Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Cell ; 172(3): 590-604.e13, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29373831

ABSTRACT

Stress granules (SGs) are transient ribonucleoprotein (RNP) aggregates that form during cellular stress and are increasingly implicated in human neurodegeneration. To study the proteome and compositional diversity of SGs in different cell types and in the context of neurodegeneration-linked mutations, we used ascorbate peroxidase (APEX) proximity labeling, mass spectrometry, and immunofluorescence to identify ∼150 previously unknown human SG components. A highly integrated, pre-existing SG protein interaction network in unstressed cells facilitates rapid coalescence into larger SGs. Approximately 20% of SG diversity is stress or cell-type dependent, with neuronal SGs displaying a particularly complex repertoire of proteins enriched in chaperones and autophagy factors. Strengthening the link between SGs and neurodegeneration, we demonstrate aberrant dynamics, composition, and subcellular distribution of SGs in cells from amyotrophic lateral sclerosis (ALS) patients. Using three Drosophila ALS/FTD models, we identify SG-associated modifiers of neurotoxicity in vivo. Altogether, our results highlight SG proteins as central to understanding and ultimately targeting neurodegeneration.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Cytoplasmic Granules/metabolism , Protein Interaction Maps , Ribonucleoproteins/metabolism , Stress, Physiological , Animals , Drosophila melanogaster , HEK293 Cells , HeLa Cells , Humans , Neurons/metabolism , Protein Transport
2.
Immunity ; 55(3): 512-526.e9, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35263569

ABSTRACT

Dual blockade of the PD-1 and TIGIT coinhibitory receptors on T cells shows promising early results in cancer patients. Here, we studied the mechanisms whereby PD-1 and/or TIGIT blockade modulate anti-tumor CD8+ T cells. Although PD-1 and TIGIT are thought to regulate different costimulatory receptors (CD28 and CD226), effectiveness of PD-1 or TIGIT inhibition in preclinical tumor models was reduced in the absence of CD226. CD226 expression associated with clinical benefit in patients with non-small cell lung carcinoma (NSCLC) treated with anti-PD-L1 antibody atezolizumab. CD226 and CD28 were co-expressed on NSCLC infiltrating CD8+ T cells poised for expansion. Mechanistically, PD-1 inhibited phosphorylation of both CD226 and CD28 via its ITIM-containing intracellular domain (ICD); TIGIT's ICD was dispensable, with TIGIT restricting CD226 co-stimulation by blocking interaction with their common ligand PVR (CD155). Thus, full restoration of CD226 signaling, and optimal anti-tumor CD8+ T cell responses, requires blockade of TIGIT and PD-1, providing a mechanistic rationale for combinatorial targeting in the clinic.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Antigens, Differentiation, T-Lymphocyte/metabolism , CD28 Antigens/metabolism , Humans , Neoplasms/metabolism , Programmed Cell Death 1 Receptor/metabolism , Receptors, Immunologic/metabolism
3.
EMBO J ; 42(4): e112275, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36350249

ABSTRACT

Nearly one-third of nascent proteins are initially targeted to the endoplasmic reticulum (ER), where they are correctly folded and assembled before being delivered to their final cellular destinations. To prevent the accumulation of misfolded membrane proteins, ER-associated degradation (ERAD) removes these client proteins from the ER membrane to the cytosol in a process known as retrotranslocation. Our previous work demonstrated that rhomboid pseudoprotease Dfm1 is involved in the retrotranslocation of ubiquitinated membrane integral ERAD substrates. Herein, we found that Dfm1 associates with the SPOTS complex, which is composed of serine palmitoyltransferase (SPT) enzymes and accessory components that are critical for catalyzing the first rate-limiting step of the sphingolipid biosynthesis pathway. Furthermore, Dfm1 employs an ERAD-independent role for facilitating the ER export and endosome- and Golgi-associated degradation (EGAD) of Orm2, which is a major antagonist of SPT activity. Given that the accumulation of human Orm2 homologs, ORMDLs, is associated with various pathologies, our study serves as a molecular foothold for understanding how dysregulation of sphingolipid metabolism leads to various diseases.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Sphingolipids , Humans , Sphingolipids/metabolism , Ubiquitin/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Homeostasis
4.
Plant Cell ; 35(7): 2678-2693, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37017144

ABSTRACT

Formative asymmetric divisions produce cells with different fates and are critical for development. We show the maize (Zea mays) myosin XI protein, OPAQUE1 (O1), is necessary for asymmetric divisions during maize stomatal development. We analyzed stomatal precursor cells before and during asymmetric division to determine why o1 mutants have abnormal division planes. Cell polarization and nuclear positioning occur normally in the o1 mutant, and the future site of division is correctly specified. The defect in o1 becomes apparent during late cytokinesis, when the phragmoplast forms the nascent cell plate. Initial phragmoplast guidance in o1 is normal; however, as phragmoplast expansion continues o1 phragmoplasts become misguided. To understand how O1 contributes to phragmoplast guidance, we identified O1-interacting proteins. Maize kinesins related to the Arabidopsis thaliana division site markers PHRAGMOPLAST ORIENTING KINESINs (POKs), which are also required for correct phragmoplast guidance, physically interact with O1. We propose that different myosins are important at multiple steps of phragmoplast expansion, and the O1 actin motor and POK-like microtubule motors work together to ensure correct late-stage phragmoplast guidance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Zea mays/genetics , Zea mays/metabolism , Kinesins/metabolism , Asymmetric Cell Division , Cytokinesis/genetics , Microtubules/metabolism , Arabidopsis/metabolism , Myosins/genetics , Myosins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Vesicular Transport Proteins/metabolism
5.
J Cell Sci ; 134(8)2021 04 15.
Article in English | MEDLINE | ID: mdl-33912921

ABSTRACT

Viral infection both activates stress signaling pathways and redistributes ribosomes away from host mRNAs to translate viral mRNAs. The intricacies of this ribosome shuffle from host to viral mRNAs are poorly understood. Here, we uncover a role for the ribosome-associated quality control (RQC) factor ZNF598 during vaccinia virus mRNA translation. ZNF598 acts on collided ribosomes to ubiquitylate 40S subunit proteins uS10 (RPS20) and eS10 (RPS10), initiating RQC-dependent nascent chain degradation and ribosome recycling. We show that vaccinia infection enhances uS10 ubiquitylation, indicating an increased burden on RQC pathways during viral propagation. Consistent with an increased RQC demand, we demonstrate that vaccinia virus replication is impaired in cells that either lack ZNF598 or express a ubiquitylation-deficient version of uS10. Using SILAC-based proteomics and concurrent RNA-seq analysis, we determine that translation, but not transcription of vaccinia virus mRNAs is compromised in cells with deficient RQC activity. Additionally, vaccinia virus infection reduces cellular RQC activity, suggesting that co-option of ZNF598 by vaccinia virus plays a critical role in translational reprogramming that is needed for optimal viral propagation.


Subject(s)
Vaccinia virus , Vaccinia , Carrier Proteins/metabolism , HEK293 Cells , Humans , Protein Biosynthesis , Quality Control , Ribosomes/metabolism , Vaccinia/genetics , Vaccinia virus/genetics
6.
Aging Cell ; : e14168, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698559

ABSTRACT

Frailty is a clinical state reflecting a decrease in physiological reserve capacities, known to affect numerous biological pathways and is associated with health issues, including neurodegenerative diseases. However, how global protein expression is affected in the central nervous system in frail subject remains underexplored. In this post hoc cross-sectional biomarker analysis, we included 90 adults (52-85 years) suspected of normal pressure hydrocephalus (NPH) and presenting with markers of neurodegenerative diseases. We investigated the human proteomic profile of cerebrospinal fluid associated with frailty defined by an established cumulated frailty index (FI, average = 0.32), not enriched for neurology clinical features. Using a label-free quantitative proteomic approach, we identified and quantified 999 proteins of which 13 were positively associated with frailty. Pathway analysis with the top positively frailty-associated proteins revealed enrichment for proteins related to inflammation and immune response. Among the 60 proteins negatively associated with frailty, functional pathways enriched included neurogenesis, synaptogenesis and neuronal guidance. We constructed a frailty prediction model using ridge regression with 932 standardized proteins. Our results showed that the "proteomic model" could become an equivalent predictor of FI in order to study chronological age. This study represents the first comprehensive exploration of the proteomic profile of frailty within cerebrospinal fluid. It sheds light on the physiopathology of frailty, particularly highlighting processes of neuroinflammation and inhibition of neurogenesis. Our findings unveil a range of biological mechanisms that are dysregulated in frailty, in NPH subjects at risk of neurodegenerative impairment, offering new perspectives on frailty phenotyping and prediction.

7.
Cell Rep ; 36(10): 109685, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34496257

ABSTRACT

Persistent cytoplasmic aggregates containing RNA binding proteins (RBPs) are central to the pathogenesis of late-onset neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS). These aggregates share components, molecular mechanisms, and cellular protein quality control pathways with stress-induced RNA granules (SGs). Here, we assess the impact of stress on the global mRNA localization landscape of human pluripotent stem cell-derived motor neurons (PSC-MNs) using subcellular fractionation with RNA sequencing and proteomics. Transient stress disrupts subcellular RNA and protein distributions, alters the RNA binding profile of SG- and ALS-relevant RBPs and recapitulates disease-associated molecular changes such as aberrant splicing of STMN2. Although neurotypical PSC-MNs re-establish a normal subcellular localization landscape upon recovery from stress, cells harboring ALS-linked mutations are intransigent and display a delayed-onset increase in neuronal cell death. Our results highlight subcellular molecular distributions as predictive features and underscore the utility of cellular stress as a paradigm to study ALS-relevant mechanisms.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Cell Death/physiology , Motor Neurons/metabolism , RNA, Messenger/metabolism , Amyotrophic Lateral Sclerosis/genetics , Cell Death/genetics , Cytoplasmic Granules/metabolism , Cytoplasmic Ribonucleoprotein Granules/metabolism , Cytoplasmic Ribonucleoprotein Granules/pathology , DNA-Binding Proteins/metabolism , Humans , Mutation/genetics , RNA-Binding Proteins/metabolism
8.
Stem Cell Res ; 50: 102150, 2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33450673

ABSTRACT

Neutrophils release neutrophil extracellular traps (NET) comprising of decondensed chromatin that immobilizes and kills pathogens. In vitro generation of neutrophils on a large scale from hematopoietic stem cells (HSCs) may be a useful strategy for treating neutropenic patients in future, though it is not in clinical practice yet. Microbial infections lead to major cause of morbidity and mortality in these patients. Despite the importance of NET in preventing infection, efficacy of in vitro-generated neutrophils from HSCs to form NET is not tested. We show that functional neutrophils could be generated in vitro from HSCs/MNCs isolated from umbilical cord blood (UCB) and apheresis-derived peripheral blood (APBL). Neutrophils generated from UCB showed properties comparable to those isolated from peripheral blood. We also show that isolation of HSCs is not absolutely essential for in vitro neutrophil generation. Further, we show that neutrophils generated from HSCs express PADI4 enzyme and their NET-forming ability is comparable to peripheral blood neutrophils. Taken together, our data show that fully functional neutrophils can be generated in vitro from HSCs. NET-forming ability of in vitro-generated neutrophils is an important parameter to determine their functionality and thus, should be studied along with other standard functional assays.

9.
Elife ; 92020 08 03.
Article in English | MEDLINE | ID: mdl-32744497

ABSTRACT

Translation of aberrant mRNAs induces ribosomal collisions, thereby triggering pathways for mRNA and nascent peptide degradation and ribosomal rescue. Here we use sucrose gradient fractionation combined with quantitative proteomics to systematically identify proteins associated with collided ribosomes. This approach identified Endothelial differentiation-related factor 1 (EDF1) as a novel protein recruited to collided ribosomes during translational distress. Cryo-electron microscopic analyses of EDF1 and its yeast homolog Mbf1 revealed a conserved 40S ribosomal subunit binding site at the mRNA entry channel near the collision interface. EDF1 recruits the translational repressors GIGYF2 and EIF4E2 to collided ribosomes to initiate a negative-feedback loop that prevents new ribosomes from translating defective mRNAs. Further, EDF1 regulates an immediate-early transcriptional response to ribosomal collisions. Our results uncover mechanisms through which EDF1 coordinates multiple responses of the ribosome-mediated quality control pathway and provide novel insights into the intersection of ribosome-mediated quality control with global transcriptional regulation.


Subject(s)
Calmodulin-Binding Proteins/genetics , Protein Biosynthesis/physiology , Ribosomes/physiology , Calmodulin-Binding Proteins/metabolism , HCT116 Cells , HEK293 Cells , Humans , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
10.
Cell Rep ; 27(5): 1356-1363.e3, 2019 04 30.
Article in English | MEDLINE | ID: mdl-31042464

ABSTRACT

Stress granule (SG) formation is frequently accompanied by ubiquitin proteasome system (UPS) impairment and ubiquitylated protein accumulation. SGs, ubiquitin, and UPS components co-localize, but the relationship between the ubiquitin pathway and SGs has not been systematically characterized. We utilize pharmacological inhibition of either the ubiquitin- or NEDD8-activating enzyme (UAE or NAE) to probe whether active ubiquitylation or neddylation modulate SG dynamics. We show that UAE inhibition results in rapid loss of global protein ubiquitylation using ubiquitin-specific proteomics. Critically, inhibiting neither UAE nor NAE significantly affected SG formation or disassembly, indicating that active protein ubiquitylation or neddylation is dispensable for SG dynamics. Using antibodies with varying preference for free ubiquitin or polyubiquitin and fluorescently tagged ubiquitin variants in combination with UAE inhibition, we show that SGs co-localize primarily with unconjugated ubiquitin rather than polyubiquitylated proteins. These findings clarify the role of ubiquitin in SG biology and suggest that free ubiquitin may alter SG protein interactions.


Subject(s)
Cytoplasmic Granules/metabolism , NEDD8 Protein/metabolism , Stress, Physiological , Ubiquitination , HCT116 Cells , HEK293 Cells , HeLa Cells , Humans , Proteasome Endopeptidase Complex/metabolism , Ubiquitin-Activating Enzymes/metabolism
11.
Front Immunol ; 10: 3040, 2019.
Article in English | MEDLINE | ID: mdl-31998316

ABSTRACT

Toll mediates a robust and effective innate immune response across vertebrates and invertebrates. In Drosophila melanogaster, activation of Toll by systemic infection drives the accumulation of a rich repertoire of immune effectors in hemolymph, including the recently characterized Bomanins, as well as the classical antimicrobial peptides (AMPs). Here we report the functional characterization of a Toll-induced hemolymph protein encoded by the bombardier (CG18067) gene. Using the CRISPR/Cas9 system to generate a precise deletion of the bombardier transcriptional unit, we found that Bombardier is required for Toll-mediated defense against fungi and Gram-positive bacteria. Assaying cell-free hemolymph, we found that the Bomanin-dependent candidacidal activity is also dependent on Bombardier, but is independent of the antifungal AMPs Drosomycin and Metchnikowin. Using mass spectrometry, we demonstrated that deletion of bombardier results in the specific absence of short-form Bomanins from hemolymph. In addition, flies lacking Bombardier exhibited a defect in pathogen tolerance that we trace to an aberrant condition triggered by Toll activation. These results lead us to a model in which the presence of Bombardier in wild-type flies enables the proper folding, secretion, or intermolecular associations of short-form Bomanins, and the absence of Bombardier disrupts one or more of these steps, resulting in defects in both immune resistance and tolerance.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Toll-Like Receptors/metabolism , Animals , Antimicrobial Cationic Peptides/immunology , Antimicrobial Cationic Peptides/metabolism , Drosophila Proteins/immunology , Drosophila melanogaster/immunology , Fungi/immunology , Gram-Positive Bacteria/immunology , Hemolymph/immunology , Immunity, Innate/immunology , Signal Transduction/immunology , Toll-Like Receptors/immunology
12.
J Mol Biol ; 431(11): 2127-2142, 2019 05 17.
Article in English | MEDLINE | ID: mdl-30974121

ABSTRACT

Cyclin-dependent kinase 1 (CDK1) is essential for cell-cycle progression. While dependence of CDK activity on cyclin levels is well established, molecular mechanisms that regulate their binding are less understood. Here, we report for the first time that CDK1:cyclin-B binding is not default but rather determined by the evolutionarily conserved catalytic residue, lysine-33 in CDK1. We demonstrate that the charge state of this lysine allosterically remodels the CDK1:cyclin-B interface. Cell cycle-dependent acetylation of lysine-33 or its mutation to glutamine, which mimics acetylation, abrogates cyclin-B binding. Using biochemical approaches and atomistic molecular dynamics simulations, we have uncovered both short-range and long-range effects of perturbing the charged state of the catalytic lysine, which lead to inhibition of kinase activity. Specifically, although loss of the charge state of catalytic lysine did not impact ATP binding significantly, it altered its orientation in the active site. In addition, the catalytic lysine also acts as an intra-molecular electrostatic tether at the active site to orient structural elements interfacing with cyclin-B. Physiologically, opposing activities of SIRT1 and P300 regulate acetylation and thus control the charge state of lysine-33. Importantly, cells expressing acetylation mimic mutant of Cdc2/CDK1 in yeast are arrested in G2 and fail to divide, indicating the requirement of the deacetylated state of the catalytic lysine for cell division. Thus, by illustrating the molecular role of the catalytic lysine and cell cycle-dependent deacetylation as a determinant of CDK1:cyclin-B interaction, our results redefine the current model of CDK1 activation and cell-cycle progression.


Subject(s)
CDC2 Protein Kinase/metabolism , Cyclin B/metabolism , Acetylation , Allosteric Regulation , CDC2 Protein Kinase/chemistry , Catalytic Domain , Cell Cycle , HEK293 Cells , HeLa Cells , Humans , Models, Molecular
13.
Methods Mol Biol ; 1844: 363-384, 2018.
Article in English | MEDLINE | ID: mdl-30242721

ABSTRACT

Protein ubiquitylation is one of the most prevalent posttranslational modifications (PTM) within cells. Ubiquitin modification of target lysine residues typically marks substrates for proteasome-dependent degradation. However, ubiquitylation can also alter protein function through modulation of protein complexes, localization, or activity, without impacting protein turnover. Taken together, ubiquitylation imparts critical regulatory control over nearly every cellular, physiological, and pathophysiological process. Affinity purification techniques coupled with quantitative mass spectrometry have been robust tools to identify PTMs on endogenous proteins. A peptide antibody-based affinity approach has been successfully utilized to enrich for and identify endogenously ubiquitylated proteins. These antibodies recognize the Lys-ϵ-Gly-Gly (diGLY) remnant that is generated following trypsin digestion of ubiquitylated proteins, and these peptides can then be identified by standard mass spectrometry approaches. This technique has led to the identification of >50,000 ubiquitylation sites in human cells and quantitative information about how many of these sites are altered upon exposure to diverse proteotoxic stressors. In addition, the diGLY proteomics approach has led to the identification of specific ubiquitin ligase targets. Here we provide a detailed method to interrogate the ubiquitin-modified proteome from any eukaryotic organism or tissue.


Subject(s)
Proteome , Proteomics , Ubiquitin/metabolism , Chromatography, Affinity , Chromatography, Liquid , Humans , Peptides/chemistry , Peptides/isolation & purification , Peptides/metabolism , Protein Processing, Post-Translational , Proteomics/methods , Tandem Mass Spectrometry , Ubiquitin/chemistry , Ubiquitin/isolation & purification , Ubiquitination , Workflow
14.
Cell Rep ; 18(13): 3069-3077, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28355560

ABSTRACT

The conserved NAD+-dependent deacylase SIRT1 plays pivotal, sometimes contrasting, roles in diverse physiological and pathophysiological conditions. In this study, we uncover a tissue-restricted isoform of SIRT1 (SIRT1-ΔE2) that lacks exon 2 (E2). Candidate-based screening of SIRT1 substrates demonstrated that the domain encoded by this exon plays a key role in specifying SIRT1 protein-protein interactions. The E2 domain of SIRT1 was both necessary and sufficient for PGC1α binding, enhanced interaction with p53, and thus downstream functions. Since SIRT1-FL and SIRT1-ΔE2 were found to have similar intrinsic catalytic activities, we propose that the E2 domain tethers specific substrate proteins. Given the absence of SIRT1-ΔE2 in liver, our findings provide insight into the role of the E2 domain in specifying "metabolic functions" of SIRT1-FL. Identification of SIRT1-ΔE2 and the conserved specificity domain will enhance our understanding of SIRT1 and guide the development of therapeutic interventions.


Subject(s)
Organ Specificity , Sirtuin 1/chemistry , Sirtuin 1/metabolism , Animals , Biocatalysis , Cattle , Conserved Sequence , Evolution, Molecular , Exons/genetics , Fatty Acids/metabolism , Gene Expression Regulation , Mice , Mutant Proteins/metabolism , Oxidation-Reduction , Protein Binding , Protein Domains , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Multimerization , Sirtuin 1/genetics , Structure-Activity Relationship , Subcellular Fractions/metabolism , Transcription, Genetic , Tumor Suppressor Protein p53/metabolism
15.
J Proteomics ; 91: 242-58, 2013 Oct 08.
Article in English | MEDLINE | ID: mdl-23876858

ABSTRACT

Keratins play a major role in several cellular functions. Each tissue type expresses a specific set of keratins. The immense potential of keratins as diagnostic and prognostic markers for different cancers is emerging. Oral cancer is the fifteenth most common cancer worldwide. However, comprehensive information on the profile of keratins in the oral cavity is not available. Several independent reports have identified keratins using antibody based techniques which have pitfalls due to the cross reactivity of the antibodies to this set of very homologous proteins. A few recent proteomic studies have reported the identification of keratins in head and neck cancer. Majority of the studies have used tissues from the head and neck region without specifying subsites. This study reports the analysis of enriched preparations of keratins from cancer of the gingivo buccal complex (GBC) using MS, 2DE, WB, silver staining of 2DE gels and IHC. Our study reveals the absence of K4 and K13 and presence of K14, K16, and K17, in cancers of the GBC and combination of these expression patterns in the cut margins. This report also shows that K13 is glycosylated. This well characterized profile of keratins may have potential to be used in clinics. BIOLOGICAL SIGNIFICANCE: In recent years the immense potential of keratins as diagnostic and prognostic markers for different cancers is emerging. However, comprehensive information on the profile of keratins in the oral cavity is not available. Several independent reports have identified keratins using only antibody based techniques which have pitfalls due to the cross reactivity of the antibodies to this set of very homologous proteins. This study reports the analysis of enriched preparations of keratins from a subsite of the oral cavity, the gingivo buccal complex (GBC) using mass spectrometry, 2DE, western blotting, silver staining of 2DE gels and IHC. The proteomic analysis shows the absence of K4 and K13 and presence of K14, K16, and K17 in cancers of the GBC and combination of these expression patterns in the cut margins. This well characterized profile of keratins from the gingivo buccal complex provides defined markers which may have potential to be used in the clinics.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gingiva/metabolism , Keratins/metabolism , Mouth Mucosa/metabolism , Mouth Neoplasms/metabolism , Adult , Aged , Biomarkers/metabolism , Biomarkers, Tumor , Carcinoma, Squamous Cell/metabolism , Female , Glycosylation , Head and Neck Neoplasms/metabolism , Humans , Male , Middle Aged , Neoplasm Metastasis , Proteomics
16.
J Proteomics ; 75(8): 2404-16, 2012 Apr 18.
Article in English | MEDLINE | ID: mdl-22387131

ABSTRACT

Keratins are intermediate filament family proteins which are predominantly expressed in the epithelial cells. Most of the studies which evaluate the status of keratins in clinical samples of the oral cavity are based on the identification of their presence and localization by immunohistochemistry using monoclonal antibodies. It is very well known that many monoclonal/polyclonal antibodies show cross-reactivity with the other closely related or non-related proteins. This cross-reactivity might be the result of epitope similarity, but it is not always necessary. Therefore studies done with only antibody based techniques can mislead interpretation unless they are validated with additional techniques like mass-spectrometry. In this investigation we have evaluated the status of keratin 18 in cancer of buccal mucosa using 1DE, 2DE and western blotting with monoclonal antibody to keratin 18. The patterns emerging showed aberrant as well as differential expression of K18 in adjacent normal versus tumor tissue samples of buccal mucosa. Mass spectrometry analysis of the immunodetected spots however revealed that it is keratin 13. Thus this study emphasizes the necessity of validation of antibody based findings when dealing with proteins of a large family having similarity/homology in amino acid sequence.


Subject(s)
Antibodies/pharmacology , Carcinoma/metabolism , Keratins/metabolism , Mass Spectrometry , Mouth Neoplasms/metabolism , Amino Acid Sequence , Antibody Specificity/physiology , Carcinoma/pathology , Cross Reactions , False Positive Reactions , Humans , Immunohistochemistry/methods , Keratins/immunology , Keratins/physiology , Mass Spectrometry/methods , Microdissection , Mouth Neoplasms/pathology , Sensitivity and Specificity , Tissue Extracts/chemistry , Tissue Extracts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL