Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Mol Ecol ; 25(6): 1354-66, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26671627

ABSTRACT

Multilocus phylogeography can uncover taxonomically unrecognized lineage diversity across complex biomes. The Australian monsoonal tropics include vast, ecologically intact savanna-woodland plains interspersed with ancient sandstone uplands. Although recognized in general for its high species richness and endemism, the biodiversity of the region remains underexplored due to its remoteness. This is despite a high rate of ongoing species discovery, especially in wetter regions and for rock-restricted taxa. To provide a baseline for ongoing comparative analyses, we tested for phylogeographic structure in an ecologically generalized and widespread taxon, the gecko Heteronotia binoei. We apply coalescent analyses to multilocus sequence data (mitochondrial DNA and eight nuclear DNA introns) from individuals sampled extensively and at fine scale across the region. The results demonstrate surprisingly deep and geographically nested lineage diversity. Several intra-specific clades previously shown to be endemic to the region were themselves found to contain multiple, short-range lineages. To infer landscapes with concentrations of unique phylogeographic diversity, we probabilistically estimate the ranges of lineages from point data and then, combining these estimates with the nDNA species tree, estimate phyloendemism across the region. Highest levels of phyloendemism occur in northern Top End, especially on islands, across the topographically complex Arnhem escarpment, and across the sandstone ranges of the western Gulf region. These results drive home that deep phylogeographic structure is prevalent in tropical low-dispersal taxa, even ones that are ubiquitous across geography and habitats.


Subject(s)
Lizards/genetics , Phylogeny , Animals , Australia , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Introns , Molecular Sequence Data , Phylogeography , Sequence Analysis, DNA , Tropical Climate
2.
J Evol Biol ; 25(2): 252-63, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22192477

ABSTRACT

Parthenogenesis often evolves in association with hybridization, but the associated ecological consequences are poorly understood. The Australian gecko Heteronotia binoei is unusual because triploid parthenogenesis evolved through reciprocal crosses between two sexual lineages, resulting in four possible cytonuclear genotypes. In this species complex, we compared the performance of these parthenogenetic genotypes with their sexual progenitors for a suite of physiological traits (metabolic rate, thermal tolerance, locomotor performance, and in vitro activity and gene sequence divergence of a cytonuclear metabolic pathway, cytochrome C oxidase). Mass-specific metabolic rate scaled differently with body mass for parthenogens and sexuals, while heat tolerance provided the only evidence for cytonuclear incompatibility in hybrid parthenogens. The most prominent phenotypic effects were attributable to nuclear genome dosage. Overall, our results suggest that the hybrid/polyploidy origin of parthenogenetic H. binoei has had surprisingly few negative fitness consequences and may have produced a broader overall niche for the species.


Subject(s)
Evolution, Molecular , Genome , Lizards/physiology , Parthenogenesis/genetics , Animals , Body Temperature Regulation , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Energy Metabolism , Genotype , Hybridization, Genetic , Lizards/genetics , Lizards/metabolism , Locomotion/physiology , Reproduction , Sexual Behavior, Animal
3.
Cytogenet Genome Res ; 127(2-4): 261-72, 2009.
Article in English | MEDLINE | ID: mdl-20215731

ABSTRACT

The atypical characteristics of parthenogenetic lizards offer a rare glimpse into the evolution of asexual vertebrate genomes, addressing the genetic consequences of 2 major hypotheses regarding the absence of sex: reduced potential for adaptation and the accumulation of deleterious mutations. As a consequence of their hybrid origin, parthenogenetic lizards exhibit admixed genomes that offer opportunities to study functional genomics and the disruption of coevolved gene complexes in a potentially perpetual hybrid background. The high heterozygosity also provides substantial signal to track instances of fundamental genomic processes, such as intergenomic recombination, transcriptional silencing, and mutation. The mitochondrial genomes of parthenogenetic lizards have unveiled evidence for both slipped-strand mispairing and unconventional initiation/termination of DNA replication as mechanisms generating large, tandem duplications that are fleeting in sexual animals, as well as a rare glimpse into the intermediate steps of the duplication-random loss model of mitochondrial gene rearrangement. Several important questions remain, for instance, how do polyploid, and in particular triploid, lineages solve issues of genome dosage? What are the molecular bases of meiosis and development that enable parthenogenesis? Expanding the synergy between natural history research and molecular biology promises to address these unanswered questions. Advances in methodology (such as genomic in situ hybridization) as well as high-throughput genome and transcriptome sequencing offer new opportunities to explore the persistent questions regarding asexual genome evolution with great precision.


Subject(s)
Biological Evolution , Evolution, Molecular , Genome , Lizards/genetics , Parthenogenesis/genetics , Animals , Female
4.
Genome Biol Evol ; 3: 102-13, 2011.
Article in English | MEDLINE | ID: mdl-21183607

ABSTRACT

Many noncoding regions of genomes appear to be essential to genome function. Conservation of large numbers of noncoding sequences has been reported repeatedly among mammals but not thus far among birds and reptiles. By searching genomes of chicken (Gallus gallus), zebra finch (Taeniopygia guttata), and green anole (Anolis carolinensis), we quantified the conservation among birds and reptiles and across amniotes of long, conserved noncoding sequences (LCNS), which we define as sequences ≥500 bp in length and exhibiting ≥95% similarity between species. We found 4,294 LCNS shared between chicken and zebra finch and 574 LCNS shared by the two birds and Anolis. The percent of genomes comprised by LCNS in the two birds (0.0024%) is notably higher than the percent in mammals (<0.0003% to <0.001%), differences that we show may be explained in part by differences in genome-wide substitution rates. We reconstruct a large number of LCNS for the amniote ancestor (ca. 8,630) and hypothesize differential loss and substantial turnover of these sites in descendent lineages. By contrast, we estimated a small role for recruitment of LCNS via acquisition of novel functions over time. Across amniotes, LCNS are significantly enriched with transcription factor binding sites for many developmental genes, and 2.9% of LCNS shared between the two birds show evidence of expression in brain expressed sequence tag databases. These results show that the rate of retention of LCNS from the amniote ancestor differs between mammals and Reptilia (including birds) and that this may reflect differing roles and constraints in gene regulation.


Subject(s)
Birds/genetics , Conserved Sequence , Evolution, Molecular , Genome/genetics , Reptiles/genetics , Animals , Base Sequence , Birds/classification , Chickens/classification , Chickens/genetics , Computational Biology , Dogs , Expressed Sequence Tags , Finches/classification , Finches/genetics , Genomics , Humans , Lizards/genetics , Mice , Phylogeny , Reptiles/classification , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL