Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Bioconjug Chem ; 17(3): 654-61, 2006.
Article in English | MEDLINE | ID: mdl-16704202

ABSTRACT

Numerous previously uncharacterized molecules resident within the low molecular weight circulatory proteome may provide a picture of the ongoing pathophysiology of an organism. Recently, proteomic signatures composed of low molecular weight molecules have been identified using mass spectrometry combined with bioinformatic algorithms. Attempts to sequence and identify the molecules that underpin the fingerprints are currently underway. The finding that many of these low molecular weight molecules may exist bound to circulating carrier proteins affords a new opportunity for fractionation and separation techniques prior to mass spectrometry-based analysis. In this study we demonstrate a method whereby nanoporous substrates may be used for the facile and reproducible fractionation and selective binding of the serum-based biomarker material, including subcellular proteins found within the serum. Aminopropyl-coated nanoporous silicon, when exposed to serum, can deplete serum of proteins and yield a serum with a distinct, altered MS profile. Additionally, aminopropyl-coated, nanoporous controlled-pore glass beads are able to bind a subset of serum proteins and release them with stringent elution. The eluted proteins have distinct MS profiles, gel electrophoresis profiles, and differential peptide sequence identities, which vary based on the size of the nanopores. These material surfaces could be employed in strategies for the harvesting and preservation of labile and carrier-protein-bound molecules in the blood.


Subject(s)
Nanostructures/chemistry , Serum/chemistry , Electrophoresis, Polyacrylamide Gel , Glass , Humans , Mass Spectrometry , Microscopy, Electron , Nanostructures/ultrastructure , Peptides/chemistry , Peptides/metabolism , Silicon/chemistry , Substrate Specificity
2.
Clin Chem ; 51(10): 1933-45, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16099937

ABSTRACT

BACKGROUND: Albumin binds low-molecular-weight molecules, including proteins and peptides, which then acquire its longer half-life, thereby protecting the bound species from kidney clearance. We developed an experimental method to isolate albumin in its native state and to then identify [mass spectrometry (MS) sequencing] the corresponding bound low-molecular-weight molecules. We used this method to analyze pooled sera from a human disease study set (high-risk persons without cancer, n = 40; stage I ovarian cancer, n = 30; stage III ovarian cancer, n = 40) to demonstrate the feasibility of this approach as a discovery method. METHODS: Albumin was isolated by solid-phase affinity capture under native binding and washing conditions. Captured albumin-associated proteins and peptides were separated by gel electrophoresis and subjected to iterative MS sequencing by microcapillary reversed-phase tandem MS. Selected albumin-bound protein fragments were confirmed in human sera by Western blotting and immunocompetition. RESULTS: In total, 1208 individual protein sequences were predicted from all 3 pools. The predicted sequences were largely fragments derived from proteins with diverse biological functions. More than one third of these fragments were identified by multiple peptide sequences, and more than one half of the identified species were in vivo cleavage products of parent proteins. An estimated 700 serum peptides or proteins were predicted that had not been reported in previous serum databases. Several proteolytic fragments of larger molecules that may be cancer-related were confirmed immunologically in blood by Western blotting and peptide immunocompetition. BRCA2, a 390-kDa low-abundance nuclear protein linked to cancer susceptibility, was represented in sera as a series of specific fragments bound to albumin. CONCLUSION: Carrier-protein harvesting provides a rich source of candidate peptides and proteins with potential diverse tissue and cellular origins that may reflect important disease-related information.


Subject(s)
Albumins/chemistry , Ovarian Neoplasms/diagnosis , Peptides/chemistry , Proteins/chemistry , Amino Acid Sequence , BRCA2 Protein/blood , BRCA2 Protein/chemistry , Blotting, Western , Feasibility Studies , Female , Humans , Mass Spectrometry/methods , Molecular Sequence Data , Neoplasm Staging , Ovarian Neoplasms/blood , Ovarian Neoplasms/genetics , Peptide Fragments/blood , Peptide Fragments/chemistry , Peptides/blood , Sensitivity and Specificity , Sequence Analysis, Protein
SELECTION OF CITATIONS
SEARCH DETAIL