Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell ; 81(12): 2656-2668.e8, 2021 06 17.
Article in English | MEDLINE | ID: mdl-33930332

ABSTRACT

A deficient interferon (IFN) response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been implicated as a determinant of severe coronavirus disease 2019 (COVID-19). To identify the molecular effectors that govern IFN control of SARS-CoV-2 infection, we conducted a large-scale gain-of-function analysis that evaluated the impact of human IFN-stimulated genes (ISGs) on viral replication. A limited subset of ISGs were found to control viral infection, including endosomal factors inhibiting viral entry, RNA binding proteins suppressing viral RNA synthesis, and a highly enriched cluster of endoplasmic reticulum (ER)/Golgi-resident ISGs inhibiting viral assembly/egress. These included broad-acting antiviral ISGs and eight ISGs that specifically inhibited SARS-CoV-2 and SARS-CoV-1 replication. Among the broad-acting ISGs was BST2/tetherin, which impeded viral release and is antagonized by SARS-CoV-2 Orf7a protein. Overall, these data illuminate a set of ISGs that underlie innate immune control of SARS-CoV-2/SARS-CoV-1 infection, which will facilitate the understanding of host determinants that impact disease severity and offer potential therapeutic strategies for COVID-19.


Subject(s)
Antigens, CD/genetics , Host-Pathogen Interactions/genetics , Interferon Regulatory Factors/genetics , Interferon Type I/genetics , SARS-CoV-2/genetics , Viral Proteins/genetics , Animals , Antigens, CD/chemistry , Antigens, CD/immunology , Binding Sites , Cell Line, Tumor , Chlorocebus aethiops , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/immunology , Endoplasmic Reticulum/virology , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/genetics , GPI-Linked Proteins/immunology , Gene Expression Regulation , Golgi Apparatus/genetics , Golgi Apparatus/immunology , Golgi Apparatus/virology , HEK293 Cells , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Interferon Regulatory Factors/classification , Interferon Regulatory Factors/immunology , Interferon Type I/immunology , Molecular Docking Simulation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , SARS-CoV-2/immunology , Signal Transduction , Vero Cells , Viral Proteins/chemistry , Viral Proteins/immunology , Virus Internalization , Virus Release/genetics , Virus Release/immunology , Virus Replication/genetics , Virus Replication/immunology
2.
Nature ; 604(7904): 134-140, 2022 04.
Article in English | MEDLINE | ID: mdl-35130559

ABSTRACT

The SARS-CoV-2 virus has infected more than 261 million people and has led to more than 5 million deaths in the past year and a half1 ( https://www.who.org/ ). Individuals with SARS-CoV-2 infection typically develop mild-to-severe flu-like symptoms, whereas infection of a subset of individuals leads to severe-to-fatal clinical outcomes2. Although vaccines have been rapidly developed to combat SARS-CoV-2, there has been a dearth of antiviral therapeutics. There is an urgent need for therapeutics, which has been amplified by the emerging threats of variants that may evade vaccines. Large-scale efforts are underway to identify antiviral drugs. Here we screened approximately 18,000 drugs for antiviral activity using live virus infection in human respiratory cells and validated 122 drugs with antiviral activity and selectivity against SARS-CoV-2. Among these candidates are 16 nucleoside analogues, the largest category of clinically used antivirals. This included the antivirals remdesivir and molnupiravir, which have been approved for use in COVID-19. RNA viruses rely on a high supply of nucleoside triphosphates from the host to efficiently replicate, and we identified a panel of host nucleoside biosynthesis inhibitors as antiviral. Moreover, we found that combining pyrimidine biosynthesis inhibitors with antiviral nucleoside analogues synergistically inhibits SARS-CoV-2 infection in vitro and in vivo against emerging strains of SARS-CoV-2, suggesting a clinical path forward.


Subject(s)
Antiviral Agents , Drug Evaluation, Preclinical , Nucleosides , Pyrimidines , SARS-CoV-2 , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , COVID-19/virology , Cell Line , Cytidine/analogs & derivatives , Humans , Hydroxylamines , Nucleosides/analogs & derivatives , Nucleosides/pharmacology , Pyrimidines/pharmacology , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
3.
Nature ; 605(7911): 640-652, 2022 05.
Article in English | MEDLINE | ID: mdl-35361968

ABSTRACT

The global emergence of many severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants jeopardizes the protective antiviral immunity induced after infection or vaccination. To address the public health threat caused by the increasing SARS-CoV-2 genomic diversity, the National Institute of Allergy and Infectious Diseases within the National Institutes of Health established the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme. This effort was designed to provide a real-time risk assessment of SARS-CoV-2 variants that could potentially affect the transmission, virulence, and resistance to infection- and vaccine-induced immunity. The SAVE programme is a critical data-generating component of the US Government SARS-CoV-2 Interagency Group to assess implications of SARS-CoV-2 variants on diagnostics, vaccines and therapeutics, and for communicating public health risk. Here we describe the coordinated approach used to identify and curate data about emerging variants, their impact on immunity and effects on vaccine protection using animal models. We report the development of reagents, methodologies, models and notable findings facilitated by this collaborative approach and identify future challenges. This programme is a template for the response to rapidly evolving pathogens with pandemic potential by monitoring viral evolution in the human population to identify variants that could reduce the effectiveness of countermeasures.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Biological Evolution , COVID-19 Vaccines , Humans , National Institute of Allergy and Infectious Diseases (U.S.) , Pandemics/prevention & control , Pharmacogenomic Variants , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , United States/epidemiology , Virulence
4.
PLoS Pathog ; 20(5): e1011669, 2024 May.
Article in English | MEDLINE | ID: mdl-38781259

ABSTRACT

The virus severe acute respiratory syndrome coronavirus 2, SARS-CoV-2, is the causative agent of the current COVID-19 pandemic. It possesses a large 30 kilobase (kb) genome that encodes structural, non-structural, and accessory proteins. Although not necessary to cause disease, these accessory proteins are known to influence viral replication and pathogenesis. Through the synthesis of novel infectious clones of SARS-CoV-2 that lack one or more of the accessory proteins of the virus, we have found that one of these accessory proteins, ORF8, is critical for the modulation of the host inflammatory response. Mice infected with a SARS-CoV-2 virus lacking ORF8 exhibit increased weight loss and exacerbated macrophage infiltration into the lungs. Additionally, infection of mice with recombinant SARS-CoV-2 viruses encoding ORF8 mutations found in variants of concern reveal that naturally occurring mutations in this protein influence disease severity. Our studies with a virus lacking this ORF8 protein and viruses possessing naturally occurring point mutations in this protein demonstrate that this protein impacts pathogenesis.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , SARS-CoV-2/genetics , COVID-19/virology , COVID-19/immunology , COVID-19/pathology , COVID-19/genetics , Mice , Humans , Disease Progression , Viral Proteins/genetics , Viral Proteins/metabolism , Lung/virology , Lung/pathology , Virus Replication , Pneumonia/virology , Pneumonia/pathology , Chlorocebus aethiops , Mutation , Vero Cells , Female
5.
Nature ; 586(7830): 509-515, 2020 10.
Article in English | MEDLINE | ID: mdl-32967005

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19), an emerging respiratory infection caused by the introduction of a novel coronavirus into humans late in 2019 (first detected in Hubei province, China). As of 18 September 2020, SARS-CoV-2 has spread to 215 countries, has infected more than 30 million people and has caused more than 950,000 deaths. As humans do not have pre-existing immunity to SARS-CoV-2, there is an urgent need to develop therapeutic agents and vaccines to mitigate the current pandemic and to prevent the re-emergence of COVID-19. In February 2020, the World Health Organization (WHO) assembled an international panel to develop animal models for COVID-19 to accelerate the testing of vaccines and therapeutic agents. Here we summarize the findings to date and provides relevant information for preclinical testing of vaccine candidates and therapeutic agents for COVID-19.


Subject(s)
Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Disease Models, Animal , Pandemics/prevention & control , Pneumonia, Viral/drug therapy , Pneumonia, Viral/prevention & control , Animals , Betacoronavirus/drug effects , Betacoronavirus/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Ferrets/virology , Humans , Mesocricetus/virology , Mice , Pneumonia, Viral/immunology , Primates/virology , SARS-CoV-2 , Viral Vaccines/immunology
6.
PLoS Pathog ; 19(12): e1011870, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38117830

ABSTRACT

The COVID-19 pandemic has claimed over 6.5 million lives worldwide and continues to have lasting impacts on the world's healthcare and economic systems. Several approved and emergency authorized therapeutics that inhibit early stages of the virus replication cycle have been developed however, effective late-stage therapeutical targets have yet to be identified. To that end, our lab identified that 2',3' cyclic-nucleotide 3'-phosphodiesterase (CNP) inhibits SARS-CoV-2 virion assembly. We show that CNP inhibits the generation of new SARS-CoV-2 virions, reducing intracellular titers without inhibiting viral structural protein translation. Additionally, we show that targeting of CNP to mitochondria is necessary for inhibition, blocking mitochondrial depolarization and implicating CNP's proposed role as an inhibitor of the mitochondrial permeabilization transition pore (mPTP) as the mechanism of virion assembly inhibition. We also demonstrate that an adenovirus expressing virus expressing both human ACE2 and CNP inhibits SARS-CoV-2 titers to undetectable levels in lungs of mice. Collectively, this work shows the potential of CNP to be a new SARS-CoV-2 antiviral target.


Subject(s)
COVID-19 , SARS-CoV-2 , Mice , Humans , Animals , COVID-19/metabolism , Pandemics , Mitochondria/metabolism , Virus Assembly , Antiviral Agents/metabolism
7.
Proc Natl Acad Sci U S A ; 119(37): e2204717119, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36040867

ABSTRACT

The ongoing COVID-19 pandemic is a major public health crisis. Despite the development and deployment of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pandemic persists. The continued spread of the virus is largely driven by the emergence of viral variants, which can evade the current vaccines through mutations in the spike protein. Although these differences in spike are important in terms of transmission and vaccine responses, these variants possess mutations in the other parts of their genome that may also affect pathogenesis. Of particular interest to us are the mutations present in the accessory genes, which have been shown to contribute to pathogenesis in the host through interference with innate immune signaling, among other effects on host machinery. To examine the effects of accessory protein mutations and other nonspike mutations on SARS-CoV-2 pathogenesis, we synthesized both viruses possessing deletions in the accessory genes as well as viruses where the WA-1 spike is replaced by each variant spike gene in a SARS-CoV-2/WA-1 infectious clone. We then characterized the in vitro and in vivo replication of these viruses and compared them to both WA-1 and the full variant viruses. Our work has revealed that the accessory proteins contribute to SARS-CoV-2 pathogenesis and the nonspike mutations in variants can contribute to replication of SARS-CoV-2 and pathogenesis in the host. This work suggests that while spike mutations may enhance receptor binding and entry into cells, mutations in accessory proteins may alter clinical disease presentation.


Subject(s)
COVID-19 , Mutation , SARS-CoV-2 , Viral Regulatory and Accessory Proteins , Virulence , COVID-19/virology , Humans , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Viral Regulatory and Accessory Proteins/genetics , Virulence/genetics , Virus Replication/genetics
8.
Am J Perinatol ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38729183

ABSTRACT

OBJECTIVE: Pregnant women are at increased risk of coronavirus disease 2019 (COVID-19). This could be explained through the prism of physiologic and immunologic changes in pregnancy. In addition, certain immunological reactions originate in the placenta in response to viral infections.This study aimed to investigate whether severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) can infect the human placenta and discuss its implications in the pathogenesis of adverse pregnancy outcomes. STUDY DESIGN: We conducted a retrospective cohort study in which we collected placental specimens from pregnant women who had a laboratory-confirmed SARS-CoV-2 infection. We performed RNA in situ hybridization assay on formalin-fixed paraffin-embedded tissues to establish the in vivo evidence for placental infectivity by this corona virus. In addition, we infected trophoblast isolated from uninfected term human placenta with SARS-CoV-2 variants to further provide in vitro evidence for such an infectivity. RESULTS: There was a total of 21 cases enrolled, which included 5 cases of spontaneous preterm birth (SPTB) and 2 intrauterine fetal demises (IUFDs). Positive staining of positive-sense strand of SARS-CoV-2 virions was detected in 15 placentas including 4 SPTB and both IUFDs. In vitro infection assay demonstrated that SARS-CoV-2 virions were highly capable of infecting both cytotrophoblast and syncytiotrophoblast. CONCLUSION: This study implies that placental SARS-CoV-2 infection may be associated with an increased risk of adverse obstetrical outcomes. KEY POINTS: · SARS-CoV-2 can effectively infect human placenta.. · Such infectivity is confirmed by in vitro experiments.. · Placental SARS-CoV-2 corelates with adverse obstetrical outcomes..

9.
J Allergy Clin Immunol ; 152(5): 1107-1120.e6, 2023 11.
Article in English | MEDLINE | ID: mdl-37595760

ABSTRACT

BACKGROUND: Obesity and type 2 diabetes mellitus (T2DM) are associated with an increased risk of severe outcomes from infectious diseases, including coronavirus disease 2019. These conditions are also associated with distinct responses to immunization, including an impaired response to widely used severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccines. OBJECTIVE: We sought to establish a connection between reduced immunization efficacy via modeling the effects of metabolic diseases on vaccine immunogenicity that is essential for the development of more effective vaccines for this distinct vulnerable population. METHODS: A murine model of diet-induced obesity and insulin resistance was used to model the effects of comorbid T2DM and obesity on vaccine immunogenicity and protection. RESULTS: Mice fed a high-fat diet (HFD) developed obesity, hyperinsulinemia, and glucose intolerance. Relative to mice fed a normal diet, HFD mice vaccinated with a SARS-CoV-2 mRNA vaccine exhibited significantly lower anti-spike IgG titers, predominantly in the IgG2c subclass, associated with a lower type 1 response, along with a 3.83-fold decrease in neutralizing titers. Furthermore, enhanced vaccine-induced spike-specific CD8+ T-cell activation and protection from lung infection against SARS-CoV-2 challenge were seen only in mice fed a normal diet but not in HFD mice. CONCLUSIONS: The study demonstrated impaired immunity following SARS-CoV-2 mRNA immunization in a murine model of comorbid T2DM and obesity, supporting the need for further research into the basis for impaired anti-SARS-CoV-2 immunity in T2DM and investigation of novel approaches to enhance vaccine immunogenicity among those with metabolic diseases.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Insulin Resistance , Viral Vaccines , Animals , Humans , Mice , COVID-19 Vaccines , SARS-CoV-2 , COVID-19/prevention & control , Disease Models, Animal , Immunogenicity, Vaccine , Diet , Obesity , RNA, Messenger , Antibodies, Viral , Antibodies, Neutralizing
10.
N Engl J Med ; 383(24): 2320-2332, 2020 12 10.
Article in English | MEDLINE | ID: mdl-32877576

ABSTRACT

BACKGROUND: NVX-CoV2373 is a recombinant severe acute respiratory syndrome coronavirus 2 (rSARS-CoV-2) nanoparticle vaccine composed of trimeric full-length SARS-CoV-2 spike glycoproteins and Matrix-M1 adjuvant. METHODS: We initiated a randomized, placebo-controlled, phase 1-2 trial to evaluate the safety and immunogenicity of the rSARS-CoV-2 vaccine (in 5-µg and 25-µg doses, with or without Matrix-M1 adjuvant, and with observers unaware of trial-group assignments) in 131 healthy adults. In phase 1, vaccination comprised two intramuscular injections, 21 days apart. The primary outcomes were reactogenicity; laboratory values (serum chemistry and hematology), according to Food and Drug Administration toxicity scoring, to assess safety; and IgG anti-spike protein response (in enzyme-linked immunosorbent assay [ELISA] units). Secondary outcomes included unsolicited adverse events, wild-type virus neutralization (microneutralization assay), and T-cell responses (cytokine staining). IgG and microneutralization assay results were compared with 32 (IgG) and 29 (neutralization) convalescent serum samples from patients with Covid-19, most of whom were symptomatic. We performed a primary analysis at day 35. RESULTS: After randomization, 83 participants were assigned to receive the vaccine with adjuvant and 25 without adjuvant, and 23 participants were assigned to receive placebo. No serious adverse events were noted. Reactogenicity was absent or mild in the majority of participants, more common with adjuvant, and of short duration (mean, ≤2 days). One participant had mild fever that lasted 1 day. Unsolicited adverse events were mild in most participants; there were no severe adverse events. The addition of adjuvant resulted in enhanced immune responses, was antigen dose-sparing, and induced a T helper 1 (Th1) response. The two-dose 5-µg adjuvanted regimen induced geometric mean anti-spike IgG (63,160 ELISA units) and neutralization (3906) responses that exceeded geometric mean responses in convalescent serum from mostly symptomatic Covid-19 patients (8344 and 983, respectively). CONCLUSIONS: At 35 days, NVX-CoV2373 appeared to be safe, and it elicited immune responses that exceeded levels in Covid-19 convalescent serum. The Matrix-M1 adjuvant induced CD4+ T-cell responses that were biased toward a Th1 phenotype. (Funded by the Coalition for Epidemic Preparedness Innovations; ClinicalTrials.gov number, NCT04368988).


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Adjuvants, Immunologic/administration & dosage , Adolescent , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/adverse effects , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunization Schedule , Immunogenicity, Vaccine , Immunoglobulin G/immunology , Male , Middle Aged , Nanoparticles , Pandemics , Saponins , Th1 Cells/immunology , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology , Young Adult
11.
Proc Natl Acad Sci U S A ; 117(48): 30687-30698, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33184176

ABSTRACT

The SARS-CoV-2 pandemic has made it clear that we have a desperate need for antivirals. We present work that the mammalian SKI complex is a broad-spectrum, host-directed, antiviral drug target. Yeast suppressor screening was utilized to find a functional genetic interaction between proteins from influenza A virus (IAV) and Middle East respiratory syndrome coronavirus (MERS-CoV) with eukaryotic proteins that may be potential host factors involved in replication. This screening identified the SKI complex as a potential host factor for both viruses. In mammalian systems siRNA-mediated knockdown of SKI genes inhibited replication of IAV and MERS-CoV. In silico modeling and database screening identified a binding pocket on the SKI complex and compounds predicted to bind. Experimental assays of those compounds identified three chemical structures that were antiviral against IAV and MERS-CoV along with the filoviruses Ebola and Marburg and two further coronaviruses, SARS-CoV and SARS-CoV-2. The mechanism of antiviral activity is through inhibition of viral RNA production. This work defines the mammalian SKI complex as a broad-spectrum antiviral drug target and identifies lead compounds for further development.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus/drug effects , Filoviridae/drug effects , Host-Pathogen Interactions/drug effects , Multiprotein Complexes/metabolism , Orthomyxoviridae/drug effects , Cell Line , Genes, Suppressor , Models, Molecular , Molecular Targeted Therapy , Protein Binding , RNA, Small Interfering/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Saccharomyces cerevisiae/genetics , Viral Proteins/metabolism , Virus Replication/drug effects
12.
Gynecol Obstet Invest ; 87(2): 165-172, 2022.
Article in English | MEDLINE | ID: mdl-35526532

ABSTRACT

INTRODUCTION: Studies indicate a very low rate of SARS-CoV-2 detection in the placenta or occasionally a low rate of vertical transmission in COVID-19 pregnancy. SARS-CoV-2 Delta variant has become a dominant strain over the world and possesses higher infectivity due to mutations in its spike receptor-binding motif. CASE PRESENTATION: To determine whether SARS-CoV-2 Delta variant has increased potential for placenta infection and vertical transmission, we analyzed SARS-CoV-2 infection in the placenta, umbilical cord, and fetal membrane from a case where an unvaccinated mother and her neonate were COVID-19 positive. A 35-year-old primigravida with COVID-19 underwent an emergent cesarean delivery due to placental abruption in the setting of premature rupture of membranes. The neonate tested positive for SARS-CoV-2 within the first 24 h, and then again on days of life 2, 6, 13, and 21. The placenta exhibited intervillositis, increased fibrin deposition, and syncytiotrophoblast necrosis. Sequencing of viral RNA from fixed placental tissue revealed SAR-CoV-2 B.1.167.2 (Delta) variant. Both spike protein and viral RNA were abundantly present in syncytiotrophoblasts, cytotrophoblasts, umbilical cord vascular endothelium, and fetal membranes. CONCLUSION: We report with strong probability the first SARS-CoV-2 Delta variant transplacental transmission. Placental cells exhibited extensive apoptosis, senescence, and ferroptosis after SARS-CoV-2 Delta infection.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Adult , COVID-19/diagnosis , Female , Humans , Infant, Newborn , Placenta/blood supply , Pregnancy , Pregnancy Complications, Infectious/diagnosis , RNA, Viral , SARS-CoV-2
13.
J Infect Dis ; 224(10): 1730-1734, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34534320

ABSTRACT

Mobile phones are among the most highly touched personal objects. As part of a broader study on the contribution of fomites to influenza transmission, between 2017 and 2019, we swabbed mobile phones from 138 patients with influenza in 2 locations. Influenza viral RNA detection rates were 23% (23 of 99 phones) and 36% (14 of 39) in Hong Kong and Maryland, respectively. In Hong Kong, infectious influenza virus was recovered from 3 of 23 mobile phones which had influenza viral RNA detected. Mobile phone influenza contamination was positively associated with upper respiratory tract viral load and negatively associated with age. Cleaning personal objects of patients with influenza should be recommended, and individuals should avoid sharing objects with these patients.


Subject(s)
Cell Phone , Communicable Diseases , Influenza, Human , Orthomyxoviridae , Hong Kong/epidemiology , Humans , Influenza, Human/epidemiology , RNA, Viral , United States
14.
J Virol ; 94(21)2020 10 14.
Article in English | MEDLINE | ID: mdl-32817221

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in China at the end of 2019 and has rapidly caused a pandemic, with over 20 million recorded COVID-19 cases in August 2020 (https://covid19.who.int/). There are no FDA-approved antivirals or vaccines for any coronavirus, including SARS-CoV-2. Current treatments for COVID-19 are limited to supportive therapies and off-label use of FDA-approved drugs. Rapid development and human testing of potential antivirals is urgently needed. Numerous drugs are already approved for human use, and subsequently, there is a good understanding of their safety profiles and potential side effects, making them easier to fast-track to clinical studies in COVID-19 patients. Here, we present data on the antiviral activity of 20 FDA-approved drugs against SARS-CoV-2 that also inhibit SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). We found that 17 of these inhibit SARS-CoV-2 at non-cytotoxic concentrations. We directly followed up seven of these to demonstrate that all are capable of inhibiting infectious SARS-CoV-2 production. Moreover, we evaluated two of these, chloroquine and chlorpromazine, in vivo using a mouse-adapted SARS-CoV model and found that both drugs protect mice from clinical disease.IMPORTANCE There are no FDA-approved antivirals for any coronavirus, including SARS-CoV-2. Numerous drugs are already approved for human use that may have antiviral activity and therefore could potentially be rapidly repurposed as antivirals. Here, we present data assessing the antiviral activity of 20 FDA-approved drugs against SARS-CoV-2 that also inhibit SARS-CoV and MERS-CoV in vitro We found that 17 of these inhibit SARS-CoV-2, suggesting that they may have pan-anti-coronaviral activity. We directly followed up seven of these and found that they all inhibit infectious-SARS-CoV-2 production. Moreover, we evaluated chloroquine and chlorpromazine in vivo using mouse-adapted SARS-CoV. We found that neither drug inhibited viral replication in the lungs, but both protected against clinical disease.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Middle East Respiratory Syndrome Coronavirus/drug effects , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , A549 Cells , Animals , COVID-19 , Chloroquine/pharmacology , Chlorpromazine/pharmacology , Drug Approval , Drug Evaluation, Preclinical , Humans , Pandemics , SARS-CoV-2 , Treatment Outcome , United States , United States Food and Drug Administration , Virus Replication/drug effects , COVID-19 Drug Treatment
15.
J Virol ; 93(16)2019 08 15.
Article in English | MEDLINE | ID: mdl-31142674

ABSTRACT

Viral proteins must intimately interact with the host cell machinery during virus replication. Here, we used the yeast Saccharomyces cerevisiae as a system to identify novel functional interactions between viral proteins and eukaryotic cells. Our work demonstrates that when the Middle East respiratory syndrome coronavirus (MERS-CoV) ORF4a accessory gene is expressed in yeast it causes a slow-growth phenotype. ORF4a has been characterized as an interferon antagonist in mammalian cells, and yet yeast lack an interferon system, suggesting further interactions between ORF4a and eukaryotic cells. Using the slow-growth phenotype as a reporter of ORF4a function, we utilized the yeast knockout library collection to perform a suppressor screen where we identified the YDL042C/SIR2 yeast gene as a suppressor of ORF4a function. The mammalian homologue of SIR2 is SIRT1, an NAD-dependent histone deacetylase. We found that when SIRT1 was inhibited by either chemical or genetic manipulation, there was reduced MERS-CoV replication, suggesting that SIRT1 is a proviral factor for MERS-CoV. Moreover, ORF4a inhibited SIRT1-mediated modulation of NF-κB signaling, demonstrating a functional link between ORF4a and SIRT1 in mammalian cells. Overall, the data presented here demonstrate the utility of yeast studies for identifying genetic interactions between viral proteins and eukaryotic cells. We also demonstrate for the first time that SIRT1 is a proviral factor for MERS-CoV replication and that ORF4a has a role in modulating its activity in cells.IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) initially emerged in 2012 and has since been responsible for over 2,300 infections, with a case fatality ratio of approximately 35%. We have used the highly characterized model system of Saccharomyces cerevisiae to investigate novel functional interactions between viral proteins and eukaryotic cells that may provide new avenues for antiviral intervention. We identify a functional link between the MERS-CoV ORF4a proteins and the YDL042C/SIR2 yeast gene. The mammalian homologue of SIR2 is SIRT1, an NAD-dependent histone deacetylase. We demonstrate for the first time that SIRT1 is a proviral factor for MERS-CoV replication and that ORF4a has a role in modulating its activity in mammalian cells.


Subject(s)
Coronavirus Infections/metabolism , Coronavirus Infections/virology , Host-Pathogen Interactions , Middle East Respiratory Syndrome Coronavirus/physiology , Sirtuin 1/metabolism , Virus Replication , Cell Line , Cells, Cultured , Coronavirus Infections/genetics , Gene Silencing , Humans , Phenotype , Protein Binding , RNA Interference , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Sirtuin 1/genetics , Viral Structural Proteins/genetics , Viral Structural Proteins/metabolism , Yeasts/genetics , Yeasts/metabolism
16.
J Gen Virol ; 99(5): 619-630, 2018 05.
Article in English | MEDLINE | ID: mdl-29557770

ABSTRACT

Enveloped viruses gain entry into host cells by fusing with cellular membranes, a step that is required for virus replication. Coronaviruses, including the severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV) and infectious bronchitis virus (IBV), fuse at the plasma membrane or use receptor-mediated endocytosis and fuse with endosomes, depending on the cell or tissue type. The virus spike (S) protein mediates fusion with the host cell membrane. We have shown previously that an Abelson (Abl) kinase inhibitor, imatinib, significantly reduces SARS-CoV and MERS-CoV viral titres and prevents endosomal entry by HIV SARS S and MERS S pseudotyped virions. SARS-CoV and MERS-CoV are classified as BSL-3 viruses, which makes experimentation into the cellular mechanisms involved in infection more challenging. Here, we use IBV, a BSL-2 virus, as a model for studying the role of Abl kinase activity during coronavirus infection. We found that imatinib and two specific Abl kinase inhibitors, GNF2 and GNF5, reduce IBV titres by blocking the first round of virus infection. Additionally, all three drugs prevented IBV S-induced syncytia formation prior to the hemifusion step. Our results indicate that membrane fusion (both virus-cell and cell-cell) is blocked in the presence of Abl kinase inhibitors. Studying the effects of Abl kinase inhibitors on IBV will be useful in identifying the host cell pathways required for coronavirus infection. This will provide an insight into possible therapeutic targets to treat infections by current as well as newly emerging coronaviruses.


Subject(s)
Endosomes/virology , Infectious bronchitis virus/genetics , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-abl/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , Animals , Antiviral Agents/pharmacology , Benzamides/pharmacology , Cell Membrane , Chlorocebus aethiops , Imatinib Mesylate/pharmacology , Infectious bronchitis virus/metabolism , Pyrimidines/pharmacology , Spike Glycoprotein, Coronavirus/genetics , Vero Cells , Virus Replication
17.
J Virol ; 91(12)2017 06 15.
Article in English | MEDLINE | ID: mdl-28404843

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV) is a highly pathogenic respiratory virus that causes morbidity and mortality in humans. After infection with SARS-CoV, the acute lung injury caused by the virus must be repaired to regain lung function. A dysregulation in this wound healing process leads to fibrosis. Many survivors of SARS-CoV infection develop pulmonary fibrosis (PF), with higher prevalence in older patients. Using mouse models of SARS-CoV pathogenesis, we have identified that the wound repair pathway, controlled by the epidermal growth factor receptor (EGFR), is critical to recovery from SARS-CoV-induced tissue damage. In mice with constitutively active EGFR [EGFR(DSK5) mice], we find that SARS-CoV infection causes enhanced lung disease. Importantly, we show that during infection, the EGFR ligands amphiregulin and heparin-binding EGF-like growth factor (HB-EGF) are upregulated, and exogenous addition of these ligands during infection leads to enhanced lung disease and altered wound healing dynamics. Our data demonstrate a key role of EGFR in the host response to SARS-CoV and how it may be implicated in lung disease induced by other highly pathogenic respiratory viruses.IMPORTANCE PF has many causative triggers, including severe respiratory viruses such as SARS-CoV. Currently there are no treatments to prevent the onset or limit the progression of PF, and the molecular pathways underlying the development of PF are not well understood. In this study, we identified a role for the balanced control of EGFR signaling as a key factor in progression to PF. These data demonstrate that therapeutic treatment modulating EGFR activation could protect against PF development caused by severe respiratory virus infection.


Subject(s)
ErbB Receptors/metabolism , Lung/pathology , Pulmonary Fibrosis/virology , Severe Acute Respiratory Syndrome/metabolism , Severe Acute Respiratory Syndrome/pathology , Severe acute respiratory syndrome-related coronavirus/pathogenicity , Amphiregulin/administration & dosage , Amphiregulin/metabolism , Animals , Disease Models, Animal , Humans , Lung/virology , Mice , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Severe acute respiratory syndrome-related coronavirus/physiology , Severe Acute Respiratory Syndrome/virology , Signal Transduction , Wound Healing/drug effects
18.
J Virol ; 91(2)2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27807241

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012 and is a highly pathogenic respiratory virus. There are no treatment options against MERS-CoV for humans or animals, and there are no large-scale clinical trials for therapies against MERS-CoV. To address this need, we developed an inactivated rabies virus (RABV) that contains the MERS-CoV spike (S) protein expressed on its surface. Our initial recombinant vaccine, BNSP333-S, expresses a full-length wild-type MERS-CoV S protein; however, it showed significantly reduced viral titers compared to those of the parental RABV strain and only low-level incorporation of full-length MERS-CoV S into RABV particles. Therefore, we developed a RABV-MERS vector that contained the MERS-CoV S1 domain of the MERS-CoV S protein fused to the RABV G protein C terminus (BNSP333-S1). BNSP333-S1 grew to titers similar to those of the parental vaccine vector BNSP333, and the RABV G-MERS-CoV S1 fusion protein was efficiently expressed and incorporated into RABV particles. When we vaccinated mice, chemically inactivated BNSP333-S1 induced high-titer neutralizing antibodies. Next, we challenged both vaccinated mice and control mice with MERS-CoV after adenovirus transduction of the human dipeptidyl peptidase 4 (hDPP4) receptor and then analyzed the ability of mice to control MERS-CoV infection. Our results demonstrated that vaccinated mice were fully protected from the MERS-CoV challenge, as indicated by the significantly lower MERS-CoV titers and MERS-CoV and mRNA levels in challenged mice than those in unvaccinated controls. These data establish that an inactivated RABV-MERS S-based vaccine may be effective for use in animals and humans in areas where MERS-CoV is endemic. IMPORTANCE: Rabies virus-based vectors have been proven to be efficient dual vaccines against rabies and emergent infectious diseases such as Ebola virus. Here we show that inactivated rabies virus particles containing the MERS-CoV S1 protein induce potent immune responses against MERS-CoV and RABV. This novel vaccine is easy to produce and may be useful to protect target animals, such as camels, as well as humans from deadly MERS-CoV and RABV infections. Our results indicate that this vaccine approach can prevent disease, and the RABV-based vaccine platform may be a valuable tool for timely vaccine development against emerging infectious diseases.


Subject(s)
Coronavirus Infections/immunology , Cross Protection/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Rabies virus/immunology , Rabies/immunology , Viral Vaccines/immunology , Animals , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Disease Models, Animal , Gene Expression Regulation, Viral , Humans , Immunization , Mice , Microbial Interactions , Middle East Respiratory Syndrome Coronavirus/genetics , Rabies/prevention & control , Rabies/virology , Rabies virus/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Attenuated , Vaccines, Synthetic , Viral Proteins/genetics , Viral Proteins/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/adverse effects , Viral Vaccines/genetics , Virus Assembly
19.
J Virol ; 91(1)2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27795435

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) is an important emerging pathogen that was first described in 2012. While the cell surface receptor for MERS-CoV has been identified as dipeptidyl peptidase 4 (DPP4), the mouse DPP4 homologue does not allow virus entry into cells. Therefore, development of mouse models of MERS-CoV has been hampered by the fact that MERS-CoV does not replicate in commonly available mouse strains. We have previously described a mouse model in which mDPP4 was replaced with hDPP4 such that hDPP4 is expressed under the endogenous mDPP4 promoter. In this study, we used this mouse model to analyze the host response to MERS-CoV infection using immunological assays and transcriptome analysis. Depletion of CD4+ T cells, CD8+ T cells, or macrophages has no effect on MERS-CoV replication in the lungs of infected mice. However, we found that depletion of CD8+ T cells protects and depletion of macrophages exacerbates MERS-CoV-induced pathology and clinical symptoms of disease. Overall, we demonstrate an important role for the inflammatory response in regulating MERS-CoV pathogenesis in vivo IMPORTANCE: The Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic respiratory virus that emerged from zoonotic sources in 2012. Human infections are still occurring throughout Saudi Arabia at a 38% case fatality rate, with the potential for worldwide spread via air travel. In this work, we identify the host response to the virus and identify inflammatory pathways and cell populations that are critical for protection from severe lung disease. By understanding the immune response to MERS-CoV we can develop targeted therapies to inhibit pathogenesis in the future.


Subject(s)
CD8-Positive T-Lymphocytes/virology , Coronavirus Infections/immunology , Dipeptidyl Peptidase 4/genetics , Macrophages/virology , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Receptors, Virus/genetics , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/immunology , Coronavirus Infections/genetics , Coronavirus Infections/pathology , Coronavirus Infections/virology , Dipeptidyl Peptidase 4/immunology , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation , Host-Pathogen Interactions , Humans , Lung/immunology , Lung/virology , Lymphocyte Depletion , Macrophages/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Promoter Regions, Genetic , Receptors, Virus/immunology , Transcriptome , Transgenes , Virus Internalization , Virus Replication
20.
Proc Natl Acad Sci U S A ; 112(28): 8738-43, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26124093

ABSTRACT

Traditional approaches to antimicrobial drug development are poorly suited to combatting the emergence of novel pathogens. Additionally, the lack of small animal models for these infections hinders the in vivo testing of potential therapeutics. Here we demonstrate the use of the VelocImmune technology (a mouse that expresses human antibody-variable heavy chains and κ light chains) alongside the VelociGene technology (which allows for rapid engineering of the mouse genome) to quickly develop and evaluate antibodies against an emerging viral disease. Specifically, we show the rapid generation of fully human neutralizing antibodies against the recently emerged Middle East Respiratory Syndrome coronavirus (MERS-CoV) and development of a humanized mouse model for MERS-CoV infection, which was used to demonstrate the therapeutic efficacy of the isolated antibodies. The VelocImmune and VelociGene technologies are powerful platforms that can be used to rapidly respond to emerging epidemics.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , Coronavirus Infections/therapy , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Coronavirus Infections/virology , Disease Models, Animal , HEK293 Cells , Humans , Mice , Middle East Respiratory Syndrome Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL