = 5.10 × 10-95). No other variants outside the GALC locus were associated with galactosylceramidase activity. Colocalization analysis demonstrated that rs979812 was also associated with increased galactosylceramidase expression. Mendelian randomization suggested that increased galactosylceramidase activity may be causally associated with PD (b = 0.025, SE = 0.007, P = 0.0008). We did not find an association between rare GALC variants and PD. GALC knockout using CRISPR-Cas9 did not lead to alpha-synuclein accumulation, further supporting that increased rather than reduced galactosylceramidase levels may be associated with PD. The structural analysis demonstrated that the common variant p.I562T may lead to improper maturation of galactosylceramidase affecting its activity. Our results nominate GALC as the gene associated with PD in this locus and suggest that the association of variants in the GALC locus may be driven by their effect of increasing galactosylceramidase expression and activity. Whether altering galactosylceramidase activity could be considered as a therapeutic target should be further studied.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Galactosylceramidase/genetics , Galactosylceramidase/metabolism , Glucosylceramidase/genetics , Genome-Wide Association Study , Mutation , Hydrolases/genetics
10.
Brain ; 146(11): 4622-4632, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37348876

ABSTRACT

Parkinson's disease has a large heritable component and genome-wide association studies have identified over 90 variants with disease-associated common variants, providing deeper insights into the disease biology. However, there have not been large-scale rare variant analyses for Parkinson's disease. To address this gap, we investigated the rare genetic component of Parkinson's disease at minor allele frequencies <1%, using whole genome and whole exome sequencing data from 7184 Parkinson's disease cases, 6701 proxy cases and 51 650 healthy controls from the Accelerating Medicines Partnership Parkinson's disease (AMP-PD) initiative, the National Institutes of Health, the UK Biobank and Genentech. We performed burden tests meta-analyses on small indels and single nucleotide protein-altering variants, prioritized based on their predicted functional impact. Our work identified several genes reaching exome-wide significance. Two of these genes, GBA1 and LRRK2, have variants that have been previously implicated as risk factors for Parkinson's disease, with some variants in LRRK2 resulting in monogenic forms of the disease. We identify potential novel risk associations for variants in B3GNT3, AUNIP, ADH5, TUBA1B, OR1G1, CAPN10 and TREML1 but were unable to replicate the observed associations across independent datasets. Of these, B3GNT3 and TREML1 could provide new evidence for the role of neuroinflammation in Parkinson's disease. To date, this is the largest analysis of rare genetic variants in Parkinson's disease.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Risk Factors , Gene Frequency , Receptors, Immunologic
11.
HPB (Oxford) ; 26(5): 609-617, 2024 May.
Article in English | MEDLINE | ID: mdl-38401998

ABSTRACT

BACKGROUND: Pancreatic Ductal Adenocarcinoma (PDAC) patients exhibit varied responses to multimodal therapy. RNA gene sequencing has unravelled distinct tumour biology subtypes, forming the focus of this review exploring its impact on survival outcomes. METHODS: A systematic search across PubMed, Medline, Embase, and CINAHL databases targeted studies assessing long-term overall and disease-free survival in PDAC patients with molecular subtyping. RESULTS: Fifteen studies including 2731 patients were identified. Molecular subtyping was performed by RNA sequencing and Immunohistochemistry in 14 studies and by Mass Spectrometry in 1 study. Two main tumour subtypes were identified (classical and basal-like or squamous) with basal like associated with poorer outcomes. Further subtypes were identified in individual studies. Superior survival was seen with classical subtype in all other analyses that compared the classical and basal subtypes. High risk stromal subtypes were identified on further analysis of the stroma and were associated with a worse survival independent of the tumour subtype. CONCLUSION: Molecular subtyping of PDAC specimens can identify patients with high-risk tumour biology and poor survival outcomes. Routine subtyping is limited by the cost of RNA sequencing and the volume of raw data generated which has made its translation into routine clinical practice difficult.


Subject(s)
Biomarkers, Tumor , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/therapy , Carcinoma, Pancreatic Ductal/classification , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/classification , Pancreatic Neoplasms/therapy , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , Predictive Value of Tests , Immunohistochemistry , Sequence Analysis, RNA , Disease-Free Survival , Phenotype
12.
Cancer ; 129(14): 2144-2151, 2023 07 15.
Article in English | MEDLINE | ID: mdl-36988982

ABSTRACT

BACKGROUND: Examining temporal and spatial diffusion of a new technology, such as digital mammography, can provide important insights into potential disparities associated with access to new medical technologies and how quickly these technologies are adopted. Although digital mammography is currently a standard technology in the United States for breast cancer screening, its adoption and geographic diffusion, as medical facilities transitioned from film to digital units, has not been explored well. METHODS: This study evaluated the geographic diffusion of digital mammography facilities from 2001 to 2014 in the contiguous United States (excluding Alaska and Hawaii) and estimated the geographic accessibility to this new technology for women aged ≥45 years at the census tract level within a 20-minute drivetime by population density, rural/urban residence, and race/ethnicity. The number of mammography units by technology type (film or digital) and density per 10,000 women were also summarized. RESULTS: The adoption of digital mammography advanced first in densely populated regions and last in remote rural areas. Overall, proportion of digital mammography units increased from 1.4% in 2001 to 94.6% in 2014, but since 2008, there was a decline in density of units from 2.31 per 10,000 women aged ≥45 years to 1.97 in 2014. In 2014, approximately 87% of women aged ≥45 years in the contiguous United States had accessibility to digital mammography, but this proportion was substantially lower for Native American women (67%) and rural residents (32%). CONCLUSION: Understanding the diffusion of and accessibility to digital mammography may help predict future medical technology diffusion and assess its role in geographic differences in cancer diagnosis and treatment.


Subject(s)
Breast Neoplasms , Mass Screening , United States/epidemiology , Female , Humans , Mammography , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/epidemiology , Early Detection of Cancer , Hawaii , Health Services Accessibility
13.
Cancer ; 129(18): 2817-2827, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37162461

ABSTRACT

BACKGROUND: Development of evidence-based post-treatment surveillance guidelines in recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC) is limited by comprehensive documentation of patterns of recurrence and metastatic spread. METHODS: A retrospective analysis of patients diagnosed with R/M HNSCC at a National Cancer Institute-designated cancer center between 1998- 2019 was performed (n = 447). Univariate and multivariate analysis identified patterns of recurrence and predictors of survival. RESULTS: Median overall survival (mOS) improved over time (6.7 months in 1998-2007 to 11.8 months in 2008-2019, p = .006). Predictors of worse mOS included human papillomavirus (HPV) negativity (hazard ratio [HR], 1.8; 95% confidence interval [CI], 1.2-2.6), high neutrophil/lymphocyte ratio (HR, 2.1 [1.4-3.0], disease-free interval (DFI) ≤6 months (HR, 1.4 [1.02-2.0]), and poor performance status (Eastern Cooperative Oncology Group, ≥2; HR, 1.91.1-3.4). In this cohort, 50.6% of recurrences occurred within 6 months of treatment completion, 72.5% occurred within 1 year, and 88.6% occurred within 2 years. Metachronous distant metastases were more likely to occur in patients with HPV-positive disease (odds ratio [OR], 2.3 [1.4-4.0]), DFI >6 months (OR, 2.4 [1.5-4.0]), and body mass index ≥30 (OR, 2.3 [1.1-4.8]). Oligometastatic disease treated with local ablative therapy was associated with improved survival over polymetastatic disease (HR, 0.36; 95% CI, 0.24-0.55). CONCLUSION: These data regarding patterns of distant metastasis in HNSCC support the clinical utility of early detection of recurrence. Patterns of recurrence in this population can be used to inform individualized surveillance programs as well as to risk-stratify eligible patients for clinical trials. PLAIN LANGUAGE SUMMARY: After treatment for head and neck cancer (HNC), patients are at risk of recurrence at prior sites of disease or at distant sites in the body. This study includes a large group of patients with recurrent or metastatic HNC and examines factors associated with survival outcomes and recurrence patterns. Patients with human papillomavirus (HPV)-positive HNC have good survival outcomes, but if they recur, this may be in distant regions of the body and may occur later than HPV-negative patients. These data argue for personalized follow-up schedules for patients with HNC, perhaps incorporating imaging studies or novel blood tests.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Oropharyngeal Neoplasms , Papillomavirus Infections , Humans , Squamous Cell Carcinoma of Head and Neck/therapy , Squamous Cell Carcinoma of Head and Neck/complications , Papillomavirus Infections/complications , Retrospective Studies , Neoplasm Recurrence, Local/pathology , Head and Neck Neoplasms/therapy , Head and Neck Neoplasms/complications
14.
Ann Surg ; 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37873663

ABSTRACT

OBJECTIVE: This international multicentre cohort study aims to identify recurrence patterns and treatment of first and second recurrence in a large cohort of patients after pancreatic resection for adenocarcinoma arising from IPMN. SUMMARY BACKGROUND DATA: Recurrence patterns and treatment of recurrence post resection of adenocarcinoma arising from IPMN are poorly explored. METHOD: Patients undergoing pancreatic resection for adenocarcinoma from IPMN between January 2010 to December 2020 at 18 pancreatic centres were identified. Survival analysis was performed by the Kaplan-Meier log rank test and multivariable logistic regression by Cox-Proportional Hazards modelling. Endpoints were recurrence (time-to, location, and pattern of recurrence) and survival (overall survival and adjusted for treatment provided). RESULTS: Four hundred and fifty-nine patients were included (median, 70 y; IQR, 64-76; male, 54 percent) with a median follow-up of 26.3 months (IQR, 13.0-48.1 mo). Recurrence occurred in 209 patients (45.5 percent; median time to recurrence, 32.8 months, early recurrence [within 1 y], 23.2 percent). Eighty-three (18.1 percent) patients experienced a local regional recurrence and 164 (35.7 percent) patients experienced distant recurrence. Adjuvant chemotherapy was not associated with reduction in recurrence (HR 1.09;P=0.669) One hundred and twenty patients with recurrence received further treatment. The median survival with and without additional treatment was 27.0 and 14.6 months (P<0.001), with no significant difference between treatment modalities. There was no significant difference in survival between location of recurrence (P=0.401). CONCLUSION: Recurrence after pancreatic resection for adenocarcinoma arising from IPMN is frequent with a quarter of patients recurring within 12 months. Treatment of recurrence is associated with improved overall survival and should be considered.

15.
Ann Oncol ; 34(9): 772-782, 2023 09.
Article in English | MEDLINE | ID: mdl-37399894

ABSTRACT

BACKGROUND: Patients with metastatic castration-resistant prostate cancer (mCRPC) and BRCA alterations have poor outcomes. MAGNITUDE found patients with homologous recombination repair gene alterations (HRR+), particularly BRCA1/2, benefit from first-line therapy with niraparib plus abiraterone acetate and prednisone (AAP). Here we report longer follow-up from the second prespecified interim analysis (IA2). PATIENTS AND METHODS: Patients with mCRPC were prospectively identified as HRR+ with/without BRCA1/2 alterations and randomized 1 : 1 to niraparib (200 mg orally) plus AAP (1000 mg/10 mg orally) or placebo plus AAP. At IA2, secondary endpoints [time to symptomatic progression, time to initiation of cytotoxic chemotherapy, overall survival (OS)] were assessed. RESULTS: Overall, 212 HRR+ patients received niraparib plus AAP (BRCA1/2 subgroup, n = 113). At IA2 with 24.8 months of median follow-up in the BRCA1/2 subgroup, niraparib plus AAP significantly prolonged radiographic progression-free survival {rPFS; blinded independent central review; median rPFS 19.5 versus 10.9 months; hazard ratio (HR) = 0.55 [95% confidence interval (CI) 0.39-0.78]; nominal P = 0.0007} consistent with the first prespecified interim analysis. rPFS was also prolonged in the total HRR+ population [HR = 0.76 (95% CI 0.60-0.97); nominal P = 0.0280; median follow-up 26.8 months]. Improvements in time to symptomatic progression and time to initiation of cytotoxic chemotherapy were observed with niraparib plus AAP. In the BRCA1/2 subgroup, the analysis of OS with niraparib plus AAP demonstrated an HR of 0.88 (95% CI 0.58-1.34; nominal P = 0.5505); the prespecified inverse probability censoring weighting analysis of OS, accounting for imbalances in subsequent use of poly adenosine diphosphate-ribose polymerase inhibitors and other life-prolonging therapies, demonstrated an HR of 0.54 (95% CI 0.33-0.90; nominal P = 0.0181). No new safety signals were observed. CONCLUSIONS: MAGNITUDE, enrolling the largest BRCA1/2 cohort in first-line mCRPC to date, demonstrated improved rPFS and other clinically relevant outcomes with niraparib plus AAP in patients with BRCA1/2-altered mCRPC, emphasizing the importance of identifying this molecular subset of patients.


Subject(s)
Abiraterone Acetate , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prednisone , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , BRCA1 Protein/genetics , Recombinational DNA Repair , Treatment Outcome , BRCA2 Protein/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
16.
Ann Oncol ; 34(4): 397-409, 2023 04.
Article in English | MEDLINE | ID: mdl-36709040

ABSTRACT

BACKGROUND: Very young premenopausal women diagnosed with hormone receptor-positive, human epidermal growth factor receptor 2-negative (HR+HER2-) early breast cancer (EBC) have higher rates of recurrence and death for reasons that remain largely unexplained. PATIENTS AND METHODS: Genomic sequencing was applied to HR+HER2- tumours from patients enrolled in the Suppression of Ovarian Function Trial (SOFT) to determine genomic drivers that are enriched in young premenopausal women. Genomic alterations were characterised using next-generation sequencing from a subset of 1276 patients (deep targeted sequencing, n = 1258; whole-exome sequencing in a young-age, case-control subsample, n = 82). We defined copy number (CN) subgroups and assessed for features suggestive of homologous recombination deficiency (HRD). Genomic alteration frequencies were compared between young premenopausal women (<40 years) and older premenopausal women (≥40 years), and assessed for associations with distant recurrence-free interval (DRFI) and overall survival (OS). RESULTS: Younger women (<40 years, n = 359) compared with older women (≥40 years, n = 917) had significantly higher frequencies of mutations in GATA3 (19% versus 16%) and CN amplifications (CNAs) (47% versus 26%), but significantly lower frequencies of mutations in PIK3CA (32% versus 47%), CDH1 (3% versus 9%), and MAP3K1 (7% versus 12%). Additionally, they had significantly higher frequencies of features suggestive of HRD (27% versus 21%) and a higher proportion of PIK3CA mutations with concurrent CNAs (23% versus 11%). Genomic features suggestive of HRD, PIK3CA mutations with CNAs, and CNAs were associated with significantly worse DRFI and OS compared with those without these features. These poor prognostic features were enriched in younger patients: present in 72% of patients aged <35 years, 54% aged 35-39 years, and 40% aged ≥40 years. Poor prognostic features [n = 584 (46%)] versus none [n = 692 (54%)] had an 8-year DRFI of 84% versus 94% and OS of 88% versus 96%. Younger women (<40 years) had the poorest outcomes: 8-year DRFI 74% versus 85% and OS 80% versus 93%, respectively. CONCLUSION: These results provide insights into genomic alterations that are enriched in young women with HR+HER2- EBC, provide rationale for genomic subgrouping, and highlight priority molecular targets for future clinical trials.


Subject(s)
Breast Neoplasms , Humans , Female , Aged , Breast Neoplasms/drug therapy , Receptor, ErbB-2/metabolism , Prognosis , Genomics , Class I Phosphatidylinositol 3-Kinases/genetics
17.
Anal Chem ; 95(31): 11649-11656, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37506045

ABSTRACT

Here we report the thermal properties of weakly stabilized 0.9, 1.6, and 4.1 nm Au nanoparticles (NPs)/nanoclusters (NCs) attached to indium-tin-oxide- or fluorine-doped-tin-oxide-coated glass electrodes (glass/ITO or glass/FTO). The peak oxidation potential (Ep) for Au measured by anodic stripping voltammetry (ASV) is indicative of the NP/NC size. Heating leads to a positive shift in Ep due to an increase in NP/NC size from thermal ripening. The size transition temperature (Tt) decreases with decreasing NP/NC size following the order of 4.1 nm (509 °C) > 1.6 nm (132 °C) > 0.9 nm (90 °C/109 °C, two transitions) as compared to the bulk melting point (Tm,b) for Au of 1064 °C. The Tt generally agrees with models describing the size-dependent melting point of Au NPs (Tm,NP) for 4.1 and 1.6 nm diameter Au NPs but is higher than the models for 0.9 nm Au NCs. Scanning electron microscopy (SEM) and UV-vis size analysis confirm the electrochemical results. The thermal stability of electrode-supported metal NPs/NCs is important for their effective use in catalysis, sensing, nanoelectronics, photovoltaics, and other applications.

18.
BMC Cancer ; 23(1): 141, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36765318

ABSTRACT

BACKGROUND: The epidemiology and treatment of acute promyelocytic leukaemia (APL) are changing. We have incorporated oral arsenic trioxide (oral-ATO) into induction/maintenance. METHODS: Newly-diagnosed APL from 1991 to 2021 divided into three 10-year periods were studied to define its epidemiology and how oral-ATO impacted on its outcome. Primary endpoints included APL incidence, early deaths (ED, first 30 days), and overall survival (OS). Secondary endpoints included post-30-day OS, relapse-free survival (RFS), and incidence of second cancers. RESULTS: APL occurred in 374 males and 387 females at a median age of 44 (1-97) years. Annual incidences increased progressively, averaging 0.32 per 100,000 people. All-trans retinoic acid (ATRA)-based and oral-ATO-based regimens were used in 469 and 282 patients. There were 144 EDs, occurring almost exclusively in ATRA-based inductions (N = 139), being more with males, age > 50 years, leucocyte > 10 × 109/L, diagnosis during 1991-2009 and fewer with oral-ATO-based regimens. After a median of 75 (interquartile range: 14-161) months, 5-year and 10-year OS were 68.1% and 63.3%, inferior with males, age > 50 years, leucocyte > 10 × 109/L, high-risk Sanz score and superior with oral-ATO-based regimens. Factoring out EDs, 5-year and 10-year post-30-day OS were 84.0% and 78.1%, inferior with males and superior with oral-ATO-based regimens. In 607 CR1 patients, the 5-year RFS was 83.8%, superior with diagnosis in 2010-2021 and oral-ATO-based regimens. Second cancers developed in 21 patients, unrelated to oral-ATO-based regimens. CONCLUSIONS: There was an increasing incidence of APL, and all survivals were superior with the use of oral-ATO-based regimens. This study formed part of the Acute Promyelocytic Leukaemia Asian Consortium Project (ClinicalTrials.gov identifier: NCT04251754).


Subject(s)
Arsenicals , Leukemia, Promyelocytic, Acute , Neoplasms, Second Primary , Male , Female , Humans , Adult , Middle Aged , Aged , Aged, 80 and over , Arsenic Trioxide/adverse effects , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/epidemiology , Leukemia, Promyelocytic, Acute/diagnosis , Neoplasm Recurrence, Local , Tretinoin/adverse effects , Treatment Outcome , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Oxides
19.
Mov Disord ; 38(3): 489-495, 2023 03.
Article in English | MEDLINE | ID: mdl-36598340

ABSTRACT

BACKGROUND: GBA1 variants are among the most common genetic risk factors for Parkinson's disease (PD). GBA1 variants can be classified into three categories based on their role in Gaucher's disease (GD) or PD: severe, mild, and risk variant (for PD). OBJECTIVE: This review aims to generate and share a comprehensive database for GBA1 variants reported in PD to support future research and clinical trials. METHODS: We performed a literature search for all GBA1 variants that have been reported in PD. The data have been standardized and complemented with variant classification, odds ratio if available, and other data. RESULTS: We found 371 GBA1 variants reported in PD: 22 mild, 84 severe, 3 risk variants, and 262 of unknown status. We created a browser containing up-to-date information on these variants (https://pdgenetics.shinyapps.io/GBA1Browser/). CONCLUSIONS: The classification and browser presented in this work should inform and support basic, translational, and clinical research on GBA1-PD. © 2023 International Parkinson and Movement Disorder Society.


Subject(s)
Gaucher Disease , Parkinson Disease , Humans , Parkinson Disease/genetics , Glucosylceramidase/genetics , Gaucher Disease/genetics , Mutation
20.
Langmuir ; 39(18): 6495-6504, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37093690

ABSTRACT

The electrophoretic deposition (EPD) of hybrid alginate (Alg)-Au nanoparticle (NP) films results from the localized pH drop at the electrode surface due to oxidation of hydroquinone (HQ) catalyzed by 4 and 15 nm diameter citrate-coated gold NPs (cit-Au NPs). The localized pH drop at the electrode leads to neutralization of both Alg and cit, leading to EPD of both Alg and cit-Au NPs simultaneously. Post-treatment of the film with Ca2+ solution leads to hybrid Ca-Alg-Au NP hydrogel films. The EPD of Alg in the presence of 4 nm cit-Au NPs occurs at ∼0.8 V (vs Ag/AgCl) as compared to ∼1.0 V in the presence of 15 nm cit-Au NPs and ∼1.4 V in the absence of cit-Au NPs. This is due to the higher catalytic activity of 4 nm cit-Au NPs compared to 15 nm cit-Au NPs for the oxidation of HQ. UV-vis spectra of Ca-Alg-Au NP hydrogel films show absorbance features for both Ca-Alg and Au NPs entrapped within the hydrogel. As the concentration of Au NPs in the EPD solution increases, the Ca-Alg absorbance and localized surface plasmon resonance (LSPR) peak of the Au NPs increases, confirming the role of the Au NPs as a catalyst for EPD of Alg. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra of the Ca-Alg-Au NP hydrogel films show characteristic peaks for Ca-Alg and protonated alginic acid groups. The hydrogel thickness is greater with cit-Au NPs compared to without cit-Au NPs at constant EPD potential and time. Forming Ca-Alg and hybrid Ca-Alg-Au NP hydrogel films at low potentials has potential applications in electrochemical and optical sensor development, catalysis, and biological studies.

SELECTION OF CITATIONS
SEARCH DETAIL