Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(14): e2104496119, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35344428

ABSTRACT

SignificancePhysical and chemical properties of individual atmospheric particles determine their climate impacts. Hygroscopic inorganic salt particles mixed with trace amounts of organic material are predicted to be liquid under typical tropospheric conditions in the summertime Arctic. Yet, we unexpectedly observed a significant concentration of solid particles composed of ammonium sulfate with an organic coating under conditions of high relative humidity and low temperature. These particle properties are consistent with marine biogenic-derived new particle formation and growth, with particle collision hypothesized to result in the solid phase. This particle source is predicted to have increasing relevance in the context of declining Arctic sea ice and increasing open water, with impacts on clouds, and therefore climate.

2.
Sci Total Environ ; 904: 166865, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37690758

ABSTRACT

This study reports results from research conducted at the Observatory of Mount Pico (OMP), 2225 m above mean sea level on Pico Island in the Azores archipelago in June and July 2017. We investigated the chemical composition, mixing state, and cloud condensation nuclei (CCN) activities of long-range transported free tropospheric (FT) particles. FLEXible PARTicle Lagrangian particle dispersion model (FLEXPART) simulations reveal that most air masses that arrived at the OMP during the sampling period originated in North America and were highly aged (average plume age > 10 days). We probed size-resolved chemical composition, mixing state, and hygroscopicity parameter (κ) of individual particles using computer-controlled scanning electron microscopy with an energy-dispersive X-ray spectrometer (CCSEM-EDX). Based on the estimated individual particle mass from elemental composition, we calculated the mixing state index, χ. During our study, FT particle populations were internally mixed (χ of samples are between 53 % and 87 %), owing to the long atmospheric aging time. We used data from a miniature Cloud Condensation Nucleus Counter (miniCCNC) to derive the hygroscopicity parameter, κCCNC. Combining κCCNC and FLEXPART, we found that air masses recirculated above the North Atlantic Ocean with lower mean altitude had higher κCCNC due to the higher contribution of sea salt particles. We used CCSEM-EDX and phase state measurements to predict single-particle κ (κCCSEM-EDX) values, which overlap with the lower range of κCCNC measured below 0.15 % SS. Therefore, CCSEM-EDX measurements can be useful in predicting the lower bound of κ, which can be used in climate models to predict CCN activities, especially in remote locations where online CCN measurements are unavailable.

3.
Environ Sci Process Impacts ; 25(10): 1718-1731, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37781874

ABSTRACT

Microplastic particles are of increasing environmental concern due to the widespread uncontrolled degradation of various commercial products made of plastic and their associated waste disposal. Recently, common technology used to repair sewer pipes was reported as one of the emission sources of airborne microplastics in urban areas. This research presents results of the multi-modal comprehensive chemical characterization of the microplastic particles related to waste discharged in the pipe repair process and compares particle composition with the components of uncured resin and cured plastic composite used in the process. Analysis of these materials employs complementary use of surface-enhanced Raman spectroscopy, scanning transmission X-ray spectro-microscopy, single particle mass spectrometry, and direct analysis in real-time high-resolution mass spectrometry. It is shown that the composition of the relatively large (100 µm) microplastic particles resembles components of plastic material used in the process. In contrast, the composition of the smaller (micrometer and sub-micrometer) particles is significantly different, suggesting their formation from unintended polymerization of water-soluble components occurring in drying droplets of the air-discharged waste. In addition, resin material type influences the composition of released microplastic particles. Results are further discussed to guide the detection and advanced characterization of airborne microplastics in future field and laboratory studies pertaining to sewer pipe repair technology.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics/analysis , Water/analysis , Mass Spectrometry , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods
4.
Struct Dyn ; 8(4): 044301, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34258326

ABSTRACT

We present a novel technique to monitor dynamics in interfacial systems through temporal correlations in x-ray photoelectron spectroscopy (XPS) signals. To date, the vast majority of time-resolved x-ray spectroscopy techniques rely on pump-probe schemes, in which the sample is excited out of equilibrium by a pump pulse, and the subsequent dynamics are monitored by probe pulses arriving at a series of well-defined delays relative to the excitation. By definition, this approach is restricted to processes that can either directly or indirectly be initiated by light. It cannot access spontaneous dynamics or the microscopic fluctuations of ensembles in chemical or thermal equilibrium. Enabling this capability requires measurements to be performed in real (laboratory) time with high temporal resolution and, ultimately, without the need for a well-defined trigger event. The time-correlation XPS technique presented here is a first step toward this goal. The correlation-based technique is implemented by extending an existing optical-laser pump/multiple x-ray probe setup by the capability to record the kinetic energy and absolute time of arrival of every detected photoelectron. The method is benchmarked by monitoring energy-dependent, periodic signal modulations in a prototypical time-resolved XPS experiment on photoinduced surface-photovoltage dynamics in silicon, using both conventional pump-probe data acquisition, and the new technique based on laboratory time. The two measurements lead to the same result. The findings provide a critical milestone toward the overarching goal of studying equilibrium dynamics at surfaces and interfaces through time correlation-based XPS measurements.

5.
ACS Cent Sci ; 5(11): 1760-1767, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31807677

ABSTRACT

The Arctic is experiencing the greatest warming on Earth, as most evident by rapid sea ice loss. Delayed sea ice freeze-up in the Alaskan Arctic is decreasing wintertime sea ice extent and changing marine biological activity. However, the impacts of newly open water on wintertime sea spray aerosol (SSA) production and atmospheric composition are unknown. Herein, we identify SSA, produced locally from open sea ice fractures (leads), as the dominant aerosol source in the coastal Alaskan Arctic during winter, highlighting the year-round nature of Arctic SSA emissions. Nearly all of the individual SSA featured thick organic coatings, consisting of marine saccharides, amino acids, fatty acids, and divalent cations, consistent with exopolymeric secretions produced as cryoprotectants by sea ice algae and bacteria. In contrast, local summertime SSA lacked these organic carbon coatings, or featured thin coatings, with only open water nearby. The individual SSA composition was not consistent with frost flowers or surface snow above sea ice, suggesting that neither hypothesized frost flower aerosolization nor blowing snow sublimation resulted in the observed SSA. These results further demonstrate the need for inclusion of lead-based SSA production in modeling of Arctic atmospheric composition. The identified connections between changing sea ice, microbiology, and SSA point to the significance of sea ice lead biogeochemistry in altering Arctic atmospheric composition, clouds, and climate feedbacks during winter.

6.
Faraday Discuss ; 171: 219-41, 2014.
Article in English | MEDLINE | ID: mdl-25415599

ABSTRACT

Time-resolved core-level spectroscopy using laser pulses to initiate and short X-ray pulses to trace photoinduced processes has the unique potential to provide electronic state- and atomic site-specific insight into fundamental electron dynamics in complex systems. Time-domain studies using transient X-ray absorption and emission techniques have proven extremely valuable to investigate electronic and structural dynamics in isolated and solvated molecules. Here, we describe the implementation of a picosecond time-resolved X-ray photoelectron spectroscopy (TRXPS) technique at the Advanced Light Source (ALS) and its application to monitor photoinduced electron dynamics at the technologically pertinent interface formed by N3 dye molecules anchored to nanoporous ZnO. Indications for a dynamical chemical shift of the Ru3d photoemission line originating from the N3 metal centre are observed ∼30 ps after resonant HOMO-LUMO excitation with a visible laser pump pulse. The transient changes in the TRXPS spectra are accompanied by a characteristic surface photovoltage (SPV) response of the ZnO substrate on a pico- to nanosecond time scale. The interplay between the two phenomena is discussed in the context of possible electronic relaxation and recombination pathways that lead to the neutralisation of the transiently oxidised dye after ultrafast electron injection. A detailed account of the experimental technique is given including an analysis of the chemical modification of the nano-structured ZnO substrate during extended periods of solution-based dye sensitisation and its relevance for studies using surface-sensitive spectroscopy techniques.

7.
Rev Sci Instrum ; 85(9): 093102, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25273702

ABSTRACT

An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ~0.1 mm spatial resolution and ~150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution of (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy E(p) = 150 eV and an electron kinetic energy range KE = 503-508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ~9 ns at a pass energy of 50 eV and ~1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular spread with the retarding ratio can be well approximated by applying Liouville's theorem of constant emittance to the electron trajectories inside the lens system. The performance of the setup is demonstrated by characterizing the laser fluence-dependent transient surface photovoltage response of a laser-excited Si(100) sample.

SELECTION OF CITATIONS
SEARCH DETAIL