Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Development ; 141(15): 2921-3, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25053425

ABSTRACT

The pluripotency factor POU5F1 (OCT4) is well known as a key regulator of stem cell fate. Homologues of POU5F1 exist throughout vertebrates, but the evolutionary and functional relationships between the various family members have been unclear. The level to which function has been conserved within this family provides insight into the evolution of early embryonic potency. Here, we seek to clarify the relationship between POU5F1 homologues in the vertebrate lineage, both phylogenetically and functionally. We resolve the confusion over the identity of the zebrafish gene, which was originally named pou2, then changed to pou5f1 and again, more recently, to pou5f3. We argue that the use of correct nomenclature is crucial when discussing the degree to which the networks regulating early embryonic differentiation are conserved.


Subject(s)
Octamer Transcription Factor-3/genetics , Zebrafish Proteins/genetics , Animals , Cell Differentiation , Cell Lineage , Developmental Biology/standards , Humans , Octamer Transcription Factor-3/physiology , Phylogeny , Stem Cells/cytology , Terminology as Topic , Vertebrates , Zebrafish , Zebrafish Proteins/physiology
2.
Biol Reprod ; 96(4): 877-894, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28379301

ABSTRACT

Embryonic diapause is a period of developmental arrest which requires coordination of a molecular cross-talk between the endometrium and blastocyst to ensure a successful reactivation, but the exact mechanisms are undefined. The objectives of this study were to screen the tammar blastocyst for potential diapause control factors and to investigate the potential for members of the epidermal growth factor (EGF) family to coordinate reactivation. A select number of factors were also examined in the mink to determine whether their expression patterns were conserved across diapause species. The full-length sequences of the tammar genes of interest were first cloned to establish their level of sequence conservation with other mammals. The uterine expression of EGF family members EGF and heparin-binding EGF (HBEGF) and their receptors (EGFR and erb-b2 receptor tyrosine kinase 4 (ERBB4)) was determined by quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) and immunohistochemistry. Both HBEGF and EGF were significantly upregulated at reactivation compared to diapause. In the blastocyst, the expression of the potential diapause factors Forkhead box class O family members (FOXO1, FOXO3, and FOXO4), tumor protein 53 (TP53), cyclin-dependent kinase inhibitor 1A (CDKN1A), and the EGF family were examined by RT-PCR and immunofluorescence. Nuclear (and hence active) FOXO expression was confirmed for the first time in a mammalian diapause blastocyst in both the tammar and the mink-CDKN1A was also expressed, but TP53 is not involved and EGFR was not detected in the blastocyst. These results indicate that the EGF family, FOXOs, and CDKN1A are promising candidates for the molecular control of embryonic diapause in mammals.


Subject(s)
Blastocyst/physiology , Diapause/physiology , Embryonic Development/physiology , Macropodidae/embryology , Mink/embryology , Animals , Cloning, Molecular , Endometrium/physiology , Female , Gene Expression Regulation, Developmental/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Species Specificity , Transcriptome
3.
Biol Reprod ; 97(2): 217-229, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-29044428

ABSTRACT

The first sign of mammalian germ cell sexual differentiation is the initiation of meiosis in females and of mitotic arrest in males. In the mouse, retinoic acid induces ovarian Stra8 expression and entry of germ cells into meiosis. In developing mouse testes, cytochrome P450 family 26, subfamily b, polypeptide 1 (CYP26B1) produced by the Sertoli cells degrades retinoic acid, preventing Stimulated by Retinoic Acid Gene 8 (Stra8), expression and inhibiting meiosis. However, in developing humans, there is no evidence that CYP26B1 acts a meiosis-inhibiting factor. We therefore examined aspects of the retinoic acid/STRA8/CYP26B1 pathway during gonadal development in the tammar wallaby, a marsupial, to understand whether retinoic acid stimulation of STRA8 and CYP26B1 degradation of retinoic acid was conserved between widely divergent mammals. In tammar ovaries, as in human ovaries and unlike the pattern in mice, CYP26B1 expression was not downregulated before the onset of meiosis. Exposure of pre-meiotic tammar ovaries to exogenous retinoic acid in vitro upregulated STRA8 expression compared to controls. We conclude that retinoic acid and STRA8 are conserved factors that control the initiation of meiosis amongst mammals but the role of CYP26B1 as a meiosis-inhibiting factor may be specific to rodents. The identity of the marsupial meiosis-inhibiting factor remains unknown.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Macropodidae/metabolism , Retinoic Acid 4-Hydroxylase/metabolism , Sex Determination Processes/physiology , Adaptor Proteins, Signal Transducing/genetics , Animals , Female , Gene Expression Regulation, Developmental , Male , Meiosis , Mice , Oogenesis/physiology , Retinoic Acid 4-Hydroxylase/genetics , Species Specificity , Spermatogenesis/physiology , Tretinoin/metabolism
4.
Mol Hum Reprod ; 22(10): 681-690, 2016 10.
Article in English | MEDLINE | ID: mdl-26769259

ABSTRACT

Understanding the mechanisms underlying the first cell differentiation events in human preimplantation development is fundamental for defining the optimal conditions for IVF techniques and selecting the most viable embryos for further development. However, our comprehension of the very early events in development is still very limited. Moreover, our knowledge on early lineage specification comes primarily from studying the mouse model. It is important to recognize that although mammalian embryos share similar morphological landmarks, the timing and molecular control of developmental events may vary substantially between species. Mammalian blastocysts comprise three cell types that arise through two sequential rounds of binary cell fate decisions. During the first decision, cells located on the outside of the developing embryo form a precursor lineage for the embryonic part of the placenta: the trophectoderm and cells positioned inside the embryo become the inner cell mass (ICM). Subsequently, ICM cells differentiate into embryonic lineages that give rise to a variety of tissues in the developing foetus: either the epiblast or extraembryonic primitive endoderm. Successful formation of all three lineages is a prerequisite for implantation and development to term. A comprehensive understanding of the lineage specification processes in mammals is therefore necessary to shed light on the causes of early miscarriages and early pregnancy pathologies in humans.


Subject(s)
Blastocyst/cytology , Cell Differentiation/physiology , Cell Survival/physiology , Embryo, Mammalian/cytology , Animals , Blastocyst/metabolism , Cell Differentiation/genetics , Cell Survival/genetics , Embryo, Mammalian/metabolism , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , Humans , Mice
5.
Immunogenetics ; 67(7): 385-93, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25957041

ABSTRACT

Major histocompatibility complex class I molecules (MHC-I) are expressed at the cell surface and are responsible for the presentation of self and non-self antigen repertoires to the immune system. Eutherian mammals express both classical and non-classical MHC-I molecules in the placenta, the latter of which are thought to modulate the maternal immune response during pregnancy. Marsupials last shared a common ancestor with eutherian mammals such as humans and mice over 160 million years ago. Since, like eutherians, they have an intra-uterine development dependent on a placenta, albeit a short-lived and less invasive one, they provide an opportunity to investigate the evolution of MHC-I expression at the fetal-maternal interface. We have characterised MHC-I mRNA expression in reproductive tissues of the tammar wallaby (Macropus eugenii) from the time of placental attachment to day 25 of the 26.5 day pregnancy. Putative classical MHC-I genes were expressed in the choriovitelline placenta, fetus, and gravid endometrium throughout the whole of this period. The MHC-I classical sequences were phylogenetically most similar to the Maeu-UC (50/100 clones) and Maeu-UA genes (7/100 clones). Expression of three non-classical MHC-I genes (Maeu-UD, Maeu-UK and Maeu-UM) were also present in placental samples. The results suggest that expression of classical and non-classical MHC-I genes in extant marsupial and eutherian mammals may have been necessary for the evolution of the ancestral therian placenta and survival of the mammalian fetus at the maternal-fetal interface.


Subject(s)
Genes, MHC Class I/genetics , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Macropodidae/immunology , Placenta/immunology , Amino Acid Sequence , Animals , Base Sequence , Evolution, Molecular , Female , Macropodidae/genetics , Membrane Proteins/genetics , Membrane Proteins/immunology , Phylogeny , Pregnancy , RNA, Messenger/biosynthesis , Sequence Analysis, DNA
6.
Front Cell Dev Biol ; 12: 1353598, 2024.
Article in English | MEDLINE | ID: mdl-38380341

ABSTRACT

Introduction: During early development in most male mammals the testes move from a position near the kidneys through the abdomen to eventually reside in the scrotum. The transabdominal phase of this migration is driven by insulin-like peptide 3 (INSL3) which stimulates growth of the gubernaculum, a key ligament connecting the testes with the abdominal wall. While all marsupials, except the marsupial mole (Notoryctes typhlops), have a scrotum and fully descended testes, it is unclear if INSL3 drives this process in marsupials especially given that marsupials have a different mechanism of scrotum determination and position relative to the phallus compared to eutherian mammals. Methods: To understand if INSL3 plays a role in marsupial testicular descent we have sequenced and curated the INSL3 gene and its receptor (RXFP2) in a range of marsupials representing every order. Furthermore, we looked at single cell RNA-seq and qPCR analysis of INSL3 in the fat-tailed dunnart testis (Sminthopsis crassicaudata) to understand the location and timing of expression during development. Results: These data show a strong phylogenetic similarity between marsupial and eutherian orthologues, but not with monotreme INSL3s which were more similar to the ancestral RLN3 gene. We have also shown the genomic location of INSL3, and surrounding genes is conserved in a range of marsupials and eutherians. Single cell RNA-seq and qPCR data show that INSL3 mRNA is expressed specifically in Leydig cells and expressed at higher levels during the testicular descent phase in developing marsupials. Discussion: Together, these data argue strongly for a therian origin of INSL3 mediated testicular descent in mammals and suggests that a coordinated movement of the testes to the abdominal wall may have preceded externalization in marsupials and therian mammals.

7.
GigaByte ; 2024: gigabyte118, 2024.
Article in English | MEDLINE | ID: mdl-38746537

ABSTRACT

Marsupials exhibit distinctive modes of reproduction and early development that set them apart from their eutherian counterparts and render them invaluable for comparative studies. However, marsupial genomic resources still lag far behind those of eutherian mammals. We present a series of novel genomic resources for the fat-tailed dunnart (Sminthopsis crassicaudata), a mouse-like marsupial that, due to its ease of husbandry and ex-utero development, is emerging as a laboratory model. We constructed a highly representative multi-tissue de novo transcriptome assembly of dunnart RNA-seq reads spanning 12 tissues. The transcriptome includes 2,093,982 assembled transcripts and has a mammalian transcriptome BUSCO completeness score of 93.3%, the highest amongst currently published marsupial transcriptomes. This global transcriptome, along with ab initio predictions, supported annotation of the existing dunnart genome, revealing 21,622 protein-coding genes. Altogether, these resources will enable wider use of the dunnart as a model marsupial and deepen our understanding of mammalian genome evolution.

8.
Commun Biol ; 7(1): 636, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796620

ABSTRACT

The eastern quoll (Dasyurus viverrinus) is an endangered marsupial native to Australia. Since the extirpation of its mainland populations in the 20th century, wild eastern quolls have been restricted to two islands at the southern end of their historical range. Eastern quolls are the subject of captive breeding programs and attempts have been made to re-establish a population in mainland Australia. However, few resources currently exist to guide the genetic management of this species. Here, we generated a reference genome for the eastern quoll with gene annotations supported by multi-tissue transcriptomes. Our assembly is among the most complete marsupial genomes currently available. Using this assembly, we infer the species' demographic history, identifying potential evidence of a long-term decline beginning in the late Pleistocene. Finally, we identify a deletion at the ASIP locus that likely underpins pelage color differences between the eastern quoll and the closely related Tasmanian devil (Sarcophilus harrisii).


Subject(s)
Endangered Species , Genome , Marsupialia , Animals , Marsupialia/genetics , Australia , Pigmentation/genetics , Biological Evolution , Transcriptome
9.
Nat Commun ; 13(1): 5537, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36130934

ABSTRACT

The support of pluripotent cells over time is an essential feature of development. In eutherian embryos, pluripotency is maintained from naïve states in peri-implantation to primed pluripotency at gastrulation. To understand how these states emerged, we reconstruct the evolutionary trajectory of the Pou5 gene family, which contains the central pluripotency factor OCT4. By coupling evolutionary sequence analysis with functional studies in mouse embryonic stem cells, we find that the ability of POU5 proteins to support pluripotency originated in the gnathostome lineage, prior to the generation of two paralogues, Pou5f1 and Pou5f3 via gene duplication. In osteichthyans, retaining both genes, the paralogues differ in their support of naïve and primed pluripotency. The specialization of these duplicates enables the diversification of function in self-renewal and differentiation. By integrating sequence evolution, cell phenotypes, developmental contexts and structural modelling, we pinpoint OCT4 regions sufficient for naïve pluripotency and describe their adaptation over evolutionary time.


Subject(s)
Pluripotent Stem Cells , Animals , Cell Differentiation/genetics , Gastrulation/genetics , Gene Expression Regulation, Developmental , Mice , Mouse Embryonic Stem Cells , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism
10.
Wiley Interdiscip Rev Dev Biol ; 5(2): 210-32, 2016.
Article in English | MEDLINE | ID: mdl-26799266

ABSTRACT

The blastocyst is a mammalian invention that carries the embryo from cleavage to gastrulation. For such a simple structure, it exhibits remarkable diversity in its mode of formation, morphology, longevity, and intimacy with the uterine endometrium. This review explores this diversity in the light of the evolution of viviparity, comparing the three main groups of mammals: monotremes, marsupials, and eutherians. The principal drivers in blastocyst evolution were loss of yolk coupled with evolution of the placenta. An important outcome of blastocyst development is differentiation of two extraembryonic lineages (trophoblast and hypoblast) that contribute to the placenta. While in many species trophoblast segregation is often coupled with blastocyst formation, in marsupials and at least some Afrotherians, these events do not coincide. Thus, many questions regarding the conservation of molecular mechanisms controlling these events are of great interest but currently unresolved. For further resources related to this article, please visit the WIREs website.


Subject(s)
Blastocyst/cytology , Animals , Biological Evolution , Blastocyst/metabolism , Cell Lineage , Gene Expression Regulation, Developmental , Mammals/embryology , Mammals/genetics
11.
Dev Cell ; 35(3): 267-8, 2015 Nov 09.
Article in English | MEDLINE | ID: mdl-26555047

ABSTRACT

Pluripotency is well defined functionally but ambiguously defined at the molecular level. In this issue of Developmental Cell, Boroviak and colleagues (2015) use a multi-species approach to differentiate between fundamental features of pluripotency in mammals and those that exhibit evolutionary plasticity.


Subject(s)
Blastocyst/cytology , Cell Differentiation/genetics , Cell Lineage/genetics , Embryonic Development/genetics , Germ Layers/cytology , Pluripotent Stem Cells/cytology , Animals
12.
Genome Biol ; 12(8): R81, 2011 Aug 29.
Article in English | MEDLINE | ID: mdl-21854559

ABSTRACT

BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution.


Subject(s)
Biological Evolution , Macropodidae/classification , Macropodidae/genetics , Transcriptome/genetics , Animals , Australia , Chromosome Mapping , Chromosomes, Mammalian/genetics , Female , Gene Expression Regulation , Genome , Genomic Imprinting , In Situ Hybridization, Fluorescence , Macropodidae/growth & development , MicroRNAs/genetics , MicroRNAs/metabolism , Molecular Sequence Data , Reproduction/genetics , Sequence Alignment , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL