Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters

Publication year range
1.
Glycobiology ; 27(4): 291-305, 2017 04 01.
Article in English | MEDLINE | ID: mdl-27932383

ABSTRACT

High expectations are held for human-induced pluripotent stem cells (hiPSC) since they are established from autologous tissues thus overcoming the risk of allogeneic immune rejection when used in regenerative medicine. However, little is known regarding the cell-surface carbohydrate antigen profile of hiPSC compared with human embryonic stem cells (hESC). Here, glycosphingolipids were isolated from an adipocyte-derived hiPSC line, and hiPSC and hESC glycosphingolipids were compared by concurrent characterization by binding assays with carbohydrate-recognizing ligands and mass spectrometry. A high similarity between the nonacid glycosphingolipids of hiPSC and hESC was found. The nonacid glycosphingolipids P1 pentaosylceramide, x2 pentaosylceramide and H type 1 heptaosylceramide, not previously described in human pluripotent stem cells (hPSC), were characterized in both hiPSC and hESC. The composition of acid glycosphingolipids differed, with increased levels of GM3 ganglioside, and reduced levels of GD1a/GD1b in hiPSC when compared with hESC. In addition, the hESC glycosphingolipids sulf-globopentaosylceramide and sialyl-globotetraosylceramide were lacking in hiPSC. Neural stem cells differentiating from hiPSC had a reduced expression of sialyl-lactotetra, whereas expression of the GD1a ganglioside was significantly increased. Thus, while sialyl-lactotetra is a marker of undifferentiated hPSC, GD1a is a novel marker of neural differentiation.


Subject(s)
Cell Differentiation/genetics , Glycosphingolipids/genetics , Human Embryonic Stem Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , Cell Culture Techniques , Glycosphingolipids/classification , Glycosphingolipids/metabolism , Humans , Mass Spectrometry , Neural Stem Cells/metabolism
2.
Exp Cell Res ; 343(2): 118-125, 2016 05 01.
Article in English | MEDLINE | ID: mdl-27048878

ABSTRACT

TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-ß (TGF-ß) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-ß has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-ß signaling we wanted to find out if there is any interaction between TLX and TGF-ß in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-ß signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-ß receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-ß receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-ß target genes. The interaction between TLX and TGF-ß may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells.


Subject(s)
Brain Neoplasms/metabolism , Glioblastoma/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Nucleus/metabolism , Cell Proliferation , Gene Knockdown Techniques , Gene Silencing , Glioblastoma/pathology , HEK293 Cells , Humans , Orphan Nuclear Receptors , Protein Stability , Proteolysis , Receptors, Transforming Growth Factor beta/metabolism , Smad Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
3.
Biochem Biophys Res Commun ; 454(1): 202-9, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25450381

ABSTRACT

Neuroblastoma develops through processes which include cellular dedifferentiation. Ability of tumors to form spheroids is one of the manifestations of dedifferentiation and carcinogenic transformation. To study mechanisms of dedifferentiation of neuroblastoma cells, we generated spheroids and performed a proteomics study to compare the spheroids with parental SK-N-BE2 cells. We observed that dedifferentiation induced extensive changes in the proteome profiles of the cells, which affected more than 30% of detected cellular proteins. Using mass spectrometry, we identified 239 proteins affected by dedifferentiation into spheroids as compared to the parental cells. These proteins represented such regulatory processes as transcription, cell cycle regulation, apoptosis, cell adhesion, metabolism, intracellular transport, stress response, and angiogenesis. A number of potent regulators of stemness, differentiation and cancer were detected as subnetworks formed by the identified proteins. Our validation tissue microarray study of 30 neuroblastoma cases confirmed that two of the identified proteins, DISC1 and DNA-PKcs, had their expression increased in advanced malignancies. Thus, our report unveiled extensive changes of the cellular proteome upon dedifferentiation of neuroblastoma cells, indicated top subnetworks and clusters of molecular mechanisms involved in dedifferentiation, and provided candidate biomarkers for clinical studies.


Subject(s)
Cell Dedifferentiation/physiology , Neoplasm Proteins/metabolism , Neuroblastoma/metabolism , Neuroblastoma/pathology , Proteome/metabolism , Biomarkers, Tumor/metabolism , Cell Line, Tumor , DNA-Activated Protein Kinase/metabolism , Humans , Mass Spectrometry , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Nerve Tissue Proteins/metabolism , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Nuclear Proteins/metabolism , Protein Interaction Maps , Proteomics , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Tissue Array Analysis
4.
Nucleic Acids Res ; 39(16): 6908-18, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21586588

ABSTRACT

microRNAs (miRNAs) spatio-temporally modulate gene expression; however, very little is known about the regulation of their expression. Here, we hypothesized that the well-known cis-regulatory elements of gene expression, scaffold/matrix-attachment regions (MARs) could modulate miRNA expression. Accordingly, we found MARs to be enriched in the upstream regions of miRNA genes. To determine their role in cell type-specific expression of miRNAs, we examined four individual miRNAs (let-7b, miR-17, miR-93 and miR-221) and the miR-17-92 cluster, known to be overexpressed in neuroblastoma. Our results show that MARs indeed define the cell-specific expression of these miRNAs by tethering the chromatin to nuclear matrix. This is brought about by cell type-specific binding of HMG I/Y protein to MARs that then promotes the local acetylation of histones, serving as boundary elements for gene activation. The binding, chromatin tethering and gene activation by HMG I/Y was not observed in fibroblast control cells but were restricted to neuroblastoma cells. This study implies that the association of MAR binding proteins to MARs could dictate the tissue/context specific regulation of miRNA genes by serving as a boundary element signaling the transcriptional activation.


Subject(s)
Gene Expression Regulation , Matrix Attachment Regions , MicroRNAs/genetics , Animals , Cell Line , HMGA1a Protein/physiology , Humans , Locus Control Region , Mice , MicroRNAs/metabolism
5.
J Biol Chem ; 286(11): 9393-404, 2011 Mar 18.
Article in English | MEDLINE | ID: mdl-21135096

ABSTRACT

Hypoxia promotes neural stem cell proliferation, the mechanism of which is poorly understood. Here, we have identified the nuclear orphan receptor TLX as a mediator for proliferation and pluripotency of neural progenitors upon hypoxia. We found an enhanced early protein expression of TLX under hypoxia potentiating sustained proliferation of neural progenitors. Moreover, TLX induction upon hypoxia in differentiating conditions leads to proliferation and a stem cell-like phenotype, along with coexpression of neural stem cell markers. Following hypoxia, TLX is recruited to the Oct-3/4 proximal promoter, augmenting the gene transcription and promoting progenitor proliferation and pluripotency. Knockdown of Oct-3/4 significantly reduced TLX-mediated proliferation, highlighting their interdependence in regulating the progenitor pool. Additionally, TLX synergizes with basic FGF to sustain cell viability upon hypoxia, since the knockdown of TLX along with the withdrawal of growth factor results in cell death. This can be attributed to the activation of Akt signaling pathway by TLX, the depletion of which results in reduced proliferation of progenitor cells. Cumulatively, the data presented here demonstrate a new role for TLX in neural stem cell proliferation and pluripotency upon hypoxia.


Subject(s)
Adult Stem Cells/metabolism , Hippocampus/metabolism , Octamer Transcription Factor-3/metabolism , Pluripotent Stem Cells/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Adult Stem Cells/cytology , Animals , Cell Hypoxia/physiology , Cell Proliferation , Cell Survival/physiology , Gene Expression Regulation/physiology , Gene Knockdown Techniques , Hippocampus/cytology , Humans , Mice , Octamer Transcription Factor-3/genetics , Orphan Nuclear Receptors , Pluripotent Stem Cells/cytology , Promoter Regions, Genetic/physiology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Signal Transduction/physiology
6.
Mol Syst Biol ; 7: 486, 2011 Apr 26.
Article in English | MEDLINE | ID: mdl-21525872

ABSTRACT

DNA copy number aberrations (CNAs) are a hallmark of cancer genomes. However, little is known about how such changes affect global gene expression. We develop a modeling framework, EPoC (Endogenous Perturbation analysis of Cancer), to (1) detect disease-driving CNAs and their effect on target mRNA expression, and to (2) stratify cancer patients into long- and short-term survivors. Our method constructs causal network models of gene expression by combining genome-wide DNA- and RNA-level data. Prognostic scores are obtained from a singular value decomposition of the networks. By applying EPoC to glioblastoma data from The Cancer Genome Atlas consortium, we demonstrate that the resulting network models contain known disease-relevant hub genes, reveal interesting candidate hubs, and uncover predictors of patient survival. Targeted validations in four glioblastoma cell lines support selected predictions, and implicate the p53-interacting protein Necdin in suppressing glioblastoma cell growth. We conclude that large-scale network modeling of the effects of CNAs on gene expression may provide insights into the biology of human cancer. Free software in MATLAB and R is provided.


Subject(s)
Gene Dosage , Glioblastoma/genetics , Nerve Tissue Proteins/metabolism , Nervous System Neoplasms/genetics , Nuclear Proteins/metabolism , Transcriptional Activation/genetics , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , Chromosome Aberrations , Databases, Factual , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Genome, Human , Genome-Wide Association Study , Glioblastoma/metabolism , Glioblastoma/mortality , Glioblastoma/pathology , Humans , Models, Genetic , Nerve Tissue Proteins/genetics , Nervous System Neoplasms/metabolism , Nervous System Neoplasms/mortality , Nervous System Neoplasms/pathology , Nuclear Proteins/genetics , Prognosis , Software , Tumor Suppressor Protein p53/genetics
7.
Blood ; 115(23): 4951-62, 2010 Jun 10.
Article in English | MEDLINE | ID: mdl-20354174

ABSTRACT

Cocaine abuse hastens the neurodegeneration often associated with advanced HIV-1 infection. The mechanisms, in part, revolve around the neuroinflammatory processes mediated by the chemokine monocyte chemotactic protein-1 (MCP-1/CCL2). Understanding factors that modulate MCP-1 and, in turn, facilitate monocyte extravasation in the brain is thus of paramount importance. We now demonstrate that cocaine induces MCP-1 in rodent microglia through translocation of the sigma receptor to the lipid raft microdomains of the plasma membrane. Sequential activation of Src, mitogen-activated protein kinases (MAPKs), and phosphatidylinositol-3' kinase (PI3K)/Akt and nuclear factor kappaB (NF-kappaB) pathways resulted in increased MCP-1 expression. Furthermore, conditioned media from cocaine-exposed microglia increased monocyte transmigration, and thus was blocked by antagonists for CCR2 or sigma receptor. These findings were corroborated by demonstrating increased monocyte transmigration in mice exposed to cocaine, which was attenuated by pretreatment of mice with the sigma receptor antagonist. Interestingly, cocaine-mediated transmigratory effects were not observed in CCR2 knockout mice. We conclude that cocaine-mediated induction of MCP-1 accelerates monocyte extravasation across the endothelium. Understanding the regulation of MCP-1 expression and functional changes by cocaine/sigma receptor system may provide insights into the development of potential therapeutic targets for HIV-1-associated neurocognitive disorders.


Subject(s)
Cell Movement/drug effects , Chemokine CCL2/metabolism , Cocaine-Related Disorders/metabolism , Cocaine/pharmacology , Dopamine Uptake Inhibitors/pharmacology , HIV Infections/metabolism , HIV-1 , Monocytes/metabolism , Neurodegenerative Diseases/metabolism , Receptors, sigma/metabolism , Animals , Brain/metabolism , Brain/pathology , Cell Movement/genetics , Chemokine CCL2/genetics , Cocaine/adverse effects , Cocaine-Related Disorders/genetics , Cocaine-Related Disorders/pathology , Dopamine Uptake Inhibitors/adverse effects , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , HIV Infections/genetics , HIV Infections/pathology , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Male , Membrane Microdomains/genetics , Membrane Microdomains/metabolism , Membrane Microdomains/pathology , Mice , Mice, Knockout , Microglia/metabolism , Microglia/pathology , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Monocytes/pathology , NF-kappa B/genetics , NF-kappa B/metabolism , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Rats , Receptors, sigma/genetics , src-Family Kinases/genetics , src-Family Kinases/metabolism
8.
J Biol Chem ; 285(28): 21615-24, 2010 Jul 09.
Article in English | MEDLINE | ID: mdl-20452974

ABSTRACT

Platelet-derived growth factor (PDGF) is a pleiotropic protein with critical roles in both developmental as well as pathogenic processes. In the central nervous system specifically, PDGF is critical for neuronal proliferation and differentiation and has also been implicated as a neuroprotective agent. Whether PDGF also plays a role in synaptic plasticity, however, remains poorly understood. In the present study we demonstrated that in the rat hippocampal neurons PDGF regulated the expression of Arc/Arg3.1 gene that has been implicated in both synapse plasticity and long term potentiation. Relevance of these findings was further confirmed in vivo by injecting mice with intracerebral inoculations of PDGF, which resulted in a rapid induction of Arc in the hippocampus of the injected mice. PDGF induced long term potentiation in rat hippocampal slices, which was abolished by PDGF receptor-tyrosine kinase inhibitor STI-571. We also present evidence that PDGF-mediated induction of Arc/Arg3.1 involved activation of the MAPK/ERK (MEK) pathway. Additionally, induction of Arc/Arg3.1 also involved the upstream release of intracellular calcium stores, an effect that could be blocked by thapsigargin but not by EGTA. Pharmacological approach using inhibitors specific for either MAPK/ERK phosphorylation or calcium release demonstrated that the two pathways converged downstream at a common point involving activation of the immediate early gene Egr-1. Chromatin immunoprecipitation assays demonstrated the binding of Egr-1, but not Egr-3, to the Arc promoter. These findings for the first time, thus, suggest an additional role of PDGF, that of induction of Arc.


Subject(s)
Cytoskeletal Proteins/metabolism , Gene Expression Regulation , Nerve Tissue Proteins/metabolism , Platelet-Derived Growth Factor/metabolism , Animals , Calcium/metabolism , Cell Proliferation , Electrophysiology , Enzyme Activation , Female , Hippocampus/metabolism , MAP Kinase Signaling System , Mice , Mice, Inbred C57BL , Nerve Growth Factors/metabolism , Phosphatidylinositol 3-Kinases , Rats , Rats, Sprague-Dawley
9.
Mol Cell Neurosci ; 45(2): 121-31, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20599619

ABSTRACT

The orphan nuclear receptor TLX has been proposed to act as a repressor of cell cycle inhibitors to maintain the neural stem cells in an undifferentiated state, and prevents commitment into astrocyte lineages. However, little is known about the mechanism of TLX in neuronal lineage commitment and differentiation. A majority of adult rat hippocampus-derived progenitors (AHPs) cultured in the presence of FGF express a high level of TLX and a fraction of these cells also express the proneural gene MASH1. Upon FGF withdrawal, TLX rapidly decreased, while MASH1 was intensely expressed within 1h, decreasing gradually to disappear at 24h. Adenoviral transduction of TLX in AHP cells in the absence of FGF transiently increased cell proliferation, however, later resulted in neuronal differentiation by inducing MASH1, Neurogenin1, DCX, and MAP2ab. Furthermore, TLX directly targets and activates the MASH1 promoter through interaction with Sp1, recruiting co-activators whereas dismissing the co-repressor HDAC4. Conversely, silencing of TLX in AHPs decreased beta-III tubulin and DCX expression and promoted glial differentiation. Our results thus suggest that TLX not only acts as a repressor of cell cycle and glial differentiation but also activates neuronal lineage commitment in AHPs.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Hippocampus/growth & development , Neurogenesis/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Repressor Proteins/metabolism , Transcriptional Activation , Adenoviridae , Animals , Basic Helix-Loop-Helix Transcription Factors/analysis , Cell Lineage/genetics , Cells, Cultured , Doublecortin Domain Proteins , Doublecortin Protein , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/pharmacology , Histone Deacetylases/analysis , Humans , Microtubule-Associated Proteins/analysis , Nerve Tissue Proteins/analysis , Nerve Tissue Proteins/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/physiology , Neuropeptides/analysis , Promoter Regions, Genetic , Rats , Receptors, Cytoplasmic and Nuclear/genetics , Repressor Proteins/genetics , Sp1 Transcription Factor/analysis , Sp1 Transcription Factor/metabolism , Tubulin/analysis
10.
Transl Psychiatry ; 11(1): 281, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33980815

ABSTRACT

Lithium salts are used as mood-balancing medication prescribed to patients suffering from neuropsychiatric disorders, such as bipolar disorder and major depressive disorder. Lithium salts cross the blood-brain barrier and reach the brain parenchyma within few hours after oral application, however, how lithium influences directly human neuronal function is unknown. We applied patch-clamp and microelectrode array technology on human induced pluripotent stem cell (iPSC)-derived cortical neurons acutely exposed to therapeutic (<1 mM) and overdose concentrations (>1 mM) of lithium chloride (LiCl) to assess how therapeutically effective and overdose concentrations of LiCl directly influence human neuronal electrophysiological function at the synapse, single-cell, and neuronal network level. We describe that human iPSC-cortical neurons exposed to lithium showed an increased neuronal activity under all tested concentrations. Furthermore, we reveal a lithium-induced, concentration-dependent, transition of regular synchronous neuronal network activity using therapeutically effective concentration (<1 mM LiCl) to epileptiform-like neuronal discharges using overdose concentration (>1 mM LiCl). The overdose concentration lithium-induced epileptiform-like activity was similar to the epileptiform-like activity caused by the GABAA-receptor antagonist. Patch-clamp recordings reveal that lithium reduces action potential threshold at all concentrations, however, only overdose concentration causes increased frequency of spontaneous AMPA-receptor mediated transmission. By applying the AMPA-receptor antagonist and anti-epileptic drug Perampanel, we demonstrate that Perampanel suppresses lithium-induced epileptiform-like activity in human cortical neurons. We provide insights in how therapeutically effective and overdose concentration of lithium directly influences human neuronal function at synapse, a single neuron, and neuronal network levels. Furthermore, we provide evidence that Perampanel suppresses pathological neuronal discharges caused by overdose concentrations of lithium in human neurons.


Subject(s)
Depressive Disorder, Major , Induced Pluripotent Stem Cells , Action Potentials , Humans , Lithium/toxicity , Neurons
11.
J Affect Disord ; 290: 61-64, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33993081

ABSTRACT

BACKGROUND: Brain-derived neurotrophic factor (BDNF) antisense RNA (BDNF-AS) was identified as naturally conserved non-coding antisense RNA that suppresses the transcription of BDNF. METHODS: We measured the expression of BDNF mRNA and BDNF-AS mRNA in iPSC and NSC from bipolar disorder (BD) patients and healthy control subjects, and postmortem brain samples such as the corpus callosum, the Brodmann area (BA8), and BA46 from BD patients and age- and sex-matched controls. RESULTS: The expression of BDNF mRNA in iPSC from BD patients (n = 6) was significantly lower than that of control subjects (n = 4) although the expression of BDNF mRNA in NSC from BD patients was significantly higher than that of control subjects. In contrast, there were no changes in the expression of BDNF-AS mRNA in both iPSC and NSC between two groups. The expression of BDNF mRNA in the BA46 from BD patients (n = 35) was significantly lower than that of controls (n = 34) although the expression of BDNF mRNA in the corpus callosum and BA8 was not different between two groups (n = 15). In contrast, there were no changes in expression of BDNF-AS mRNA in the three brain regions between two groups. Interestingly, there were significant positive correlations between BDNF mRNA expression and BDNF-AS mRNA expression in the postmortem brain samples. LIMITATIONS: Sample sizes are relatively low. CONCLUSIONS: Our data suggest that abnormalities in the expression of BDNF, but not BDNF-AS, play a role in the pathogenesis of BD.


Subject(s)
Bipolar Disorder , Induced Pluripotent Stem Cells , Neural Stem Cells , Bipolar Disorder/genetics , Brain/metabolism , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Gene Expression , Humans , Induced Pluripotent Stem Cells/metabolism , Neural Stem Cells/metabolism
12.
Cancer Sci ; 101(11): 2398-403, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20718757

ABSTRACT

Diffuse-type gastric carcinoma is characterized by rapid progression and poor prognosis. High expression of transforming growth factor (TGF)-ß and thick stromal fibrosis are observed in this type of gastric carcinoma. We have previously shown that disruption of TGF-ß signaling via introduction of a dominant negative form of the TGF-ß type II receptor (dnTßRII) into diffuse-type gastric cancer cell lines, including OCUM-2MLN, caused accelerated tumor growth through induction of tumor angiogenesis in vivo. In the present study, we show that TGF-ß induces upregulation of expression of tissue inhibitor of metalloproteinase 2 (TIMP2) in the OCUM-2MLN cell line in vitro, and that expression of TIMP2 is repressed by dnTßRII expression in vivo. Transplantation of the OCUM-2MLN cells to nude mice exhibited accelerated tumor growth in response to dnTßRII expression, which was completely abolished when TIMP2 was coexpressed with dnTßRII. Although the blood vessel density of TIMP2-expressing tumors was only slightly decreased, the degree of hypoxia in tumor tissues was significantly increased and pericytes covering tumor vasculature were decreased by TIMP2 expression in OCUM-2MLN cells, suggesting that the function of tumor vasculatures was repressed by TIMP2 and consequently tumor growth was reduced. These findings provide evidence that one of the mechanisms of the increase in angiogenesis in diffuse-type gastric carcinoma is the downregulation of the anti-angiogenic protein TIMP2.


Subject(s)
Protein Serine-Threonine Kinases/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Stomach Neoplasms/metabolism , Tissue Inhibitor of Metalloproteinase-2/metabolism , Transforming Growth Factor beta/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Hypoxia , Immunoblotting , Immunohistochemistry , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Protein Serine-Threonine Kinases/genetics , Receptor, Transforming Growth Factor-beta Type II , Receptors, Transforming Growth Factor beta/genetics , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Tissue Inhibitor of Metalloproteinase-2/genetics , Transforming Growth Factor beta/pharmacology , Transplantation, Heterologous
13.
J Clin Invest ; 117(10): 2766-77, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17909625

ABSTRACT

Tumors produce multiple growth factors, but little is known about the interplay between various angiogenic factors in promoting tumor angiogenesis, growth, and metastasis. Here we show that 2 angiogenic factors frequently upregulated in tumors, PDGF-BB and FGF2, synergistically promote tumor angiogenesis and pulmonary metastasis. Simultaneous overexpression of PDGF-BB and FGF2 in murine fibrosarcomas led to the formation of high-density primitive vascular plexuses, which were poorly coated with pericytes and VSMCs. Surprisingly, overexpression of PDGF-BB alone in tumor cells resulted in dissociation of VSMCs from tumor vessels and decreased recruitment of pericytes. In the absence of FGF2, capillary ECs lacked response to PDGF-BB. However, FGF2 triggers PDGFR-alpha and -beta expression at the transcriptional level in ECs, which acquire hyperresponsiveness to PDGF-BB. Similarly, PDGF-BB-treated VSMCs become responsive to FGF2 stimulation via upregulation of FGF receptor 1 (FGFR1) promoter activity. These findings demonstrate that PDGF-BB and FGF2 reciprocally increase their EC and mural cell responses, leading to disorganized neovascularization and metastasis. Our data suggest that intervention of this non-VEGF reciprocal interaction loop for the tumor vasculature could be an important therapeutic target for the treatment of cancer and metastasis.


Subject(s)
Fibroblast Growth Factor 2/metabolism , Fibrosarcoma/blood , Fibrosarcoma/pathology , Lung Neoplasms/secondary , Neovascularization, Pathologic/metabolism , Platelet-Derived Growth Factor/metabolism , Animals , Becaplermin , Capillaries , Cell Movement , Cell Proliferation , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Fibroblast Growth Factor 2/genetics , Fibroblast Growth Factor 2/pharmacology , Fibrosarcoma/metabolism , Humans , Mice , Mice, SCID , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Neovascularization, Pathologic/genetics , Pericytes/metabolism , Pericytes/pathology , Platelet-Derived Growth Factor/genetics , Platelet-Derived Growth Factor/pharmacology , Promoter Regions, Genetic , Proto-Oncogene Proteins c-sis , Rats , Receptor, Fibroblast Growth Factor, Type 1/genetics , Signal Transduction
14.
Transl Psychiatry ; 10(1): 390, 2020 11 09.
Article in English | MEDLINE | ID: mdl-33168801

ABSTRACT

Identification of causative genetic variants leading to the development of bipolar disorder (BD) could result in genetic tests that would facilitate diagnosis. A better understanding of affected genes and pathways is also necessary for targeting of genes that may improve treatment strategies. To date several susceptibility genes have been reported from genome-wide association studies (GWAS), but little is known about specific variants that affect disease development. Here, we performed quantitative proteomics and whole-genome sequencing (WGS). Quantitative proteomics revealed NLRP2 as the most significantly up-regulated protein in neural stem cells and mature neural cells obtained from BD-patient cell samples. These results are in concordance with our previously published transcriptome analysis. Furthermore, the levels of FEZ2 and CADM2 proteins were also significantly differentially expressed in BD compared to control derived cells. The levels of FEZ2 were significantly downregulated in neural stem cells (NSC) while CADM2 was significantly up-regulated in mature neuronal cell culture. Promising novel candidate mutations were identified in the ANK3, NEK3, NEK7, TUBB, ANKRD1, and BRD2 genes. A literature search of candidate variants and deregulated proteins revealed that there are several connections to microtubule function for the molecules putatively involved. Microtubule function in neurons is critical for axon structure and axonal transport. A functional dynamic microtubule is also needed for an advocate response to cellular and environmental stress. If microtubule dynamics is compromised by mutations, it could be followed by deregulated expression forming a possible explanation for the inherited vulnerability to stressful life events that have been proposed to trigger mood episodes in BD patients.


Subject(s)
Bipolar Disorder , Genetic Predisposition to Disease , Genome-Wide Association Study , Bipolar Disorder/genetics , Humans , Microtubules , NIMA-Related Kinases , Neurons , Polymorphism, Single Nucleotide , Proteomics
15.
Front Cell Dev Biol ; 8: 571332, 2020.
Article in English | MEDLINE | ID: mdl-33195202

ABSTRACT

Persistent neural stem cell (NSC) proliferation is, among others, a hallmark of immaturity in human induced pluripotent stem cell (hiPSC)-based neural models. TGF-ß1 is known to regulate NSCs in vivo during embryonic development in rodents. Here we examined the role of TGF-ß1 as a potential candidate to promote in vitro differentiation of hiPSCs-derived NSCs and maturation of neuronal progenies. We present that TGF-ß1 is specifically present in early phases of human fetal brain development. We applied confocal imaging and electrophysiological assessment in hiPSC-NSC and 3D neural in vitro models and demonstrate that TGF-ß1 is a signaling protein, which specifically suppresses proliferation, enhances neuronal and glial differentiation, without effecting neuronal maturation. Moreover, we demonstrate that TGF-ß1 is equally efficient in enhancing neuronal differentiation of human NSCs as an artificial synthetic small molecule. The presented approach provides a proof-of-concept to replace artificial small molecules with more physiological signaling factors, which paves the way to improve the physiological relevance of human neural developmental in vitro models.

16.
Mol Cell Neurosci ; 37(3): 507-18, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18243733

ABSTRACT

We report a considerable number of cells in the ventricular and the subventricular zones (SVZ) of newborn mice to stain positive for the PDGF beta-receptor (PDGFRB). Many of them also stained for nestin and/or GFAP but less frequently for the neuroblast marker doublecortin and for the mitotic marker Ki-67. The SVZ of mice with nestin-Cre conditional deletion of PDGFRB expressed the receptor only on blood vessels and was devoid of any morphological abnormality. PDGFRB(-/-) neurospheres showed a higher rate of apoptosis without any significant decrease in proliferation. They demonstrated reduced capacities of migration and neuronal differentiation in response to not only PDGF-BB but also bFGF. Furthermore, the PDGFR kinase inhibitor STI571 blocked the effects of bFGF in control neurosphere cultures. bFGF increased the activity of the PDGFRB promoter as well as the expression and phosphorylation of PDGFRB. These results suggest the presence of the signaling convergence between PDGF and FGF. PDGFRB is needed for survival, and the effects of bFGF in migration and neural differentiation of the cells may be potentiated by induction of PDGFRB.


Subject(s)
Gene Expression/physiology , Lateral Ventricles/cytology , Lateral Ventricles/growth & development , Neurons/physiology , Receptor, Platelet-Derived Growth Factor beta/metabolism , Stem Cells/metabolism , Analysis of Variance , Animals , Animals, Newborn , Benzamides , Bromodeoxyuridine/metabolism , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Movement/drug effects , Cell Movement/physiology , Cells, Cultured , Enzyme Inhibitors/pharmacology , Gene Expression/drug effects , Imatinib Mesylate , Intermediate Filament Proteins/genetics , Intermediate Filament Proteins/metabolism , Ki-67 Antigen/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nestin , Piperazines/pharmacology , Pyrimidines/pharmacology , Receptor, Platelet-Derived Growth Factor beta/genetics , Transfection/methods
17.
Cells ; 8(5)2019 04 28.
Article in English | MEDLINE | ID: mdl-31035352

ABSTRACT

We examine the role of the heterogenous ribonucleoprotein U (hnRNP U) as a G-quadruplex binding protein in human cell lines. Hypothesizing that hnRNP U is associated with telomeres, we investigate what other telomere-related functions it may have. Telomeric G-quadruplexes have been fully characterized in vitro, but until now no clear evidence of their function or in vivo interactions with proteins has been revealed in mammalian cells. Techniques used were immunoprecipitation, DNA pull-down, binding assay, and Western blots. We identified hnRNP U as a G-quadruplex binding protein. Immunoprecipitations disclosed that endogenous hnRNP U associates with telomeres, and DNA pull-downs showed that the hnRNP U C-terminus specifically binds telomeric G-quadruplexes. We have compared the effect of telomere repeat containing RNA (TERRA) on binding between hnRNP U and telomeric (Tel) or single- stranded Tel (ssTel) oligonucleotides and found that ssTel binds stronger to TERRA than to Tel. We also show that hnRNP U prevents replication protein A (RPA) accumulation at telomeres, and the recognition of telomeric ends by hnRNP suggests that a G-quadruplex promoting protein regulates its accessibility. Thus, hnRNP U-mediated formation has important functions for telomere biology.


Subject(s)
Heterogeneous-Nuclear Ribonucleoprotein U/physiology , Telomere/metabolism , Animals , Cell Line , DNA/metabolism , G-Quadruplexes , Humans , Oligonucleotides/metabolism , Protein Binding , Replication Protein A/metabolism
18.
Cancer Rep (Hoboken) ; 2(5): e1204, 2019 10.
Article in English | MEDLINE | ID: mdl-32721119

ABSTRACT

BACKGROUND: The human orphan receptor TLX (NR2E1) is a key regulator of neurogenesis, adult stem cell maintenance, and tumorigenesis. However, little is known about the genetic and transcriptomic events that occur following TLX overexpression in human cell lines. AIMS: Here, we used cytogenetics and RNA sequencing to investigate the effect of TLX overexpression with an inducible vector system in the HEK 293T cell line. METHODS AND RESULTS: Conventional spectral karyotyping was used to identify chromosomal abnormalities, followed by fluorescence in situ hybridization (FISH) analysis on chromosome spreads to assess TLX DNA copy number. Illumina paired-end whole transcriptome sequencing was then performed to characterize recurrent genetic variants (single nucleotide polymorphisms (SNPs) and indels), expressed gene fusions, and gene expression profiles. Lastly, flow cytometry was used to analyze cell cycle distribution. Intriguingly, we show that upon transfection with a vector containing the human TLX gene (eGFP-hTLX), an isochromosome forms on the long arm of chromosome 6, thereby resulting in DNA gain of the TLX locus (6q21) and upregulation of TLX. Induction of the eGFP-hTLX vector further increased TLX expression levels, leading to G0-G1 cell cycle arrest, genetic aberrations, modulation of gene expression patterns, and crosstalk with other nuclear receptors (AR, ESR1, ESR2, NR1H4, and NR3C2). We identified a 49-gene signature associated with central nervous system (CNS) development and carcinogenesis, in addition to potentially cancer-driving gene fusions (LARP1-CNOT8 and NSL1-ZDBF2) and deleterious genetic variants (frameshift insertions in the CTSH, DBF4, POSTN, and WDR78 genes). CONCLUSION: Taken together, these findings illustrate that TLX may play a pivotal role in tumorigenesis via genomic instability and perturbation of cancer-related processes.


Subject(s)
Cell Transformation, Neoplastic/genetics , Genomic Instability , Orphan Nuclear Receptors/metabolism , Cell Proliferation/genetics , Frameshift Mutation , G1 Phase Cell Cycle Checkpoints/genetics , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Orphan Nuclear Receptors/genetics , RNA-Seq , Up-Regulation
19.
Front Neurosci ; 13: 351, 2019.
Article in English | MEDLINE | ID: mdl-31068774

ABSTRACT

Reproducibly generating human induced pluripotent stem cell-based functional neuronal circuits, solely obtained from single individuals, poses particular challenges to achieve personalized and patient specific functional neuronal in vitro models. A hallmark of functional neuronal assemblies, synchronous neuronal activity, can be non-invasively studied by microelectrode array (MEA) technology, reliably capturing physiological and pathophysiological aspects of human brain function. In our here presented manuscript, we demonstrate a procedure to generate 3D neural aggregates comprising astrocytes, oligodendroglial cells, and neurons obtained from the same human tissue sample. Moreover, we demonstrate the robust ability of those neurons to create a highly synchronously active neuronal network within 3 weeks in vitro, without additionally applied astrocytes. The fusion of MEA-technology with functional neuronal circuits solely obtained from one individual's cells represent isogenic person-specific human neuronal sensor chips that pave the way for specific personalized in vitro neuronal networks as well as neurological and neuropsychiatric disease modeling.

20.
J Neurochem ; 106(4): 1681-98, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18564368

ABSTRACT

All-trans retinoic acid (RA) is a differentiation factor in many tissues. However, its role in astrogliogenesis has not been extensively studied. Here, we investigated the effect of RA on the regulation of astrogliogenesis at different cortical developmental stages. We prepared rat cortical progenitor cells from embryonic day (E) 13 and E17, which correspond to the beginning of neurogenic and astrogliogenic periods, respectively. Surprisingly, RA promoted astrogliogenesis at E17 but inhibited astrogliogenesis induced by ciliary neurotrophic factor (CNTF) at E13. The inhibitory effect of RA on astrogliogenesis at E13 was not due to premature commitment of progenitors to a neuronal or oligodendroglial lineage. Rather, RA retained more progenitors in a proliferative state. Furthermore, RA inhibition of astrogliogenesis at E13 was independent of STAT3 signaling and required the function of the alpha and beta isoforms of the RA receptors (RAR). Moreover, the differential response of E13 and E17 progenitors to RA was due to differences in the intrinsic properties of these cells that are preserved in vitro. The inhibitory effect of RA on cytokine-induced astrogliogenesis at E13 may contribute to silencing of any potential precocious astrogliogenesis during the neurogenic period.


Subject(s)
Astrocytes/cytology , Cell Differentiation/physiology , Cerebral Cortex/embryology , Signal Transduction/physiology , Stem Cells/cytology , Tretinoin/pharmacology , Age Factors , Animals , Astrocytes/drug effects , Astrocytes/physiology , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/drug effects , Rats , Rats, Sprague-Dawley , Retinoids/pharmacology , Signal Transduction/drug effects , Stem Cells/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL