Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 236
Filter
Add more filters

Publication year range
1.
Mol Psychiatry ; 29(2): 496-504, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38195979

ABSTRACT

INTRODUCTION: Regional gray matter (GM) alterations have been reported in early-onset psychosis (EOP, onset before age 18), but previous studies have yielded conflicting results, likely due to small sample sizes and the different brain regions examined. In this study, we conducted a whole brain voxel-based morphometry (VBM) analysis in a large sample of individuals with EOP, using the newly developed ENIGMA-VBM tool. METHODS: 15 independent cohorts from the ENIGMA-EOP working group participated in the study. The overall sample comprised T1-weighted MRI data from 482 individuals with EOP and 469 healthy controls. Each site performed the VBM analysis locally using the standardized ENIGMA-VBM tool. Statistical parametric T-maps were generated from each cohort and meta-analyzed to reveal voxel-wise differences between EOP and healthy controls as well as the individual-based association between GM volume and age of onset, chlorpromazine (CPZ) equivalent dose, and other clinical variables. RESULTS: Compared with healthy controls, individuals with EOP showed widespread lower GM volume encompassing most of the cortex, with the most marked effect in the left median cingulate (Hedges' g = 0.55, p = 0.001 corrected), as well as small clusters of lower white matter (WM), whereas no regional GM or WM volumes were higher in EOP. Lower GM volume in the cerebellum, thalamus and left inferior parietal gyrus was associated with older age of onset. Deficits in GM in the left inferior frontal gyrus, right insula, right precentral gyrus and right superior frontal gyrus were also associated with higher CPZ equivalent doses. CONCLUSION: EOP is associated with widespread reductions in cortical GM volume, while WM is affected to a smaller extent. GM volume alterations are associated with age of onset and CPZ equivalent dose but these effects are small compared to case-control differences. Mapping anatomical abnormalities in EOP may lead to a better understanding of the role of psychosis in brain development during childhood and adolescence.


Subject(s)
Age of Onset , Brain , Gray Matter , Magnetic Resonance Imaging , Psychotic Disorders , White Matter , Humans , Gray Matter/pathology , Psychotic Disorders/pathology , Psychotic Disorders/diagnostic imaging , Male , Female , Magnetic Resonance Imaging/methods , White Matter/pathology , White Matter/diagnostic imaging , Adolescent , Adult , Brain/pathology , Young Adult , Brain Mapping/methods , Image Processing, Computer-Assisted/methods , Cohort Studies
2.
Psychol Med ; : 1-9, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634498

ABSTRACT

BACKGROUND: There is a significant contribution of genetic factors to the etiology of bipolar disorder (BD). Unaffected first-degree relatives of patients (UR) with BD are at increased risk of developing mental disorders and may manifest cognitive impairments and alterations in brain functional and connective dynamics, akin to their affected relatives. METHODS: In this prospective longitudinal study, resting-state functional connectivity was used to explore stable and progressive markers of vulnerability i.e. abnormalities shared between UR and BD compared to healthy controls (HC) and resilience i.e. features unique to UR compared to HC and BD in full or partial remission (UR n = 72, mean age = 28.0 ± 7.2 years; HC n = 64, mean age = 30.0 ± 9.7 years; BD patients n = 91, mean age = 30.6 ± 7.7 years). Out of these, 34 UR, 48 BD, and 38 HC were investigated again following a mean time of 1.3 ± 0.4 years. RESULTS: At baseline, the UR showed lower connectivity values within the default mode network (DMN), frontoparietal network, and the salience network (SN) compared to HC. This connectivity pattern in UR remained stable over the follow-up period and was not present in BD, suggesting a resilience trait. The UR further demonstrated less negative connectivity between the DMN and SN compared to HC, abnormality that remained stable over time and was also present in BD, suggesting a vulnerability marker. CONCLUSION: Our findings indicate the coexistence of both vulnerability-related abnormalities in resting-state connectivity, as well as adaptive changes possibly promoting resilience to psychopathology in individual at familial risk.

3.
Mol Psychiatry ; 28(3): 1072-1078, 2023 03.
Article in English | MEDLINE | ID: mdl-36577839

ABSTRACT

Mood and anxiety disorders typically begin in adolescence and have overlapping clinical features but marked inter-individual variation in clinical presentation. The use of multimodal neuroimaging data may offer novel insights into the underlying brain mechanisms. We applied Heterogeneity Through Discriminative Analysis (HYDRA) to measures of regional brain morphometry, neurite density, and intracortical myelination to identify subtypes of youth, aged 9-10 years, with mood and anxiety disorders (N = 1931) compared to typically developing youth (N = 2823). We identified three subtypes that were robust to permutation testing and sample composition. Subtype 1 evidenced a pattern of imbalanced cortical-subcortical maturation compared to the typically developing group, with subcortical regions lagging behind prefrontal cortical thinning and myelination and greater cortical surface expansion globally. Subtype 2 displayed a pattern of delayed cortical maturation indicated by higher cortical thickness and lower cortical surface area expansion and myelination compared to the typically developing group. Subtype 3 showed evidence of atypical brain maturation involving globally lower cortical thickness and surface coupled with higher myelination and neural density. Subtype 1 had superior cognitive function in contrast to the other two subtypes that underperformed compared to the typically developing group. Higher levels of parental psychopathology, family conflict, and social adversity were common to all subtypes, with subtype 3 having the highest burden of adverse exposures. These analyses comprehensively characterize pre-adolescent mood and anxiety disorders, the biopsychosocial context in which they arise, and lay the foundation for the examination of the longitudinal evolution of the subtypes identified as the study sample transitions through adolescence.


Subject(s)
Anxiety Disorders , Brain , Humans , Adolescent , Neuroimaging/methods , Psychopathology , Affect , Magnetic Resonance Imaging
4.
Mol Psychiatry ; 28(8): 3171-3181, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37580524

ABSTRACT

Most mental disorders have a typical onset between 12 and 25 years of age, highlighting the importance of this period for the pathogenesis, diagnosis, and treatment of mental ill-health. This perspective addresses interactions between risk and protective factors and brain development as key pillars accounting for the emergence of psychopathology in youth. Moreover, we propose that novel approaches towards early diagnosis and interventions are required that reflect the evolution of emerging psychopathology, the importance of novel service models, and knowledge exchange between science and practitioners. Taken together, we propose a transformative early intervention paradigm for research and clinical care that could significantly enhance mental health in young people and initiate a shift towards the prevention of severe mental disorders.


Subject(s)
Mental Disorders , Mental Health , Humans , Adolescent , Mental Disorders/therapy , Mental Disorders/diagnosis , Psychopathology
5.
Psychol Med ; 53(6): 2485-2491, 2023 04.
Article in English | MEDLINE | ID: mdl-34664545

ABSTRACT

BACKGROUND: To characterize the association between the protracted biopsychosocial coronavirus disease 2019 (COVID-19) pandemic exposures and incident suicide attempt rates. METHODS: Data were from a nationally representative cohort based on electronic health records from January 2013 to February 2021 (N = 852 233), with an interrupted time series study design. For the primary analysis, the effect of COVID-19 pandemic on incident suicide attempts warranting in-patient hospital treatment was quantified by fitting a Poisson regression and modeling the relative risk (RR) and the corresponding 95% confidence intervals (CIs). Scenarios were forecast to predict attempted suicide rates at 10 months after social mitigation strategies. Fourteen sensitivity analyses were performed to test the robustness of the results. RESULTS: Despite the increasing trend in the unexposed interval, the interval exposed to the COVID-19 pandemic was statistically significant (p < 0.001) associated with a reduced RR of incident attempted suicide (RR = 0.63, 95% CI 0.52-0.78). Consistent with the primary analysis, sensitivity analysis of sociodemographic groups and methodological factors were statistically significant (p < 0.05). No effect modification was identified for COVID-19 lockdown intervals or COVID-19 illness status. All three forecast scenarios at 10 months projected a suicide attempt rate increase from 12.49 (7.42-21.01) to 21.38 (12.71-35.99). CONCLUSIONS: The interval exposed to the protracted mass social trauma of the COVID-19 pandemic was associated with a lower suicide attempt rate compared to the unexposed interval. However, this trend is likely to reverse 10 months after lifting social mitigation policies, underscoring the need for enhanced implementation of public health policy for suicide prevention.


Subject(s)
COVID-19 , Suicide, Attempted , Humans , Suicide, Attempted/psychology , COVID-19/epidemiology , Pandemics , Interrupted Time Series Analysis , Communicable Disease Control
6.
Psychol Med ; 53(11): 5127-5135, 2023 08.
Article in English | MEDLINE | ID: mdl-35875930

ABSTRACT

BACKGROUND: There is significant heterogeneity in cognitive function in patients with bipolar I disorder (BDI); however, there is a dearth of research into biological mechanisms that might underlie cognitive heterogeneity, especially at disease onset. To this end, this study investigated the association between accelerated or delayed age-related brain structural changes and cognition in early-stage BDI. METHODS: First episode patients with BDI (n = 80) underwent cognitive assessment to yield demographically normed composite global and domain-specific scores in verbal memory, non-verbal memory, working memory, processing speed, attention, and executive functioning. Structural magnetic resonance imaging data were also collected from all participants and subjected to machine learning to compute the brain-predicted age difference (brainPAD), calculated by subtracting chronological age from age predicted by neuroimaging data (positive brainPAD values indicating age-related acceleration in brain structural changes and negative values indicating delay). Patients were divided into tertiles based on brainPAD values, and cognitive performance compared amongst tertiles with ANCOVA. RESULTS: Patients in the lowest (delayed) tertile of brainPAD values (brainPAD range -17.9 to -6.5 years) had significantly lower global cognitive scores (p = 0.025) compared to patients in the age-congruent tertile (brainPAD range -5.3 to 2.4 yrs), and significantly lower verbal memory scores (p = 0.001) compared to the age-congruent and accelerated (brainPAD range 2.8 to 16.1 yrs) tertiles. CONCLUSION: These results provide evidence linking cognitive dysfunction in the early stage of BDI to apparent delay in typical age-related brain changes. Further studies are required to assess how age-related brain changes and cognitive functioning evolve over time.


Subject(s)
Bipolar Disorder , Humans , Child, Preschool , Child , Adolescent , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/psychology , Neuropsychological Tests , Cognition , Brain/diagnostic imaging , Executive Function , Memory, Short-Term
7.
Psychol Med ; 53(11): 4943-4951, 2023 08.
Article in English | MEDLINE | ID: mdl-35680620

ABSTRACT

BACKGROUND: The COVID-19 pandemic has been associated with increased levels of depression and anxiety with implications for the use of antidepressant medications. METHODS: The incident rate of antidepressant fills before and during the COVID-19 pandemic were compared using interrupted time-series analysis followed by comprehensive sensitivity analyses on data derived from electronic medical records from a large health management organization providing nationwide services to 14% of the Israeli population. The dataset covered the period from 1 January 2013 to 1 February 2021, with 1 March 2020 onwards defined as the period of the COVID-19 pandemic. Forecasting analysis was implemented to test the effect of the vaccine roll-out and easing of social restrictions on antidepressant use. RESULTS: The sample consisted of 852 233 persons with a total antidepressant incident fill count of 139 535.4 (total cumulative rate per 100 000 = 16 372.91, 95% CI 16 287.19-16 459.01). We calculated the proportion of antidepressant prescription fills for the COVID-19 period, and the counterfactual proportion for the same period, assuming COVID-19 had not occurred. The difference in these proportions was significant [Cohen's h = 10-3 (0.16), 95% CI 10-3 ( - 0.71 to 1.03)]. The pandemic was associated with a significant increase in the slope of the incident rate of antidepressant fills (slope change = 0.01, 95% CI 0.00-0.03; p = 0.04) and a monthly increase of 2% compared to the counterfactual (the estimated rate assuming no pandemic occurred). The increased rate was more pronounced in women, and was not modified by lockdown on/off periods, socioeconomic or SARS-CoV-2 status. The rate of observed antidepressant fills was similar to that forecasted under the assumption of ongoing COVID-19 distress. CONCLUSION: These findings underscore the toll of the pandemic on mental health and inform mental health policy and service delivery during and after implementing COVID-19 attenuation strategies.


Subject(s)
COVID-19 , Humans , Female , COVID-19/epidemiology , SARS-CoV-2 , Pandemics/prevention & control , Communicable Disease Control , Antidepressive Agents/therapeutic use
8.
Psychol Med ; 53(4): 1254-1265, 2023 03.
Article in English | MEDLINE | ID: mdl-37010225

ABSTRACT

BACKGROUND: Aberrant emotion regulation has been posited as a putative endophenotype of bipolar disorder (BD). We therefore aimed to compare the neural responses during voluntary down-regulation of negative emotions in a large functional magnetic resonance imaging study of BD, patients' unaffected first-degree relatives (URs), and healthy controls (HCs). METHODS: We compared neural activity and fronto-limbic functional connectivity during emotion regulation in response to aversive v. neutral pictures in patients recently diagnosed with BD (n = 78) in full/partial remission, their URs (n = 35), and HCs (n = 56). RESULTS: Patients showed hypo-activity in the left dorsomedial, dorsolateral, and ventrolateral prefrontal cortex (DMPFC and DLPFC) during emotion regulation while viewing aversive pictures compared to HCs, with URs displaying intermediate neural activity in these regions. There were no significant differences between patients with BD and HCs in functional connectivity from the amygdala during emotion regulation. However, exploratory analysis indicated that URs displayed more negative amygdala-DMPFC coupling compared with HCs and more negative amygdala-cingulate DLPFC coupling compared to patients with BD. At a behavioral level, patients and their URs were less able to dampen negative emotions in response aversive pictures. CONCLUSIONS: The findings point to deficient recruitment of prefrontal resources and more negative fronto-amygdala coupling as neural markers of impaired emotion regulation in recently diagnosed remitted patients with BD and their URs, respectively.


Subject(s)
Bipolar Disorder , Humans , Down-Regulation , Emotions/physiology , Amygdala/diagnostic imaging , Magnetic Resonance Imaging/methods , Prefrontal Cortex/diagnostic imaging
9.
Am J Geriatr Psychiatry ; 31(5): 353-365, 2023 05.
Article in English | MEDLINE | ID: mdl-36858928

ABSTRACT

We present a review of the state of the research in the phenomenology, clinical trajectories, biological mechanisms, aging biomarkers, and treatments for middle-aged and older people with schizophrenia (PwS) discussed at the NIMH sponsored workshop "Non-affective Psychosis in Midlife and Beyond." The growing population of PwS has specific clinical needs that require tailored and mechanistically derived interventions. Differentiating between the effects of aging and disease progression is a key challenge of studying older PwS. This review of the workshop highlights the recent findings in this understudied clinical population and the critical gaps in knowledge and consensus for research priorities. This review showcases the major challenges and opportunities for research to advance clinical care for this growing and understudied population.


Subject(s)
Psychotic Disorders , Schizophrenia , United States , Humans , Middle Aged , Aged , National Institute of Mental Health (U.S.) , Schizophrenia/diagnosis , Schizophrenia/therapy , Aging , Consensus , Psychotic Disorders/diagnosis , Psychotic Disorders/therapy , Psychotic Disorders/psychology
10.
Cereb Cortex ; 32(2): 397-407, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34255824

ABSTRACT

Healthy aging is typically associated with some level of cognitive decline, but there is substantial variation in such decline among older adults. The mechanisms behind such heterogeneity remain unclear but some have suggested a role for cognitive reserve. In this work, we propose the "person-based similarity index" for cognition (PBSI-Cog) as a proxy for cognitive reserve in older adults, and use the metric to quantify similarity between the cognitive profiles of healthy older and younger participants. In the current study, we computed this metric in 237 healthy older adults (55-88 years) using a reference group of 156 younger adults (18-39 years) taken from the Cambridge Center for Ageing and Neuroscience dataset. Our key findings revealed that PBSI-Cog scores in older adults were: 1) negatively associated with age (rho = -0.25, P = 10-4) and positively associated with higher education (t = 2.4, P = 0.02), 2) largely explained by fluid intelligence and executive function, and 3) predicted more by functional connectivity between lower- and higher-order resting-state networks than brain structural morphometry or education. Particularly, we found that higher segregation between the sensorimotor and executive networks predicted higher PBSI-Cog scores. Our results support the notion that brain network functional organization may underly variability in cognitive reserve in late adulthood.


Subject(s)
Cognitive Reserve , Adult , Aged , Aging/psychology , Brain/diagnostic imaging , Cognition , Humans , Magnetic Resonance Imaging
11.
Hum Brain Mapp ; 43(17): 5126-5140, 2022 12 01.
Article in English | MEDLINE | ID: mdl-35852028

ABSTRACT

Application of machine learning (ML) algorithms to structural magnetic resonance imaging (sMRI) data has yielded behaviorally meaningful estimates of the biological age of the brain (brain-age). The choice of the ML approach in estimating brain-age in youth is important because age-related brain changes in this age-group are dynamic. However, the comparative performance of the available ML algorithms has not been systematically appraised. To address this gap, the present study evaluated the accuracy (mean absolute error [MAE]) and computational efficiency of 21 machine learning algorithms using sMRI data from 2105 typically developing individuals aged 5-22 years from five cohorts. The trained models were then tested in two independent holdout datasets, one comprising 4078 individuals aged 9-10 years and another comprising 594 individuals aged 5-21 years. The algorithms encompassed parametric and nonparametric, Bayesian, linear and nonlinear, tree-based, and kernel-based models. Sensitivity analyses were performed for parcellation scheme, number of neuroimaging input features, number of cross-validation folds, number of extreme outliers, and sample size. Tree-based models and algorithms with a nonlinear kernel performed comparably well, with the latter being especially computationally efficient. Extreme Gradient Boosting (MAE of 1.49 years), Random Forest Regression (MAE of 1.58 years), and Support Vector Regression (SVR) with Radial Basis Function (RBF) Kernel (MAE of 1.64 years) emerged as the three most accurate models. Linear algorithms, with the exception of Elastic Net Regression, performed poorly. Findings of the present study could be used as a guide for optimizing methodology when quantifying brain-age in youth.


Subject(s)
Algorithms , Machine Learning , Adolescent , Humans , Bayes Theorem , Neuroimaging , Brain/diagnostic imaging , Support Vector Machine
12.
Hum Brain Mapp ; 43(15): 4689-4698, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35790053

ABSTRACT

The brain-age-gap estimate (brainAGE) quantifies the difference between chronological age and age predicted by applying machine-learning models to neuroimaging data and is considered a biomarker of brain health. Understanding sex differences in brainAGE is a significant step toward precision medicine. Global and local brainAGE (G-brainAGE and L-brainAGE, respectively) were computed by applying machine learning algorithms to brain structural magnetic resonance imaging data from 1113 healthy young adults (54.45% females; age range: 22-37 years) participating in the Human Connectome Project. Sex differences were determined in G-brainAGE and L-brainAGE. Random forest regression was used to determine sex-specific associations between G-brainAGE and non-imaging measures pertaining to sociodemographic characteristics and mental, physical, and cognitive functions. L-brainAGE showed sex-specific differences; in females, compared to males, L-brainAGE was higher in the cerebellum and brainstem and lower in the prefrontal cortex and insula. Although sex differences in G-brainAGE were minimal, associations between G-brainAGE and non-imaging measures differed between sexes with the exception of poor sleep quality, which was common to both. While univariate relationships were small, the most important predictor of higher G-brainAGE was self-identification as non-white in males and systolic blood pressure in females. The results demonstrate the value of applying sex-specific analyses and machine learning methods to advance our understanding of sex-related differences in factors that influence the rate of brain aging and provide a foundation for targeted interventions.


Subject(s)
Brain , Sex Characteristics , Adult , Aging/pathology , Biomarkers , Brain/diagnostic imaging , Brain/pathology , Female , Humans , Magnetic Resonance Imaging/methods , Male , Young Adult
13.
Hum Brain Mapp ; 43(1): 431-451, 2022 01.
Article in English | MEDLINE | ID: mdl-33595143

ABSTRACT

Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3-90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes.


Subject(s)
Cerebral Cortex/anatomy & histology , Cerebral Cortex/diagnostic imaging , Human Development/physiology , Neuroimaging , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Young Adult
14.
Hum Brain Mapp ; 43(1): 373-384, 2022 01.
Article in English | MEDLINE | ID: mdl-33017498

ABSTRACT

Early-onset psychosis disorders are serious mental disorders arising before the age of 18 years. Here, we investigate the largest neuroimaging dataset, to date, of patients with early-onset psychosis and healthy controls for differences in intracranial and subcortical brain volumes. The sample included 263 patients with early-onset psychosis (mean age: 16.4 ± 1.4 years, mean illness duration: 1.5 ± 1.4 years, 39.2% female) and 359 healthy controls (mean age: 15.9 ± 1.7 years, 45.4% female) with magnetic resonance imaging data, pooled from 11 clinical cohorts. Patients were diagnosed with early-onset schizophrenia (n = 183), affective psychosis (n = 39), or other psychotic disorders (n = 41). We used linear mixed-effects models to investigate differences in intracranial and subcortical volumes across the patient sample, diagnostic subgroup and antipsychotic medication, relative to controls. We observed significantly lower intracranial (Cohen's d = -0.39) and hippocampal (d = -0.25) volumes, and higher caudate (d = 0.25) and pallidum (d = 0.24) volumes in patients relative to controls. Intracranial volume was lower in both early-onset schizophrenia (d = -0.34) and affective psychosis (d = -0.42), and early-onset schizophrenia showed lower hippocampal (d = -0.24) and higher pallidum (d = 0.29) volumes. Patients who were currently treated with antipsychotic medication (n = 193) had significantly lower intracranial volume (d = -0.42). The findings demonstrate a similar pattern of brain alterations in early-onset psychosis as previously reported in adult psychosis, but with notably low intracranial volume. The low intracranial volume suggests disrupted neurodevelopment in adolescent early-onset psychosis.


Subject(s)
Adolescent Development/physiology , Affective Disorders, Psychotic/pathology , Brain/pathology , Psychotic Disorders/pathology , Schizophrenia/pathology , Adolescent , Affective Disorders, Psychotic/diagnostic imaging , Age of Onset , Brain/diagnostic imaging , Globus Pallidus/diagnostic imaging , Globus Pallidus/pathology , Hippocampus/diagnostic imaging , Hippocampus/pathology , Humans , Magnetic Resonance Imaging , Psychotic Disorders/diagnostic imaging , Schizophrenia/diagnostic imaging
15.
Hum Brain Mapp ; 43(1): 414-430, 2022 01.
Article in English | MEDLINE | ID: mdl-33027543

ABSTRACT

First-degree relatives of patients diagnosed with schizophrenia (SZ-FDRs) show similar patterns of brain abnormalities and cognitive alterations to patients, albeit with smaller effect sizes. First-degree relatives of patients diagnosed with bipolar disorder (BD-FDRs) show divergent patterns; on average, intracranial volume is larger compared to controls, and findings on cognitive alterations in BD-FDRs are inconsistent. Here, we performed a meta-analysis of global and regional brain measures (cortical and subcortical), current IQ, and educational attainment in 5,795 individuals (1,103 SZ-FDRs, 867 BD-FDRs, 2,190 controls, 942 schizophrenia patients, 693 bipolar patients) from 36 schizophrenia and/or bipolar disorder family cohorts, with standardized methods. Compared to controls, SZ-FDRs showed a pattern of widespread thinner cortex, while BD-FDRs had widespread larger cortical surface area. IQ was lower in SZ-FDRs (d = -0.42, p = 3 × 10-5 ), with weak evidence of IQ reductions among BD-FDRs (d = -0.23, p = .045). Both relative groups had similar educational attainment compared to controls. When adjusting for IQ or educational attainment, the group-effects on brain measures changed, albeit modestly. Changes were in the expected direction, with less pronounced brain abnormalities in SZ-FDRs and more pronounced effects in BD-FDRs. To conclude, SZ-FDRs and BD-FDRs show a differential pattern of structural brain abnormalities. In contrast, both had lower IQ scores and similar school achievements compared to controls. Given that brain differences between SZ-FDRs and BD-FDRs remain after adjusting for IQ or educational attainment, we suggest that differential brain developmental processes underlying predisposition for schizophrenia or bipolar disorder are likely independent of general cognitive impairment.


Subject(s)
Bipolar Disorder/pathology , Cognitive Dysfunction/pathology , Educational Status , Genetic Predisposition to Disease , Intelligence/physiology , Neuroimaging , Schizophrenia/pathology , Bipolar Disorder/complications , Bipolar Disorder/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Family , Humans , Magnetic Resonance Imaging , Schizophrenia/complications , Schizophrenia/diagnostic imaging , Schizophrenia/etiology
16.
Mol Psychiatry ; 26(9): 4905-4918, 2021 09.
Article in English | MEDLINE | ID: mdl-32444868

ABSTRACT

Adolescence is a period of major brain reorganization shaped by biologically timed and by environmental factors. We sought to discover linked patterns of covariation between brain structural development and a wide array of these factors by leveraging data from the IMAGEN study, a longitudinal population-based cohort of adolescents. Brain structural measures and a comprehensive array of non-imaging features (relating to demographic, anthropometric, and psychosocial characteristics) were available on 1476 IMAGEN participants aged 14 years and from a subsample reassessed at age 19 years (n = 714). We applied sparse canonical correlation analyses (sCCA) to the cross-sectional and longitudinal data to extract modes with maximum covariation between neuroimaging and non-imaging measures. Separate sCCAs for cortical thickness, cortical surface area and subcortical volumes confirmed that each imaging phenotype was correlated with non-imaging features (sCCA r range: 0.30-0.65, all PFDR < 0.001). Total intracranial volume and global measures of cortical thickness and surface area had the highest canonical cross-loadings (|ρ| = 0.31-0.61). Age, physical growth and sex had the highest association with adolescent brain structure (|ρ| = 0.24-0.62); at baseline, further significant positive associations were noted for cognitive measures while negative associations were observed at both time points for prenatal parental smoking, life events, and negative affect and substance use in youth (|ρ| = 0.10-0.23). Sex, physical growth and age are the dominant influences on adolescent brain development. We highlight the persistent negative influences of prenatal parental smoking and youth substance use as they are modifiable and of relevance for public health initiatives.


Subject(s)
Canonical Correlation Analysis , Magnetic Resonance Imaging , Adolescent , Adult , Brain/diagnostic imaging , Cross-Sectional Studies , Humans , Longitudinal Studies , Young Adult
17.
Cereb Cortex ; 31(3): 1719-1731, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33188411

ABSTRACT

Currently, several human brain functional atlases are used to define the spatial constituents of the resting-state networks (RSNs). However, the only brain atlases available are derived from samples of young adults. As brain networks are continuously reconfigured throughout life, the lack of brain atlases derived from older populations may influence RSN results in late adulthood. To address this gap, the aim of the study was to construct a reliable brain atlas derived only from older participants. We leveraged resting-state functional magnetic resonance imaging data from three cohorts of healthy older adults (total N = 563; age = 55-95 years) and a younger-adult cohort (N = 128; age = 18-35 years). We identified the major RSNs and their subdivisions across all older-adult cohorts. We demonstrated high spatial reproducibility of these RSNs with an average spatial overlap of 67%. Importantly, the RSNs derived from the older-adult cohorts were spatially different from those derived from the younger-adult cohort (P = 2.3 × 10-3). Lastly, we constructed a novel brain atlas, called Atlas55+, which includes the consensus of the major RSNs and their subdivisions across the older-adult cohorts. Thus, Atlas55+ provides a reliable age-appropriate template for RSNs in late adulthood and is publicly available. Our results confirm the need for age-appropriate functional atlases for studies investigating aging-related brain mechanisms.


Subject(s)
Brain/anatomy & histology , Brain/physiology , Aged , Aged, 80 and over , Connectome/methods , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Rest
18.
Int Rev Psychiatry ; 34(7-8): 727-735, 2022.
Article in English | MEDLINE | ID: mdl-36786111

ABSTRACT

Bipolar disorder (BD) is a severe mental illness associated with alterations in brain organization. Neuroimaging studies have generated a large body of knowledge regarding brain morphological and functional abnormalities in BD. Current advances in the field have focussed on the need for more precise neuroimaging biomarkers. Here we present a selective overview of precision neuroimaging biomarkers for BD, focussing on personalized metrics and novel neuroimaging methods aiming to provide mechanistic insights into the brain alterations associated with BD. The evidence presented covers (a) machine learning techniques applied to neuroimaging data to differentiate patients with BD from healthy individuals or other clinical groups; (b) the 'brain-age-gap-estimation (brainAGE), which is an individualized measure of brain health; (c) diffusional kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI) and Positron Emission Tomography (PET) techniques that open new opportunities to measure microstructural changes in neurite/synaptic integrity and function.


Subject(s)
Bipolar Disorder , Humans , Bipolar Disorder/diagnostic imaging , Neuroimaging/methods , Brain/diagnostic imaging , Diffusion Tensor Imaging/methods , Biomarkers
19.
Neuroimage ; 233: 117945, 2021 06.
Article in English | MEDLINE | ID: mdl-33711482

ABSTRACT

Understanding sex-related differences across the human cerebral cortex is an important step in elucidating the basis of psychological, behavioural and clinical differences between the sexes. Prior structural neuroimaging studies primarily focused on regional sex differences using univariate analyses. Here we focus on sex differences in cortical morphological networks (CMNs) derived using multivariate modelling of regional cortical measures of volume and surface from high-quality structural MRI scans from healthy participants in the Human Connectome Project (HCP) (n = 1,063) and the Southwest University Longitudinal Imaging Multimodal (SLIM) study (n = 549). The functional relevance of the CMNs was inferred using the NeuroSynth decoding function. Sex differences were widespread but not uniform. In general, females had higher volume, thickness and cortical folding in networks that involve prefrontal (both ventral and dorsal regions including the anterior cingulate) and parietal regions while males had higher volume, thickness and cortical folding in networks that primarily include temporal and posterior cortical regions. CMN loading coefficients were used as input features to linear discriminant analyses that were performed separately in the HCP and SLIM; sex was predicted with a high degree of accuracy (81%-85%) across datasets. The availability of behavioral data in the HCP enabled us to show that male-biased surface-based CMNs were associated with externalizing behaviors. These results extend previous literature on regional sex-differences by identifying CMNs that can reliably predict sex, are relevant to the expression of psychopathology and provide the foundation for the future investigation of their functional significance in clinical populations.


Subject(s)
Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging , Nerve Net/physiology , Sex Characteristics , Adolescent , Adult , Female , Humans , Magnetic Resonance Imaging/trends , Male , Young Adult
20.
Hum Brain Mapp ; 42(6): 1727-1741, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33340172

ABSTRACT

Although previous studies have highlighted associations of cannabis use with cognition and brain morphometry, critical questions remain with regard to the association between cannabis use and brain structural and functional connectivity. In a cross-sectional community sample of 205 African Americans (age 18-70) we tested for associations of cannabis use disorder (CUD, n = 57) with multi-domain cognitive measures and structural, diffusion, and resting state brain-imaging phenotypes. Post hoc model evidence was computed with Bayes factors (BF) and posterior probabilities of association (PPA) to account for multiple testing. General cognitive functioning, verbal intelligence, verbal memory, working memory, and motor speed were lower in the CUD group compared with non-users (p < .011; 1.9 < BF < 3,217). CUD was associated with altered functional connectivity in a network comprising the motor-hand region in the superior parietal gyri and the anterior insula (p < .04). These differences were not explained by alcohol, other drug use, or education. No associations with CUD were observed in cortical thickness, cortical surface area, subcortical or cerebellar volumes (0.12 < BF < 1.5), or graph-theoretical metrics of resting state connectivity (PPA < 0.01). In a large sample collected irrespective of cannabis used to minimize recruitment bias, we confirm the literature on poorer cognitive functioning in CUD, and an absence of volumetric brain differences between CUD and non-CUD. We did not find evidence for or against a disruption of structural connectivity, whereas we did find localized resting state functional dysconnectivity in CUD. There was sufficient proof, however, that organization of functional connectivity as determined via graph metrics does not differ between CUD and non-user group.


Subject(s)
Cerebral Cortex , Cognitive Dysfunction , Marijuana Abuse , Nerve Net , Adult , Black or African American , Aged , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Cognitive Dysfunction/physiopathology , Connectome , Cross-Sectional Studies , Female , Humans , Magnetic Resonance Imaging , Male , Marijuana Abuse/complications , Marijuana Abuse/diagnostic imaging , Marijuana Abuse/pathology , Marijuana Abuse/physiopathology , Middle Aged , Nerve Net/diagnostic imaging , Nerve Net/pathology , Nerve Net/physiopathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL