Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int J Geriatr Psychiatry ; 39(3): e6074, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38491809

ABSTRACT

OBJECTIVES: Neuropsychiatric symptoms (NPS) increase risk of developing dementia and are linked to various neurodegenerative conditions, including mild cognitive impairment (MCI due to Alzheimer's disease [AD]), cerebrovascular disease (CVD), and Parkinson's disease (PD). We explored the structural neural correlates of NPS cross-sectionally and longitudinally across various neurodegenerative diagnoses. METHODS: The study included individuals with MCI due to AD, (n = 74), CVD (n = 143), and PD (n = 137) at baseline, and at 2-years follow-up (MCI due to AD, n = 37, CVD n = 103, and PD n = 84). We assessed the severity of NPS using the Neuropsychiatric Inventory Questionnaire. For brain structure we included cortical thickness and subcortical volume of predefined regions of interest associated with corticolimbic and frontal-executive circuits. RESULTS: Cross-sectional analysis revealed significant negative correlations between appetite with both circuits in the MCI and CVD groups, while apathy was associated with these circuits in both the MCI and PD groups. Longitudinally, changes in apathy scores in the MCI group were negatively linked to the changes of the frontal-executive circuit. In the CVD group, changes in agitation and nighttime behavior were negatively associated with the corticolimbic and frontal-executive circuits, respectively. In the PD group, changes in disinhibition and apathy were positively associated with the corticolimbic and frontal-executive circuits, respectively. CONCLUSIONS: The observed correlations suggest that underlying pathological changes in the brain may contribute to alterations in neural activity associated with MBI. Notably, the difference between cross-sectional and longitudinal results indicates the necessity of conducting longitudinal studies for reproducible findings and drawing robust inferences.


Subject(s)
Alzheimer Disease , Cerebrovascular Disorders , Cognitive Dysfunction , Parkinson Disease , Humans , Cross-Sectional Studies , Parkinson Disease/psychology , Longitudinal Studies , Cognitive Dysfunction/psychology , Alzheimer Disease/psychology , Brain/diagnostic imaging , Brain/pathology , Cerebrovascular Disorders/complications , Neuropsychological Tests
2.
Alzheimers Dement ; 20(4): 2968-2979, 2024 04.
Article in English | MEDLINE | ID: mdl-38470007

ABSTRACT

INTRODUCTION: Apolipoprotein E E4 allele (APOE E4) and slow gait are independently associated with cognitive impairment and dementia. However, it is unknown whether their coexistence is associated with poorer cognitive performance and its underlying mechanism in neurodegenerative diseases. METHODS: Gait speed, APOE E4, cognition, and neuroimaging were assessed in 480 older adults with neurodegeneration. Participants were grouped by APOE E4 presence and slow gait. Mediation analyses were conducted to determine if brain structures could explain the link between these factors and cognitive performance. RESULTS: APOE E4 carriers with slow gait had the lowest global cognitive performance and smaller gray matter volumes compared to non-APOE E4 carriers with normal gait. Coexistence of APOE E4 and slow gait best predicted global and domain-specific poorer cognitive performances, mediated by smaller gray matter volume. DISCUSSION: Gait slowness in APOE E4 carriers with neurodegenerative diseases may indicate extensive gray matter changes associated with poor cognition. HIGHLIGHTS: APOE E4 and slow gait are risk factors for cognitive decline in neurodegenerative diseases. Slow gait and smaller gray matter volumes are associated, independently of APOE E4. Worse cognition in APOE E4 carriers with slow gait is explained by smaller GM volume. Gait slowness in APOE E4 carriers indicates poorer cognition-related brain changes.


Subject(s)
Apolipoprotein E4 , Neurodegenerative Diseases , Humans , Aged , Apolipoprotein E4/genetics , Neurodegenerative Diseases/genetics , Genotype , Cognition , Gait , Apolipoproteins E/genetics
3.
Alzheimers Dement ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38961774

ABSTRACT

INTRODUCTION: We investigated the effect of perivascular spaces (PVS) volume on speeded executive function (sEF), as mediated by white matter hyperintensities (WMH) volume and plasma glial fibrillary acidic protein (GFAP) in neurodegenerative diseases. METHODS: A mediation analysis was performed to assess the relationship between neuroimaging markers and plasma biomarkers on sEF in 333 participants clinically diagnosed with Alzheimer's disease/mild cognitive impairment, frontotemporal dementia, or cerebrovascular disease from the Ontario Neurodegenerative Disease Research Initiative. RESULTS: PVS was significantly associated with sEF (c = -0.125 ± 0.054, 95% bootstrap confidence interval [CI] [-0.2309, -0.0189], p = 0.021). This effect was mediated by both GFAP and WMH. DISCUSSION: In this unique clinical cohort of neurodegenerative diseases, we demonstrated that the effect of PVS on sEF was mediated by the presence of elevated plasma GFAP and white matter disease. These findings highlight the potential utility of imaging and plasma biomarkers in the current landscape of therapeutics targeting dementia. HIGHLIGHTS: Perivascular spaces (PVS) and white matter hyperintensities (WMH) are imaging markers of small vessel disease. Plasma glial fibrillary protein acidic protein (GFAP) is a biomarker of astroglial injury. PVS, WMH, and GFAP are relevant in executive dysfunction from neurodegeneration. PVS's effect on executive function was mediated by GFAP and white matter disease.

4.
Alzheimers Dement ; 20(3): 1753-1770, 2024 03.
Article in English | MEDLINE | ID: mdl-38105605

ABSTRACT

INTRODUCTION: We investigated whether novel plasma biomarkers are associated with cognition, cognitive decline, and functional independence in activities of daily living across and within neurodegenerative diseases. METHODS: Glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), phosphorylated tau (p-tau)181 and amyloid beta (Aß)42/40 were measured using ultra-sensitive Simoa immunoassays in 44 healthy controls and 480 participants diagnosed with Alzheimer's disease/mild cognitive impairment (AD/MCI), Parkinson's disease (PD), frontotemporal dementia (FTD) spectrum disorders, or cerebrovascular disease (CVD). RESULTS: GFAP, NfL, and/or p-tau181 were elevated among all diseases compared to controls, and were broadly associated with worse baseline cognitive performance, greater cognitive decline, and/or lower functional independence. While GFAP, NfL, and p-tau181 were highly predictive across diseases, p-tau181 was more specific to the AD/MCI cohort. Sparse associations were found in the FTD and CVD cohorts and for Aß42/40 . DISCUSSION: GFAP, NfL, and p-tau181 are valuable predictors of cognition and function across common neurodegenerative diseases, and may be useful in specialized clinics and clinical trials.


Subject(s)
Alzheimer Disease , Cardiovascular Diseases , Cognitive Dysfunction , Frontotemporal Dementia , Neurodegenerative Diseases , Humans , Activities of Daily Living , Amyloid beta-Peptides , Ontario , Cognition , Biomarkers , tau Proteins
5.
Alzheimers Dement ; 20(5): 3525-3542, 2024 05.
Article in Italian | MEDLINE | ID: mdl-38623902

ABSTRACT

INTRODUCTION: Effective longitudinal biomarkers that track disease progression are needed to characterize the presymptomatic phase of genetic frontotemporal dementia (FTD). We investigate the utility of cerebral perfusion as one such biomarker in presymptomatic FTD mutation carriers. METHODS: We investigated longitudinal profiles of cerebral perfusion using arterial spin labeling magnetic resonance imaging in 42 C9orf72, 70 GRN, and 31 MAPT presymptomatic carriers and 158 non-carrier controls. Linear mixed effects models assessed perfusion up to 5 years after baseline assessment. RESULTS: Perfusion decline was evident in all three presymptomatic groups in global gray matter. Each group also featured its own regional pattern of hypoperfusion over time, with the left thalamus common to all groups. Frontal lobe regions featured lower perfusion in those who symptomatically converted versus asymptomatic carriers past their expected age of disease onset. DISCUSSION: Cerebral perfusion is a potential biomarker for assessing genetic FTD and its genetic subgroups prior to symptom onset. HIGHLIGHTS: Gray matter perfusion declines in at-risk genetic frontotemporal dementia (FTD). Regional perfusion decline differs between at-risk genetic FTD subgroups . Hypoperfusion in the left thalamus is common across all presymptomatic groups. Converters exhibit greater right frontal hypoperfusion than non-converters past their expected conversion date. Cerebral hypoperfusion is a potential early biomarker of genetic FTD.


Subject(s)
C9orf72 Protein , Cerebrovascular Circulation , Frontotemporal Dementia , Magnetic Resonance Imaging , tau Proteins , Humans , Frontotemporal Dementia/genetics , Frontotemporal Dementia/physiopathology , Frontotemporal Dementia/diagnostic imaging , Female , Male , Middle Aged , Longitudinal Studies , Cerebrovascular Circulation/physiology , Cerebrovascular Circulation/genetics , C9orf72 Protein/genetics , tau Proteins/genetics , Gray Matter/diagnostic imaging , Gray Matter/pathology , Progranulins/genetics , Biomarkers , Disease Progression , Brain/diagnostic imaging , Heterozygote , Mutation , Aged , Spin Labels , Adult
6.
J Neurosci ; 42(2): 264-275, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34772740

ABSTRACT

In humans, age-related declines in vision, hearing, and touch coincide with changes in amplitude and latency of sensory-evoked potentials. These age-related differences in neural activity may be related to a common deterioration of supra-modal brain areas (e.g., PFC) that mediate activity in sensory cortices or reflect specific sensorineural impairments that may differ between sensory modalities. To distinguish between these two possibilities, we measured neuroelectric brain activity while 37 young adults (18-30 years, 18 males) and 35 older adults (60-88 years, 20 males) were presented with a rapid randomized sequence of lateralized auditory, visual, and somatosensory stimuli. Within each sensory domain, we compared amplitudes and latencies of sensory-evoked responses, source activity, and functional connectivity (via phase-locking value) between groups. We found that older adults' early sensory-evoked responses were greater in amplitude than those of young adults in all three modalities, which coincided with enhanced source activity in auditory, visual, and somatosensory cortices. Older adults also showed stronger neural synchrony than young adults between superior prefrontal and sensory cortices; and in older adults, the degree of phase synchrony was positively correlated with the magnitude of source activity in sensory areas. Critically, older adults who showed enhanced neural activity in one sensory domain also showed enhanced activity in other modalities. Together, these findings support the common cause hypothesis of aging and highlight the role of prefrontal regions in exerting top-down control over sensory cortices.SIGNIFICANCE STATEMENT A prominent theory of aging posits that age-related declines in sensory processing across domains are related to a single common neurobiological mechanism. However, the neural evidence supporting this common cause hypothesis has remained elusive. Our study revealed robust age-related changes in three sensory domains across a range of neural metrics. Importantly, older adults who showed increased neural activity within one sensory domain also showed enhanced neural activity in the other two sensory modalities. No such relation among activity in sensory cortices was observed in young adults. Age-related increases in neural activity in sensory cortices coincided with enhanced neural synchrony between the PFC and sensory cortices, underlining the importance of the PFC in regulating sensory processing.


Subject(s)
Aging/physiology , Auditory Cortex/physiology , Neurons/physiology , Somatosensory Cortex/physiology , Visual Cortex/physiology , Adolescent , Adult , Aged , Aged, 80 and over , Electroencephalography , Evoked Potentials, Somatosensory/physiology , Female , Humans , Male , Middle Aged , Young Adult
7.
J Int Neuropsychol Soc ; : 1-8, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38088261

ABSTRACT

OBJECTIVE: Previous findings suggest that time setting errors (TSEs) in the Clock Drawing Test (CDT) may be related mainly to impairments in semantic and executive function. Recent attempts to dissociate the classic stimulus-bound error (setting the time to "10 to 11" instead of "10 past 11") from other TSEs, did not support hypotheses regarding this error being primarily executive in nature or different from other time setting errors in terms of neurocognitive correlates. This study aimed to further investigate the cognitive correlates of stimulus-bound errors and other TSEs, in order to trace possible underlying cognitive deficits. METHODS: We examined cognitive test performance of participants with preliminary diagnoses associated with mild cognitive impairment. Among 490 participants, we identified clocks with stimulus-bound errors (n = 78), other TSEs (n = 41), other errors not related to time settings (n = 176), or errorless clocks (n = 195). RESULTS: No differences were found on any dependent measure between the stimulus-bound and the other TSErs groups. Group comparisons suggested TSEs in general, to be associated with lower performance on various cognitive measures, especially on semantic and working memory measures. Regression analysis further highlighted semantic and verbal working memory difficulties as being the most prominent deficits associated with these errors. CONCLUSION: TSEs in the CDT may indicate underlying deficits in semantic function and working memory. In addition, results support previous findings related to the diagnostic value of TSEs in detecting cognitive impairment.

8.
Alzheimer Dis Assoc Disord ; 37(1): 7-12, 2023.
Article in English | MEDLINE | ID: mdl-36821175

ABSTRACT

BACKGROUND: Compared with monolinguals, bilinguals have a later onset of mild cognitive impairment (MCI) and Alzheimer disease symptoms and greater neuropathology at similar cognitive and clinical levels. The present study follows a previous report showing the faster conversion from MCI to Alzheimer disease for bilingual patients than comparable monolinguals, as predicted by a cognitive reserve (CR). PURPOSE: Identify whether the increased CR found for bilinguals in the previous study was accompanied by greater gray matter (GM) atrophy than was present for the monolinguals. METHODS: A novel deep-learning technique based on convolutional neural networks was used to enhance clinical scans into 1 mm MPRAGEs and analyze the GM volume at the time of MCI diagnosis in the earlier study. PATIENTS: Twenty-four bilingual and 24 monolingual patients were diagnosed with MCI at a hospital memory clinic. RESULTS: Bilingual patients had more GM loss than monolingual patients in areas related to language processing, attention, decision-making, motor function, and episodic memory retrieval. Bilingualism and age were the strongest predictors of atrophy after other variables such as immigration and education were included in a multivariate model. DISCUSSION: CR from bilingualism is evident in the initial stages of neurodegeneration after MCI has been diagnosed.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Cognitive Reserve , Multilingualism , Humans , Gray Matter/pathology , Alzheimer Disease/psychology , Cognitive Dysfunction/psychology , Atrophy/pathology
9.
Int J Geriatr Psychiatry ; 38(7): e5960, 2023 07.
Article in English | MEDLINE | ID: mdl-37395123

ABSTRACT

OBJECTIVES: To investigate the rate of occurrence of neuropsychiatric symptoms (NPS) and their relationship with age, sex and cognitive performance in subjects with Alzheimer's disease and related dementias (Alzheimer's disease and related dementias [ADRD]). METHODS: This is a retrospective matched case-control study. Data from memory clinic patients included demographic information presence of NPS, and cognitive testing of Orientation, Immediate and Delayed Memory, Visuospatial Function, Working Memory, Attention, Executive Control and Language. Participants were Individuals with subjective cognitive impairment (n = 352), mild cognitive impairment (MCI) (n = 369), vascular MCI (n = 80), Alzheimer's disease (n = 147), vascular dementia (n = 41), mixed dementia (n = 33), and healthy controls (n = 305). Logistic regression was used to investigate the relationship between the presence of NPS, age and sex. A generalised additive model was used to investigate the relationship between presence of NPS, age and cognitive impairment. Analysis of variance was used to investigate differences in cognition between younger and older groups with and without NPS. RESULTS: We found an increased likelihood of occurrence of NPS in younger individuals and females across cohorts. Anxiety, depression, agitation, and apathy were associated with higher overall rate of NPS. We also found that individuals under 65 years of age with NPS had worse cognitive scores than their counterpart without NPS. CONCLUSION: The younger group with ADRD and NPS had lower cognitive scores, probably reflecting more aggressive neurodegenerative disease. Further work will be needed to elicit the degree to which imaging or mechanistic abnormalities distinguish this group.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Neurodegenerative Diseases , Female , Humans , Alzheimer Disease/psychology , Retrospective Studies , Case-Control Studies , Syndrome , Cognitive Dysfunction/psychology , Cognition , Neuropsychological Tests
10.
Can J Psychiatry ; 68(5): 347-358, 2023 05.
Article in English | MEDLINE | ID: mdl-36637224

ABSTRACT

OBJECTIVE: Neuropsychiatric symptoms (NPS) are prevalent in neurodegenerative disorders, however, their frequency and impact on function across different disorders is not well understood. We compared the frequency and severity of NPS across Alzheimer's disease (AD) (either with mild cognitive impairment or dementia), Cerebrovascular disease (CVD), Parkinson's disease (PD), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS), and explored the association between NPS burden and function. METHODS: We obtained data from Ontario Neurodegenerative Disease Research Initiative (ONDRI) that included following cohorts: AD (N = 111), CVD (N = 148), PD (N = 136), FTD (N = 50) and ALS (N = 36). We compared the frequency and severity of individual NPS (assessed by the neuropsychiatric inventory questionnaire) across cohorts using generalized estimating equations and analysis of variance. Second, we assessed the relationship of NPS burden with instrumental (iADLs) and basic (ADLs) activities of living across cohorts using multivariate linear regression while adjusting for relevant demographic and clinical covariates. RESULTS: Frequency of NPS varied across cohorts (χ2(4) = 34.4, p < .001), with post-hoc tests showing that FTD had the greatest frequency as compared to all other cohorts. The FTD cohort also had the greatest severity of NPS (H(4) = 34.5, p < .001). Further, there were differences among cohorts in terms of the association between NPS burden and ADLs (F(4,461) = 3.1, p = 0.02). Post-hoc comparisons suggested that this finding was driven by the FTD group, however, the differences did not remain significant following Bonferroni correction. There were no differences among cohorts in terms of the association between NPS burden and IADLs. CONCLUSIONS: NPS frequency and severity are markedly greater in FTD as compared to other neurodegenerative diseases. Further, NPS burden appears to be associated differently with function across neurodegenerative disorders, highlighting the need for individualized clinical interventions.


Subject(s)
Alzheimer Disease , Amyotrophic Lateral Sclerosis , Cardiovascular Diseases , Frontotemporal Dementia , Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/epidemiology , Frontotemporal Dementia/epidemiology , Frontotemporal Dementia/psychology , Alzheimer Disease/epidemiology
11.
Alzheimers Dement ; 19(1): 226-243, 2023 01.
Article in English | MEDLINE | ID: mdl-36318754

ABSTRACT

INTRODUCTION: Understanding synergies between neurodegenerative and cerebrovascular pathologies that modify dementia presentation represents an important knowledge gap. METHODS: This multi-site, longitudinal, observational cohort study recruited participants across prevalent neurodegenerative diseases and cerebrovascular disease and assessed participants comprehensively across modalities. We describe univariate and multivariate baseline features of the cohort and summarize recruitment, data collection, and curation processes. RESULTS: We enrolled 520 participants across five neurodegenerative and cerebrovascular diseases. Median age was 69 years, median Montreal Cognitive Assessment score was 25, median independence in activities of daily living was 100% for basic and 93% for instrumental activities. Spousal study partners predominated; participants were often male, White, and more educated. Milder disease stages predominated, yet cohorts reflect clinical presentation. DISCUSSION: Data will be shared with the global scientific community. Within-disease and disease-agnostic approaches are expected to identify markers of severity, progression, and therapy targets. Sampling characteristics also provide guidance for future study design.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Neurodegenerative Diseases , Humans , Male , Aged , Neurodegenerative Diseases/epidemiology , Activities of Daily Living , Ontario , Cohort Studies , Longitudinal Studies
12.
Alzheimers Dement ; 19(12): 5583-5595, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37272523

ABSTRACT

INTRODUCTION: Cerebral small vessel disease (SVD) is common in patients with cognitive impairment and neurodegenerative diseases such as Alzheimer's and Parkinson's. This study investigated the burden of magnetic resonance imaging (MRI)-based markers of SVD in patients with neurodegenerative diseases as a function of rare genetic variant carrier status. METHODS: The Ontario Neurodegenerative Disease Research Initiative study included 520 participants, recruited from 14 tertiary care centers, diagnosed with various neurodegenerative diseases and determined the carrier status of rare non-synonymous variants in five genes (ABCC6, COL4A1/COL4A2, NOTCH3/HTRA1). RESULTS: NOTCH3/HTRA1 were found to significantly influence SVD neuroimaging outcomes; however, the mechanisms by which these variants contribute to disease progression or worsen clinical correlates are not yet understood. DISCUSSION: Further studies are needed to develop genetic and imaging neurovascular markers to enhance our understanding of their potential contribution to neurodegenerative diseases.


Subject(s)
Cerebral Small Vessel Diseases , Cognitive Dysfunction , Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/genetics , Cerebral Small Vessel Diseases/pathology , Magnetic Resonance Imaging
13.
Article in English | MEDLINE | ID: mdl-35633037

ABSTRACT

OBJECTIVES: Caregiving burdens are a substantial concern in the clinical care of persons with neurodegenerative disorders. In the Ontario Neurodegenerative Disease Research Initiative, we used the Zarit's Burden Interview (ZBI) to examine: (1) the types of burdens captured by the ZBI in a cross-disorder sample of neurodegenerative conditions (2) whether there are categorical or disorder-specific effects on caregiving burdens, and (3) which demographic, clinical, and cognitive measures are related to burden(s) in neurodegenerative disorders? METHODS/DESIGN: N = 504 participants and their study partners (e.g., family, friends) across: Alzheimer's disease/mild cognitive impairment (AD/MCI; n = 120), Parkinson's disease (PD; n = 136), amyotrophic lateral sclerosis (ALS; n = 38), frontotemporal dementia (FTD; n = 53), and cerebrovascular disease (CVD; n = 157). Study partners provided information about themselves, and information about the clinical participants (e.g., activities of daily living (ADL)). We used Correspondence Analysis to identify types of caregiving concerns in the ZBI. We then identified relationships between those concerns and demographic and clinical measures, and a cognitive battery. RESULTS: We found three components in the ZBI. The first was "overall burden" and was (1) strongly related to increased neuropsychiatric symptoms (NPI severity r = 0.586, NPI distress r = 0.587) and decreased independence in ADL (instrumental ADLs r = -0.566, basic ADLs r = -0.43), (2) moderately related to cognition (MoCA r = -0.268), and (3) showed little-to-no differences between disorders. The second and third components together showed four types of caregiving concerns: current care of the person with the neurodegenerative disease, future care of the person with the neurodegenerative disease, personal concerns of study partners, and social concerns of study partners. CONCLUSIONS: Our results suggest that the experience of caregiving in neurodegenerative and cerebrovascular diseases is individualized and is not defined by diagnostic categories. Our findings highlight the importance of targeting ADL and neuropsychiatric symptoms with caregiver-personalized solutions.


Subject(s)
Cerebrovascular Disorders , Frontotemporal Dementia , Neurodegenerative Diseases , Activities of Daily Living , Caregivers/psychology , Humans , Ontario
14.
J Int Neuropsychol Soc ; 27(9): 896-904, 2021 10.
Article in English | MEDLINE | ID: mdl-33441202

ABSTRACT

OBJECTIVES: Many older adults experience memory changes that can have a meaningful impact on their everyday lives, such as restrictions to lifestyle activities and negative emotions. Older adults also report a variety of positive coping responses that help them manage these changes. The purpose of this study was to determine how objective cognitive performance and self-reported memory are related to the everyday impact of memory change. METHODS: We examined these associations in a sample of 94 older adults (age 60-89, 52% female) along a cognitive ability continuum from normal cognition to mild cognitive impairment. RESULTS: Correlational analyses revealed that greater restrictions to lifestyle activities (|rs| = .36-.66), more negative emotion associated with memory change (|rs| = .27-.76), and an overall greater burden of memory change on everyday living (|rs| = .28-.61) were associated with poorer objective memory performance and lower self-reported memory ability and satisfaction. Performance on objective measures of executive attention was unrelated to the impact of memory change. Self-reported strategy use was positively related to positive coping with memory change (|r| = .26), but self-reported strategy use was associated with more negative emotions regarding memory change (|r| = .23). CONCLUSIONS: Given the prevalence of memory complaints among older adults, it is important to understand the experience of memory change and its impact on everyday functioning in order to develop services that target the specific needs of this population.


Subject(s)
Activities of Daily Living , Cognitive Dysfunction , Aged , Aged, 80 and over , Cognition , Female , Humans , Male , Memory Disorders , Middle Aged , Neuropsychological Tests , Self Report
15.
Alzheimer Dis Assoc Disord ; 34(3): 225-230, 2020.
Article in English | MEDLINE | ID: mdl-32049674

ABSTRACT

PURPOSE: Conversion rates from mild cognitive impairment (MCI) to Alzheimer disease (AD) were examined considering bilingualism as a measure of cognitive reserve. METHODS: Older adult bilingual (n=75) and monolingual (n=83) patients attending a memory clinic who were diagnosed with MCI were evaluated for conversion to AD. Age of MCI and AD diagnoses and time to convert were recorded and compared across language groups. PATIENTS: Patients were consecutive patients diagnosed with MCI at a hospital memory clinic. RESULTS: Bilingual patients were diagnosed with MCI at a later age than monolingual patients (77.8 and 75.5 y, respectively), a difference that was significant in some analyses. However, bilingual patients converted faster from MCI to AD than monolingual patients (1.8 and 2.8 y, respectively) resulting in no language group difference in age of AD diagnosis. This relationship held after accounting for education, cognitive level, immigration status, and sex. DISCUSSION: The findings suggest that greater cognitive reserve as measured by language status leads to faster conversion between MCI and AD, all else being equal.


Subject(s)
Alzheimer Disease/diagnosis , Cognitive Dysfunction , Cognitive Reserve , Disease Progression , Language , Multilingualism , Aged , Cognitive Dysfunction/psychology , Female , Humans , Male , Mental Status and Dementia Tests
16.
Brain ; 142(11): 3375-3381, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31580390

ABSTRACT

Age at onset of Alzheimer's disease is highly variable, and its modifiers (genetic or environmental) could act through epigenetic changes, such as DNA methylation at CpG sites. DNA methylation is also linked to ageing-the strongest Alzheimer's disease risk factor. DNA methylation age can be calculated using age-related CpGs and might reflect biological ageing. We conducted a clinical, genetic and epigenetic investigation of a unique Ashkenazi Jewish family with monozygotic triplets, two of whom developed Alzheimer's disease at ages 73 and 76, while the third at age 85 has no cognitive complaints or deficits in daily activities. One of their offspring developed Alzheimer's disease at age 50. Targeted sequencing of 80 genes associated with neurodegeneration revealed that the triplets and the affected offspring are heterozygous carriers of the risk APOE ε4 allele, as well as rare substitutions in APP (p.S198P), NOTCH3 (p.H1235L) and SORL1 (p.W1563C). In addition, we catalogued 52 possibly damaging rare variants detected by NeuroX array in affected individuals. Analysis of family members on a genome-wide DNA methylation chip revealed that the DNA methylation age of the triplets was 6-10 years younger than chronological age, while it was 9 years older in the offspring with early-onset Alzheimer's disease, suggesting accelerated ageing.


Subject(s)
Alzheimer Disease/genetics , Epigenesis, Genetic/genetics , Triplets/genetics , Age of Onset , Aged , Aged, 80 and over , Aging, Premature/genetics , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Apolipoproteins E/genetics , DNA/genetics , DNA Methylation , Female , Genetic Variation , Genotype , Heterozygote , Humans , Jews , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/pathology , Pedigree , Tomography, Emission-Computed, Single-Photon , Tomography, X-Ray Computed
17.
Brain ; 142(4): 1108-1120, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30847466

ABSTRACT

Genetic forms of frontotemporal dementia are most commonly due to mutations in three genes, C9orf72, GRN or MAPT, with presymptomatic carriers from families representing those at risk. While cerebral blood flow shows differences between frontotemporal dementia and other forms of dementia, there is limited evidence of its utility in presymptomatic stages of frontotemporal dementia. This study aimed to delineate the cerebral blood flow signature of presymptomatic, genetic frontotemporal dementia using a voxel-based approach. In the multicentre GENetic Frontotemporal dementia Initiative (GENFI) study, we investigated cross-sectional differences in arterial spin labelling MRI-based cerebral blood flow between presymptomatic C9orf72, GRN or MAPT mutation carriers (n = 107) and non-carriers (n = 113), using general linear mixed-effects models and voxel-based analyses. Cerebral blood flow within regions of interest derived from this model was then explored to identify differences between individual gene carrier groups and to estimate a timeframe for the expression of these differences. The voxel-based analysis revealed a significant inverse association between cerebral blood flow and the expected age of symptom onset in carriers, but not non-carriers. Regions included the bilateral insulae/orbitofrontal cortices, anterior cingulate/paracingulate gyri, and inferior parietal cortices, as well as the left middle temporal gyrus. For all bilateral regions, associations were greater on the right side. After correction for partial volume effects in a region of interest analysis, the results were found to be largely driven by the C9orf72 genetic subgroup. These cerebral blood flow differences first appeared approximately 12.5 years before the expected symptom onset determined on an individual basis. Cerebral blood flow was lower in presymptomatic mutation carriers closer to and beyond their expected age of symptom onset in key frontotemporal dementia signature regions. These results suggest that arterial spin labelling MRI may be a promising non-invasive imaging biomarker for the presymptomatic stages of genetic frontotemporal dementia.


Subject(s)
Cerebrovascular Circulation/genetics , Frontotemporal Dementia/genetics , Adult , Aged , Brain/metabolism , C9orf72 Protein/genetics , Cross-Sectional Studies , Female , Heterozygote , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Mutation , Neuropsychological Tests , Progranulins/genetics , tau Proteins/genetics
18.
Can J Neurol Sci ; 46(5): 491-498, 2019 09.
Article in English | MEDLINE | ID: mdl-31217043

ABSTRACT

BACKGROUND/OBJECTIVE: Apolipoprotein E (APOE) E4 is the main genetic risk factor for Alzheimer's disease (AD). Due to the consistent association, there is interest as to whether E4 influences the risk of other neurodegenerative diseases. Further, there is a constant search for other genetic biomarkers contributing to these phenotypes, such as microtubule-associated protein tau (MAPT) haplotypes. Here, participants from the Ontario Neurodegenerative Disease Research Initiative were genotyped to investigate whether the APOE E4 allele or MAPT H1 haplotype are associated with five neurodegenerative diseases: (1) AD and mild cognitive impairment (MCI), (2) amyotrophic lateral sclerosis, (3) frontotemporal dementia (FTD), (4) Parkinson's disease, and (5) vascular cognitive impairment. METHODS: Genotypes were defined for their respective APOE allele and MAPT haplotype calls for each participant, and logistic regression analyses were performed to identify the associations with the presentations of neurodegenerative diseases. RESULTS: Our work confirmed the association of the E4 allele with a dose-dependent increased presentation of AD, and an association between the E4 allele alone and MCI; however, the other four diseases were not associated with E4. Further, the APOE E2 allele was associated with decreased presentation of both AD and MCI. No associations were identified between MAPT haplotype and the neurodegenerative disease cohorts; but following subtyping of the FTD cohort, the H1 haplotype was significantly associated with progressive supranuclear palsy. CONCLUSION: This is the first study to concurrently analyze the association of APOE isoforms and MAPT haplotypes with five neurodegenerative diseases using consistent enrollment criteria and broad phenotypic analysis.


Étude de variance génétique dans le cadre de l'initiative de recherche sur les maladies neurodégénératives en Ontario. Contexte/Objectif : L'apolipoprotéine E4 (ApoE4) constitue le principal facteur de risque génétique de la maladie d'Alzheimer. En raison de cette association systématique, il existe un intérêt certain à savoir dans quelle mesure cette classe d'apolipoprotéines peut influencer le risque d'autres maladies neurodégénératives. En outre, le milieu de la recherche n'a de cesse d'identifier d'autres biomarqueurs génétiques, par exemple les haplotypes H1 de la protéine tau associée aux microtubules, qui contribuent à certains phénotypes, Dans le cadre de cette étude, des participants à l'initiative de recherche sur les maladies neurodégénératives en Ontario ont été « génotypés ¼ afin de déterminer si l'ApoE4 ou l'haplotype H1 mentionné ci-dessus peuvent être associés à cinq maladies neurodégénératives : 1) la maladie d'Alzheimer et d'autres troubles cognitifs légers ; 2) la sclérose latérale amyotrophique ; 3) la démence fronto-temporale ; 4) la maladie de Parkinson ; 5) et finalement les déficits cognitifs d'origine vasculaire. Méthodes : Pour chaque participant, la cartographie des génotypes a été établie en fonction de leur ApoE4 respectif et de la présence d'haplotypes H1 de la protéine tau associée aux microtubules. Des analyses de régression logistique ont été ensuite effectuées dans le but d'identifier de possibles liens avec ces maladies neurodégénératives. Résultats : Nos travaux ont confirmé l'association entre l'ApoE4 et une plus grande occurrence de cas d'Alzheimer, et ce, en tenant compte de l'effet d'une dose de médicament. Ils ont aussi montré une association entre la seule ApoE4 et des troubles cognitifs légers. Cela dit, il convient de préciser que les quatre autres maladies n'ont pas été associées à cet allèle. Plus encore, nous avons trouvé que l'allèle E2 de l'apolipoprotéine était associé à une occurrence plus faible de cas d'Alzheimer et de troubles cognitifs légers. Fait à souligner, aucune association n'a été détectée entre l'haplotype H1 de la protéine tau associée aux microtubules et nos cohortes atteintes de maladies neurodégénératives. Toutefois, à la suite du sous-typage de la cohorte de participants atteints de démence fronto-temporale, il s'est avéré que l'haplotype H1 était associé de façon notable à la paralysie supra-nucléaire progressive. Conclusion : Il s'agit de la première étude à analyser simultanément, au moyen de critères de participation cohérents et d'une analyse phénotypique élargie, les associations entre les isoformes de l'ApoE, l'haplotype H1 de la protéine tau associée aux microtubules et cinq maladies neurodégénératives.


Subject(s)
Apolipoproteins E/genetics , Genetic Predisposition to Disease/genetics , Neurodegenerative Diseases/genetics , tau Proteins/genetics , Aged , Apolipoprotein E4/genetics , Female , Genetic Variation , Genotype , Humans , Male , Middle Aged , Ontario
19.
Can J Neurol Sci ; 44(2): 196-202, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28003035

ABSTRACT

Because individuals develop dementia as a manifestation of neurodegenerative or neurovascular disorder, there is a need to develop reliable approaches to their identification. We are undertaking an observational study (Ontario Neurodegenerative Disease Research Initiative [ONDRI]) that includes genomics, neuroimaging, and assessments of cognition as well as language, speech, gait, retinal imaging, and eye tracking. Disorders studied include Alzheimer's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Parkinson's disease, and vascular cognitive impairment. Data from ONDRI will be collected into the Brain-CODE database to facilitate correlative analysis. ONDRI will provide a repertoire of endophenotyped individuals that will be a unique, publicly available resource.


Subject(s)
Neurodegenerative Diseases/diagnosis , Humans , Longitudinal Studies , Ontario
20.
Alzheimers Dement ; 13(5): 520-530, 2017 May.
Article in English | MEDLINE | ID: mdl-27743520

ABSTRACT

INTRODUCTION: Corticobasal syndrome (CBS) resulting from genetic Alzheimer's disease (AD) has been described only once. Whether familial CBS-AD is a distinct clinical entity with its own imaging signature remains unknown. METHODS: Four individuals with CBS from two families underwent detailed assessment. For two individuals, regional atrophy and hypoperfusion were compared to autopsy-confirmed typical late-onset AD and corticobasal degeneration, as well as genetically proven PSEN1 cases with an amnestic presentation. RESULTS: One family harbored a novel mutation in PSEN1:p.Phe283Leu. MRI demonstrated severe parietal, perirolandic, and temporal atrophy, with relative sparing of frontal and ipsilateral hippocampal regions. Autopsy confirmed pure AD pathology. The other family harbored a known PSEN1 mutation:p.Gly378Val. DISCUSSION: This report confirms familial CBS-AD as a distinct clinical entity, with a parietal-perirolandic-temporal atrophy signature. It illustrates the clinical heterogeneity that can occur despite a shared genetic cause and underscores the need for biomarkers such as amyloid imaging during life.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/pathology , Cerebral Cortex/pathology , Presenilin-1/genetics , Atrophy/pathology , Autopsy , Brain/pathology , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Mutation , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL