Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Nat Immunol ; 23(9): 1355-1364, 2022 09.
Article in English | MEDLINE | ID: mdl-36045187

ABSTRACT

T cells recognize a few high-affinity antigens among a vast array of lower affinity antigens. According to the kinetic proofreading model, antigen discrimination properties could be explained by the gradual amplification of small differences in binding affinities as the signal is transduced downstream of the T cell receptor. Which early molecular events are affected by ligand affinity, and how, has not been fully resolved. Here, we used time-resolved high-throughput proteomic analyses to identify and quantify the phosphorylation events and protein-protein interactions encoding T cell ligand discrimination in antigen-experienced T cells. Although low-affinity ligands induced phosphorylation of the Cd3 chains of the T cell receptor and the interaction of Cd3 with the Zap70 kinase as strongly as high-affinity ligands, they failed to activate Zap70 to the same extent. As a result, formation of the signalosome of the Lat adaptor was severely impaired with low- compared with high-affinity ligands, whereas formation of the signalosome of the Cd6 receptor was affected only partially. Overall, this study provides a comprehensive map of molecular events associated with T cell ligand discrimination.


Subject(s)
Proteomics , T-Lymphocytes , Antigens/metabolism , Kinetics , Ligands , Phosphorylation , Receptors, Antigen, T-Cell/metabolism , ZAP-70 Protein-Tyrosine Kinase/metabolism
2.
PLoS Biol ; 21(1): e3001942, 2023 01.
Article in English | MEDLINE | ID: mdl-36603027

ABSTRACT

RNA processing and degradation shape the transcriptome by generating stable molecules that are necessary for translation (rRNA and tRNA) and by facilitating the turnover of mRNA, which is necessary for the posttranscriptional control of gene expression. In bacteria and the plant chloroplast, RNA degradosomes are multienzyme complexes that process and degrade RNA. In many bacterial species, the endoribonuclease RNase E is the central component of the RNA degradosome. RNase E-based RNA degradosomes are inner membrane proteins in a large family of gram-negative bacteria (ß- and γ-Proteobacteria). Until now, the reason for membrane localization was not understood. Here, we show that a mutant strain of Escherichia coli, in which the RNA degradosome is localized to the interior of the cell, has high levels of 20S and 40S particles that are defective intermediates in ribosome assembly. These particles have aberrant protein composition and contain rRNA precursors that have been cleaved by RNase E. After RNase E cleavage, rRNA fragments are degraded to nucleotides by exoribonucleases. In vitro, rRNA in intact ribosomes is resistant to RNase E cleavage, whereas protein-free rRNA is readily degraded. We conclude that RNA degradosomes in the nucleoid of the mutant strain interfere with cotranscriptional ribosome assembly. We propose that membrane-attached RNA degradosomes in wild-type cells control the quality of ribosome assembly after intermediates are released from the nucleoid. That is, the compact structure of mature ribosomes protects rRNA against cleavage by RNase E. Turnover of a proportion of intermediates in ribosome assembly explains slow growth of the mutant strain. Competition between mRNA and rRNA degradation could be the cause of slower mRNA degradation in the mutant strain. We conclude that attachment of the RNA degradosome to the bacterial inner cytoplasmic membrane prevents wasteful degradation of rRNA precursors, thus explaining the reason for conservation of membrane-attached RNA degradosomes throughout the ß- and γ-Proteobacteria.


Subject(s)
Escherichia coli Proteins , RNA, Ribosomal , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Endoribonucleases/genetics , Endoribonucleases/metabolism , Ribosomes/metabolism , Multienzyme Complexes/metabolism , RNA/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Cell Membrane/metabolism , Bacteria/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Bacterial/genetics
3.
PLoS Genet ; 17(6): e1009583, 2021 06.
Article in English | MEDLINE | ID: mdl-34125833

ABSTRACT

Ribosome biogenesis lies at the nexus of various signaling pathways coordinating protein synthesis with cell growth and proliferation. This process is regulated by well-described transcriptional mechanisms, but a growing body of evidence indicates that other levels of regulation exist. Here we show that the Ras/mitogen-activated protein kinase (MAPK) pathway stimulates post-transcriptional stages of human ribosome synthesis. We identify RIOK2, a pre-40S particle assembly factor, as a new target of the MAPK-activated kinase RSK. RIOK2 phosphorylation by RSK stimulates cytoplasmic maturation of late pre-40S particles, which is required for optimal protein synthesis and cell proliferation. RIOK2 phosphorylation facilitates its release from pre-40S particles and its nuclear re-import, prior to completion of small ribosomal subunits. Our results bring a detailed mechanistic link between the Ras/MAPK pathway and the maturation of human pre-40S particles, which opens a hitherto poorly explored area of ribosome biogenesis.


Subject(s)
Mitogen-Activated Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , HEK293 Cells , Humans , Mutation , Phosphorylation , Protein Transport , Ribosome Subunits, Small/metabolism , Signal Transduction , Substrate Specificity , Transcription, Genetic
4.
Int J Mol Sci ; 25(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38542224

ABSTRACT

Regulation of mRNA translation is a crucial step in controlling gene expression in stressed cells, impacting many pathologies, including heart ischemia. In recent years, ribosome heterogeneity has emerged as a key control mechanism driving the translation of subsets of mRNAs. In this study, we investigated variations in ribosome composition in human cardiomyocytes subjected to endoplasmic reticulum stress induced by tunicamycin treatment. Our findings demonstrate that this stress inhibits global translation in cardiomyocytes while activating internal ribosome entry site (IRES)-dependent translation. Analysis of translating ribosome composition in stressed and unstressed cardiomyocytes was conducted using mass spectrometry. We observed no significant changes in ribosomal protein composition, but several mitochondrial ribosomal proteins (MRPs) were identified in cytosolic polysomes, showing drastic variations between stressed and unstressed cells. The most notable increase in polysomes of stressed cells was observed in MRPS15. Its interaction with ribosomal proteins was confirmed by proximity ligation assay (PLA) and immunoprecipitation, suggesting its intrinsic role as a ribosomal component during stress. Knock-down or overexpression experiments of MRPS15 revealed its role as an activator of IRES-dependent translation. Furthermore, polysome profiling after immunoprecipitation with anti-MRPS15 antibody revealed that the "MRPS15 ribosome" is specialized in translating mRNAs involved in the unfolded protein response.


Subject(s)
Myocytes, Cardiac , Ribosomal Proteins , Humans , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Myocytes, Cardiac/metabolism , Ribosomes/metabolism , Polyribosomes/metabolism , Cytosol/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Internal Ribosome Entry Sites , Protein Biosynthesis
5.
Glycobiology ; 33(12): 1139-1154, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37698262

ABSTRACT

The Protein-O-mannosyltransferase is crucial for the virulence of Mycobacterium tuberculosis, the etiological agent of tuberculosis. This enzyme, called MtPMT (Rv1002c), is responsible for the post-translational O-mannosylation of mycobacterial proteins. It catalyzes the transfer of a single mannose residue from a polyprenol phospho-mannosyl lipidic donor to the hydroxyl groups of selected Ser/Thr residues in acceptor proteins during their translocation across the membrane. Previously, we provided evidence that the loss of MtPMT activity causes the absence of mannoproteins in Mycobacterium tuberculosis, severely impacting its intracellular growth, as well as a strong attenuation of its pathogenicity in immunocompromised mice. Therefore, it is of interest to develop specific inhibitors of this enzyme to better understand mycobacterial infectious diseases. Here we report the development of a "target-based" phenotypic assay for this enzyme, assessing its O-mannosyltransferase activity in bacteria, in the non-pathogenic Mycobacterium smegmatis strain. Robustness of the quantitative contribution of this assay was evaluated by intact protein mass spectrometry, using a panel of control strains, overexpressing the MtPMT gene, carrying different key point-mutations. Then, screening of a limited library of 30 compounds rationally chosen allowed us to identify 2 compounds containing pyrrole analogous rings, as significant inhibitors of MtPMT activity, affecting neither the growth of the mycobacterium nor its secretion of mannoproteins. These molecular cores could therefore serve as scaffold for the design of new pharmaceutical agents that could improve treatment of mycobacterial diseases. We report here the implementation of a miniaturized phenotypic activity assay for a glycosyltransferase of the C superfamily.


Subject(s)
Mycobacterium tuberculosis , Animals , Mice , Mannosyltransferases/genetics , Mannosyltransferases/metabolism , Glycosylation , Protein Processing, Post-Translational , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/metabolism
6.
Acta Neuropathol ; 144(3): 537-563, 2022 09.
Article in English | MEDLINE | ID: mdl-35844027

ABSTRACT

X-linked myotubular myopathy (XLMTM) is a fatal neuromuscular disorder caused by loss of function mutations in MTM1. At present, there are no directed therapies for XLMTM, and incomplete understanding of disease pathomechanisms. To address these knowledge gaps, we performed a drug screen in mtm1 mutant zebrafish and identified four positive hits, including valproic acid, which functions as a potent suppressor of the mtm1 zebrafish phenotype via HDAC inhibition. We translated these findings to a mouse XLMTM model, and showed that valproic acid ameliorates the murine phenotype. These observations led us to interrogate the epigenome in Mtm1 knockout mice; we found increased DNA methylation, which is normalized with valproic acid, and likely mediated through aberrant 1-carbon metabolism. Finally, we made the unexpected observation that XLMTM patients share a distinct DNA methylation signature, suggesting that epigenetic alteration is a conserved disease feature amenable to therapeutic intervention.


Subject(s)
Myopathies, Structural, Congenital , Zebrafish , Animals , Disease Models, Animal , Epigenesis, Genetic , Mice , Muscle, Skeletal/metabolism , Myopathies, Structural, Congenital/drug therapy , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Valproic Acid/metabolism , Valproic Acid/pharmacology , Zebrafish/metabolism
7.
Mol Syst Biol ; 16(7): e9524, 2020 07.
Article in English | MEDLINE | ID: mdl-32618424

ABSTRACT

T-cell receptor (TCR) ligation-mediated protein phosphorylation regulates the activation, cellular responses, and fates of T cells. Here, we used time-resolved high-resolution phosphoproteomics to identify, quantify, and characterize the phosphorylation dynamics of thousands of phosphorylation sites in primary T cells during the first 10 min after TCR stimulation. Bioinformatic analysis of the data revealed a coherent orchestration of biological processes underlying T-cell activation. In particular, functional modules associated with cytoskeletal remodeling, transcription, translation, and metabolic processes were mobilized within seconds after TCR engagement. Among proteins whose phosphorylation was regulated by TCR stimulation, we demonstrated, using a fast-track gene inactivation approach in primary lymphocytes, that the ITSN2 adaptor protein regulated T-cell effector functions. This resource, called LymphoAtlas, represents an integrated pipeline to further decipher the organization of the signaling network encoding T-cell activation. LymphoAtlas is accessible to the community at: https://bmm-lab.github.io/LymphoAtlas.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , CD4-Positive T-Lymphocytes/drug effects , Phosphoproteins/metabolism , Protein Kinases/metabolism , Proteomics , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/genetics , Animals , Antibodies/pharmacology , CD4-Positive T-Lymphocytes/immunology , Chromatography, Liquid , Computational Biology , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Phosphorylation , Protein Biosynthesis/drug effects , Protein Biosynthesis/genetics , Protein Biosynthesis/immunology , Signal Transduction/immunology , Tandem Mass Spectrometry , Time Factors
8.
J Proteome Res ; 19(3): 1338-1345, 2020 03 06.
Article in English | MEDLINE | ID: mdl-31975593

ABSTRACT

Phosphorylation-driven cell signaling governs most biological functions and is widely studied using mass-spectrometry-based phosphoproteomics. Identifying the peptides and localizing the phosphorylation sites within them from the raw data is challenging and can be performed by several algorithms that return scores that are not directly comparable. This increases the heterogeneity among published phosphoproteomics data sets and prevents their direct integration. Here we compare 22 pipelines implemented in the main software tools used for bottom-up phosphoproteomics analysis (MaxQuant, Proteome Discoverer, PeptideShaker). We test six search engines (Andromeda, Comet, Mascot, MS Amanda, SequestHT, and X!Tandem) in combination with several localization scoring algorithms (delta score, D-score, PTM-score, phosphoRS, and Ascore). We show that these follow very different score distributions, which can lead to different false localization rates for the same threshold. We provide a strategy to discriminate correctly from incorrectly localized phosphorylation sites in a consistent manner across the tested pipelines. The results presented here can help users choose the most appropriate pipeline and cutoffs for their phosphoproteomics analysis.


Subject(s)
Peptides , Proteomics , Algorithms , Mass Spectrometry , Phosphorylation , Software
9.
PLoS Pathog ; 12(1): e1005395, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26808779

ABSTRACT

Cytomegalovirus (CMV) is the most common cause of congenital infection, and is a major cause of sensorineural hearing loss and neurological disabilities. Evaluating the risk for a CMV infected fetus to develop severe clinical symptoms after birth is crucial to provide appropriate guidance to pregnant women who might have to consider termination of pregnancy or experimental prenatal medical therapies. However, establishing the prognosis before birth remains a challenge. This evaluation is currently based upon fetal imaging and fetal biological parameters, but the positive and negative predictive values of these parameters are not optimal, leaving room for the development of new prognostic factors. Here, we compared the amniotic fluid peptidome between asymptomatic fetuses who were born as asymptomatic neonates and symptomatic fetuses who were either terminated in view of severe cerebral lesions or born as severely symptomatic neonates. This comparison allowed us to identify a 34-peptide classifier in a discovery cohort of 13 symptomatic and 13 asymptomatic neonates. This classifier further yielded 89% sensitivity, 75% specificity and an area under the curve of 0.90 to segregate 9 severely symptomatic from 12 asymptomatic neonates in a validation cohort, showing an overall better performance than that of classical fetal laboratory parameters. Pathway analysis of the 34 peptides underlined the role of viral entry in fetuses with severe brain disease as well as the potential importance of both beta-2-microglobulin and adiponectin to protect the injured fetal brain infected with CMV. The results also suggested the mechanistic implication of the T calcium channel alpha-1G (CACNA1G) protein in the development of seizures in severely CMV infected children. These results open a new field for potential therapeutic options. In conclusion, this study demonstrates that amniotic fluid peptidome analysis can effectively predict the severity of congenital CMV infection. This peptidomic classifier may therefore be used in clinical settings during pregnancy to improve prenatal counseling.


Subject(s)
Amniotic Fluid/virology , Biomarkers/analysis , Cytomegalovirus Infections/diagnosis , Fetal Diseases/diagnosis , Pregnancy Complications, Infectious/diagnosis , Amniocentesis , Area Under Curve , Cytomegalovirus Infections/transmission , Female , Fetal Diseases/virology , Humans , Infectious Disease Transmission, Vertical , Peptides/analysis , Pregnancy , ROC Curve , Sensitivity and Specificity , Viral Proteins/analysis
10.
Nucleic Acids Res ; 42(14): 9047-62, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25030905

ABSTRACT

We previously identified the heterogeneous ribonucleoprotein SAF-A/hnRNP U as a substrate for DNA-PK, a protein kinase involved in DNA damage response (DDR). Using laser micro-irradiation in human cells, we report here that SAF-A exhibits a two-phase dynamics at sites of DNA damage, with a rapid and transient recruitment followed by a prolonged exclusion. SAF-A recruitment corresponds to its binding to Poly(ADP-ribose) while its exclusion is dependent on the activity of ATM, ATR and DNA-PK and reflects the dissociation from chromatin of SAF-A associated with ongoing transcription. Having established that SAF-A RNA-binding domain recapitulates SAF-A dynamics, we show that this domain is part of a complex comprising several mRNA biogenesis proteins of which at least two, FUS/TLS and TAFII68/TAF15, exhibit similar biphasic dynamics at sites of damage. Using an original reporter for live imaging of DNA:RNA hybrids (R-loops), we show a transient transcription-dependent accumulation of R-loops at sites of DNA damage that is prolonged upon inhibition of RNA biogenesis factors exclusion. We propose that a new component of the DDR is an active anti-R-loop mechanism operating at damaged transcribed sites which includes the exclusion of mRNA biogenesis factors such as SAF-A, FUS and TAF15.


Subject(s)
DNA Damage , Heterogeneous-Nuclear Ribonucleoprotein U/metabolism , RNA-Binding Proteins/metabolism , Cell Line , Cell Nucleus/metabolism , Chromatin/metabolism , Heterogeneous-Nuclear Ribonucleoprotein U/chemistry , Humans , Phosphatidylinositol 3-Kinases/metabolism , Poly Adenosine Diphosphate Ribose/metabolism , Protein Structure, Tertiary , RNA-Binding Protein FUS/metabolism , TATA-Binding Protein Associated Factors/metabolism , Transcription, Genetic
11.
J Biol Chem ; 289(49): 33754-66, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25326382

ABSTRACT

The neuropeptide FF2 (NPFF2) receptor belongs to the rhodopsin family of G protein-coupled receptors and mediates the effects of several related RFamide neuropeptides. One of the main pharmacological interests of this system resides in its ability to regulate endogenous opioid systems, making it a potential target to reduce the negative effects of chronic opioid use. Phosphorylation of intracellular residues is the most extensively studied post-translational modification regulating G protein-coupled receptor activity. However, until now, no information concerning NPFF2 receptor phosphorylation is available. In this study, we combined mass spectrometric analysis and site-directed mutagenesis to analyze for the first time the phosphorylation pattern of the NPFF2 receptor and the role of the various phosphorylation sites in receptor signaling, desensitization, and trafficking in a SH-SY5Y model cell line. We identified the major, likely GRK-dependent, phosphorylation cluster responsible for acute desensitization, (412)TNST(415) at the end of the C terminus of the receptor, and additional sites involved in desensitization ((372)TS(373)) and internalization (Ser(395)). We thus demonstrate the key role played by phosphorylation in the regulation of NPFF2 receptor activity and trafficking. Our data also provide additional evidence supporting the concept that desensitization and internalization are partially independent processes relying on distinct phosphorylation patterns.


Subject(s)
Neurons/metabolism , Oligopeptides/metabolism , Protein Processing, Post-Translational , Receptors, Neuropeptide/chemistry , Amino Acid Sequence , Cell Line, Tumor , Humans , Kinetics , Molecular Sequence Data , Mutagenesis, Site-Directed , Neurons/cytology , Oligopeptides/chemistry , Peptide Mapping , Phosphorylation , Protein Transport , Receptors, Neuropeptide/genetics , Receptors, Neuropeptide/metabolism , Sequence Alignment , Signal Transduction
12.
J Biol Chem ; 287(16): 12736-49, 2012 Apr 13.
Article in English | MEDLINE | ID: mdl-22375000

ABSTRACT

Neuropeptide FF (NPFF) interacts with specific receptors to modulate opioid functions in the central nervous system. On dissociated neurons and neuroblastoma cells (SH-SY5Y) transfected with NPFF receptors, NPFF acts as a functional antagonist of µ-opioid (MOP) receptors by attenuating the opioid-induced inhibition of calcium conductance. In the SH-SY5Y model, MOP and NPFF(2) receptors have been shown to heteromerize. To understand the molecular mechanism involved in the anti-opioid activity of NPFF, we have investigated the phosphorylation status of the MOP receptor using phospho-specific antibody and mass spectrometry. Similarly to direct opioid receptor stimulation, activation of the NPFF(2) receptor by [D-Tyr-1-(NMe)Phe-3]NPFF (1DMe), an analog of NPFF, induced the phosphorylation of Ser-377 of the human MOP receptor. This heterologous phosphorylation was unaffected by inhibition of second messenger-dependent kinases and, contrarily to homologous phosphorylation, was prevented by inactivation of G(i/o) proteins by pertussis toxin. Using siRNA knockdown we could demonstrate that 1DMe-induced Ser-377 cross-phosphorylation and MOP receptor loss of function were mediated by the G protein receptor kinase GRK2. In addition, mass spectrometric analysis revealed that the phosphorylation pattern of MOP receptors was qualitatively similar after treatment with the MOP agonist Tyr-D-Ala-Gly (NMe)-Phe-Gly-ol (DAMGO) or after treatment with the NPFF agonist 1DMe, but the level of multiple phosphorylation was more intense after DAMGO. Finally, NPFF(2) receptor activation was sufficient to recruit ß-arrestin2 to the MOP receptor but not to induce its internalization. These data show that NPFF-induced heterologous desensitization of MOP receptor signaling is mediated by GRK2 and could involve transphosphorylation within the heteromeric receptor complex.


Subject(s)
G-Protein-Coupled Receptor Kinase 2/metabolism , Receptors, Neuropeptide/metabolism , Receptors, Opioid, mu/metabolism , Amino Acid Sequence , Analgesics, Opioid/pharmacology , Arrestins/metabolism , Cell Line, Tumor , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology , G-Protein-Coupled Receptor Kinase 2/genetics , Gene Knockdown Techniques , Heterotrimeric GTP-Binding Proteins/metabolism , Humans , Molecular Sequence Data , Neuroblastoma , Phosphorylation/physiology , Receptors, G-Protein-Coupled/metabolism , Receptors, Opioid, mu/agonists , Second Messenger Systems/drug effects , Second Messenger Systems/physiology , Serine/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , beta-Arrestins
13.
EMBO J ; 28(24): 3808-19, 2009 Dec 16.
Article in English | MEDLINE | ID: mdl-19927118

ABSTRACT

Prp43p is a RNA helicase required for pre-mRNA splicing and for the synthesis of large and small ribosomal subunits. The molecular functions and modes of regulation of Prp43p during ribosome biogenesis remain unknown. We demonstrate that the G-patch protein Pfa1p, a component of pre-40S pre-ribosomal particles, directly interacts with Prp43p. We also show that lack of Gno1p, another G-patch protein associated with Prp43p, specifically reduces Pfa1p accumulation, whereas it increases the levels of the pre-40S pre-ribosomal particle component Ltv1p. Moreover, cells lacking Pfa1p and depleted for Ltv1p show strong 20S pre-rRNA accumulation in the cytoplasm and reduced levels of 18S rRNA. Finally, we demonstrate that Pfa1p stimulates the ATPase and helicase activities of Prp43p. Truncated Pfa1p variants unable to fully stimulate the activity of Prp43p fail to complement the 20S pre-rRNA processing defect of Deltapfa1 cells depleted for Ltv1p. Our results strongly suggest that stimulation of ATPase/helicase activities of Prp43p by Pfa1p is required for efficient 20S pre-rRNA-to-18S rRNA conversion.


Subject(s)
Adenosine Triphosphatases/chemistry , DEAD-box RNA Helicases/physiology , Gene Expression Regulation, Fungal , Phosphopyruvate Hydratase/physiology , RNA Helicases/chemistry , Ribosomes/metabolism , Saccharomyces cerevisiae Proteins/metabolism , DEAD-box RNA Helicases/metabolism , GTP-Binding Proteins/chemistry , Models, Biological , Protein Binding , Protein Structure, Tertiary , RNA Precursors/chemistry , RNA, Ribosomal/chemistry , RNA, Ribosomal, 18S/chemistry , Ribosomes/chemistry , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/physiology
14.
Nat Commun ; 14(1): 6368, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37821449

ABSTRACT

Insertion of lipopolysaccharide (LPS) into the bacterial outer membrane (OM) is mediated by a druggable OM translocon consisting of a ß-barrel membrane protein, LptD, and a lipoprotein, LptE. The ß-barrel assembly machinery (BAM) assembles LptD together with LptE at the OM. In the enterobacterium Escherichia coli, formation of two native disulfide bonds in LptD controls translocon activation. Here we report the discovery of LptM (formerly YifL), a lipoprotein conserved in Enterobacteriaceae, that assembles together with LptD and LptE at the BAM complex. LptM stabilizes a conformation of LptD that can efficiently acquire native disulfide bonds, whereas its inactivation makes disulfide bond isomerization by DsbC become essential for viability. Our structural prediction and biochemical analyses indicate that LptM binds to sites in both LptD and LptE that are proposed to coordinate LPS insertion into the OM. These results suggest that, by mimicking LPS binding, LptM facilitates oxidative maturation of LptD, thereby activating the LPS translocon.


Subject(s)
Escherichia coli Proteins , Escherichia coli Proteins/chemistry , Lipopolysaccharides/metabolism , Bacterial Outer Membrane Proteins/metabolism , Cell Membrane/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Disulfides/metabolism , Lipoproteins/metabolism , Oxidative Stress
15.
Cells ; 12(6)2023 03 08.
Article in English | MEDLINE | ID: mdl-36980185

ABSTRACT

The mammalian 20S catalytic core of the proteasome is made of 14 different subunits (α1-7 and ß1-7) but exists as different subtypes depending on the cell type. In immune cells, for instance, constitutive catalytic proteasome subunits can be replaced by the so-called immuno-catalytic subunits, giving rise to the immunoproteasome. Proteasome activity is also altered by post-translational modifications (PTMs) and by genetic variants. Immunochemical methods are commonly used to investigate these PTMs whereby protein-tagging is necessary to monitor their effect on 20S assembly. Here, we present a new miniaturized workflow combining top-down and bottom-up mass spectrometry of immunopurified 20S proteasomes that analyze the proteasome assembly status as well as the full proteoform footprint, revealing PTMs, mutations, single nucleotide polymorphisms (SNPs) and induction of immune-subunits in different biological samples, including organoids, biopsies and B-lymphoblastoid cell lines derived from patients with proteasome-associated autoinflammatory syndromes (PRAAS). We emphasize the benefits of using top-down mass spectrometry in preserving the endogenous conformation of protein modifications, while enabling a rapid turnaround (1 h run) and ensuring high sensitivity (1-2 pmol) and demonstrate its capacity to semi-quantify constitutive and immune proteasome subunits.


Subject(s)
Proteasome Endopeptidase Complex , Protein Processing, Post-Translational , Animals , Humans , Proteasome Endopeptidase Complex/metabolism , Cytoplasm/metabolism , Mass Spectrometry/methods , Cell Line , Mammals/metabolism
16.
Cancer Lett ; 526: 112-130, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34826547

ABSTRACT

The cytoskeleton and cell-matrix adhesions constitute a dynamic network that controls cellular behavior during development and cancer. The Focal Adhesion Kinase (FAK) is a central actor of these cell dynamics, promoting cell-matrix adhesion turnover and active membrane fluctuations. However, the initial steps leading to FAK activation and subsequent promotion of cell dynamics remain elusive. Here, we report that the serine/threonine kinase PKCθ participates in the initial steps of FAK activation. PKCθ, which is strongly expressed in aggressive human breast cancers, controls the dynamics of cell-matrix adhesions and active protrusions through direct FAK activation, thereby promoting cell invasion and lung metastases. Using various tools for in vitro and live cell studies, we precisely decipher the molecular mechanisms of FAK activation. PKCθ directly interacts with the FAK FERM domain to open FAK conformation through PKCθ's specific V3 domain, while phosphorylating FAK at newly identified serine/threonine residues within nascent adhesions, inducing cell dynamics and aggressive behavior. This study thus places PKCθ-directed FAK opening and phosphorylations as an original mechanism controlling dynamic, migratory, and invasive abilities of aggressive breast cancer cells, further strengthening the emerging oncogenic function of PKCθ.


Subject(s)
Breast Neoplasms/physiopathology , Cytoskeleton/metabolism , Focal Adhesion Kinase 1/metabolism , Protein Kinase C-theta/metabolism , Protein Serine-Threonine Kinases/metabolism , Pseudopodia/metabolism , Animals , Cell Adhesion/physiology , Cell Line, Tumor , Cell Movement/physiology , Female , Heterografts , Humans , MCF-7 Cells , Mice , Mice, Inbred BALB C , Mice, Nude , Phosphorylation
17.
Elife ; 112022 12 22.
Article in English | MEDLINE | ID: mdl-36546462

ABSTRACT

Internal ribosome entry sites (IRESs) drive translation initiation during stress. In response to hypoxia, (lymph)angiogenic factors responsible for tissue revascularization in ischemic diseases are induced by the IRES-dependent mechanism. Here, we searched for IRES trans-acting factors (ITAFs) active in early hypoxia in mouse cardiomyocytes. Using knock-down and proteomics approaches, we show a link between a stressed-induced nuclear body, the paraspeckle, and IRES-dependent translation. Furthermore, smiFISH experiments demonstrate the recruitment of IRES-containing mRNA into paraspeckle during hypoxia. Our data reveal that the long non-coding RNA Neat1, an essential paraspeckle component, is a key translational regulator, active on IRESs of (lymph)angiogenic and cardioprotective factor mRNAs. In addition, paraspeckle proteins p54nrb and PSPC1 as well as nucleolin and RPS2, two p54nrb-interacting proteins identified by mass spectrometry, are ITAFs for IRES subgroups. Paraspeckle thus appears as a platform to recruit IRES-containing mRNAs and possibly host IRESome assembly. Polysome PCR array shows that Neat1 isoforms regulate IRES-dependent translation and, more widely, translation of mRNAs involved in stress response.


Subject(s)
RNA, Long Noncoding , Animals , Mice , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Paraspeckles , Trans-Activators/metabolism , Polyribosomes/metabolism , Hypoxia/genetics , Hypoxia/metabolism , Protein Biosynthesis
18.
J Proteomics ; 251: 104409, 2022 01 16.
Article in English | MEDLINE | ID: mdl-34758407

ABSTRACT

Global analysis of protein phosphorylation by mass spectrometry proteomic techniques has emerged in the last decades as a powerful tool in biological and biomedical research. However, there are several factors that make the global study of the phosphoproteome more challenging than measuring non-modified proteins. The low stoichiometry of the phosphorylated species and the need to retrieve residue specific information require particular attention on sample preparation, data acquisition and processing to ensure reproducibility, qualitative and quantitative robustness and ample phosphoproteome coverage in phosphoproteomic workflows. Aiming to investigate the effect of different variables in the performance of proteome wide phosphoprotein analysis protocols, ProteoRed-ISCIII and EuPA launched the Proteomics Multicentric Experiment 11 (PME11). A reference sample consisting of a yeast protein extract spiked in with different amounts of a phosphomix standard (Sigma/Merck) was distributed to 31 laboratories around the globe. Thirty-six datasets from 23 laboratories were analyzed. Our results indicate the suitability of the PME11 reference sample to benchmark and optimize phosphoproteomics strategies, weighing the influence of different factors, as well as to rank intra and inter laboratory performance.


Subject(s)
Proteome , Proteomics , Laboratories , Phosphoproteins/analysis , Phosphorylation , Proteome/analysis , Proteomics/methods , Reference Standards , Reproducibility of Results
19.
Biochem Biophys Res Commun ; 410(1): 87-90, 2011 Jun 24.
Article in English | MEDLINE | ID: mdl-21640712

ABSTRACT

CDC25 (A, B and C) phosphatases control cell cycle progression through the timely dephosphorylation and activation of cyclin-dependent kinases (CDK). At mitosis the CDC25B phosphatase activity is dependent on its phosphorylation by multiple kinases impinging on its localisation, stability and catalytic activity. Here we report that prior phosphorylation of CDC25B by CDK1 enhances its substrate properties for PLK1 in vitro, and we also show that phosphorylated S50 serves as a docking site for PLK1. Using a sophisticated strategy based on the sequential phosphorylation of CDC25B with (16)O and (18)O ATP prior to nanoLC-MS/MS analysis we identified 13 sites phosphorylated by PLK1. This study illustrates the complexity of the phosphorylation pattern and of the subsequent regulation of CDC25B activity.


Subject(s)
Cell Cycle Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Serine/metabolism , cdc25 Phosphatases/metabolism , Amino Acid Sequence , Humans , Molecular Sequence Data , Phosphorylation , Serine/genetics , cdc25 Phosphatases/genetics , Polo-Like Kinase 1
20.
RNA Biol ; 8(1): 112-24, 2011.
Article in English | MEDLINE | ID: mdl-21282979

ABSTRACT

In Saccharomyces cerevisiae, ribosome biogenesis requires, in addition to rRNA and ribosomal proteins, a myriad of small nucleolar RNAs (snoRNAs) and over two hundred protein trans-acting factors. There are protein trans-acting factors predicted to participate in ribosome biogenesis that have not been so far characterized. Here, we report the functional analysis of the Nucleolar protein 6 (Nop6) in ribosome biogenesis. Our results show that Nop6 is needed for optimal 40S ribosomal subunit biogenesis. Deletion of NOP6 leads to an appropriate 20% reduction in 18S rRNA levels and therefore in 40S ribosomal subunits. This is due to mild inhibition of pre-rRNA processing at cleavage site A 2. Tandem affinity purification followed by mass spectrometry and northern blot analyses indicate that Nop6 is a component of 90S pre-ribosomal particles. rDNA chromatin immunoprecipitation experiments and analysis of the intracellular localisation of Nop6-eGFP after in vivo shut down of pre-rRNA transcription strongly suggest that Nop6 binds to the pre-rRNA early during transcription. Genetic data suggest that Nop6 and the snoRNA snR57 both interact similarly with the protein trans-acting factor Nep1. It has been proposed that snR57 and Nep1 participate in a pre-rRNA conformational switch that allows the proper assembly of 40S ribosomal protein S19. Our results strongly suggest that the role Nop6 might have in this conformational switch is independent of snR57.


Subject(s)
RNA-Binding Proteins/metabolism , Ribosome Subunits, Small, Eukaryotic/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Cell Nucleolus/genetics , Cell Nucleolus/metabolism , Gene Deletion , Mutation , Phenotype , Protein Binding , RNA Processing, Post-Transcriptional , RNA, Small Nucleolar/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Ribosomal Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL