Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Inorg Chem ; 62(11): 4637-4647, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36877595

ABSTRACT

The optically pure binaphthyl-based phosphoramidite ligands and their perfluorinated analogs have been first used for the preparation of chiral palladium nanoparticles (PdNPs). These PdNPs have been extensively characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, 31P NMR, and thermogravimetric analysis techniques. The circular dichroism(CD) analysis of chiral PdNPs exhibited negative cotton effects. Perfluorinated phosphoramidite ligands provided smaller (2.32-3.45 nm) and well-defined nanoparticles, in comparison with the nonfluorinated analog (4.12 nm). The catalytic behavior of binaphthyl-based phosphoramidite stabilized chiral PdNPs has been investigated in the asymmetric Suzuki C-C coupling reactions for the formation of sterically hindered binaphthalene units, and high isolated yields (up to 85%) were achieved with excellent enantiomeric excesses (>99% ee). Recycling studies revealed that chiral PdNPs could be reused over 12 times without significant loss in activity and enantioselectivity (>99% ee). The nature of the active species was also investigated with a combination of poisoning and hot filtration tests and found that catalytically active species is the heterogeneous nanoparticles. These results indicate that the use of phosphoramidite ligands as a stabilizer for developing efficient and unique chiral nanoparticles could open up a field for many other asymmetric organic transformations promoted by chiral catalysts.

2.
Mol Divers ; 27(6): 2767-2787, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36508118

ABSTRACT

Herein, we present how to synthesize thirteen new 1-(4-acetylphenyl)-3-alkylimidazolium salts by reacting 4-(1-H-imidazol-1-yl)acetophenone with a variety of benzyl halides that contain either electron-donating or electron-withdrawing groups. The structures of the new imidazolium salts were conformed using different spectroscopic methods (1H NMR, 13C NMR, 19F NMR, and FTIR) and elemental analysis techniques. Furthermore, these compounds' the carbonic anhydrase (hCAs) and acetylcholinesterase (AChE) enzyme inhibition activities were investigated. They showed a highly potent inhibition effect toward AChE and hCAs with Ki values in the range of 8.30 ± 1.71 to 120.77 ± 8.61 nM for AChE, 16.97 ± 2.04 to 84.45 ± 13.78 nM for hCA I, and 14.09 ± 2.99 to 69.33 ± 17.35 nM for hCA II, respectively. Most of the synthesized imidazolium salts appeared to be more potent than the standard inhibitor of tacrine (TAC) against AChE and Acetazolamide (AZA) against CA. In the meantime, to prospect for potential synthesized imidazolium salt inhibitor(s) against AChE and hCAs, molecular docking and an ADMET-based approach were exerted.


Subject(s)
Cholinesterase Inhibitors , Salts , Salts/pharmacology , Cholinesterase Inhibitors/chemistry , Acetylcholinesterase/metabolism , Carbonic Anhydrase I/chemistry , Carbonic Anhydrase I/metabolism , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase II/chemistry , Carbonic Anhydrase II/metabolism , Molecular Docking Simulation , Structure-Activity Relationship , Molecular Structure
3.
J Biochem Mol Toxicol ; 36(4): e23001, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35225413

ABSTRACT

Here, we report the synthesis, characterization, and biological activities of a series of benzimidazolium salts bearing the trifluoromethylbenzyl group. All benzimidazolium salts were characterized by using nuclear magnetic resonance (NMR) (1 H NMR and 13 C NMR), Fourier transform-infrared spectroscopy, and elemental analysis techniques. The crystal structures of some of these compounds were obtained by the single-crystal X-ray diffraction method. Furthermore, the acetylcholinesterase (AChE) and α-glycosidase (α-Gly) enzyme inhibition activities of these compounds were investigated. The obtained results revealed that 2e, with Ki value of 1.36 ± 0.34 µM against AChE and 3d with Ki value of 91.37 ± 10.38 µM against α-Gly, were the most potent compounds against both assigned enzymes. It should be noted that most of the synthesized compounds were more potent than standard inhibitor tacrine (TAC) against AChE. In silico studies, we focused on compound 2e, 3d, 3e, and 3f as potent inhibitors of AChE and α-Gly, the compound 2e showed good binding energy (-10.23 kcal/mol), among the three selected compounds and positive control (-10.18, -10.08, and -7.37 kcal/mol for 3d, 3f, and TAC, respectively). Likewise, as a result of the same compounds against the α-Gly enzyme, the compound 3d had the highest binding affinity (-8.39 kcal/mol) between the four selected compounds and the positive control (-8.27, -8.10, -8.06, and -7.53 kcal/mol for 3f, 3e, 2e, and acarbose, respectively). From the absorption, distribution, metabolism, excretion, and toxicity analyses, it can be concluded that the compounds under consideration exhibited more drug-likeness properties in the prediction studies compared to positive controls.


Subject(s)
Acetylcholinesterase , Salts , Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolases/metabolism , Molecular Docking Simulation , Molecular Structure , Salts/chemistry , Salts/pharmacology , Structure-Activity Relationship
4.
Chem Biodivers ; 19(12): e202200257, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36260838

ABSTRACT

The method for producing 4-trifluoromethoxybenzyl substituted benzimidazolium salts is described in this article. The method is based on the reaction of 4-trifluoromethoxybenzyl substituent alkylating agent with 1-alkylbenzimidazole. This method yielded 1-(4-trifluoromethoxybenzyl)-3-alkylbenzimidazolium bromide salts. These benzimidazolium salts were characterized by using 1 H-NMR, 13 C-NMR, FT-IR spectroscopy, and elemental analysis techniques. The crystal structure of 1f was enlightened by single crystal X-ray diffraction studies. Also, the enzyme inhibition effects of the synthesised compounds were investigated. They demonstrated highly potent inhibition effect on acetylcholinesterase (AChE) and carbonic anhydrases (hCAs) (Ki values are in the range of 7.24±0.99 to 39.12±5.66 nM, 5.57±0.96 to 43.07±11.76 nM, and 4.38±0.43 to 18.68±3.60 nM for AChE, hCA I, and hCA II, respectively). In molecular docking study, the interactions of active compounds showing activity against AChE and hCAs enzymes were examined. The most active compound 1f has -10.90 kcal/mol binding energy value against AChE enzyme, and the potential structure compound 1e, which has activity against hCA I and hCA II enzymes, was -7.51 and -8.93 kcal/mol, respectively.


Subject(s)
Benzimidazoles , Cholinesterase Inhibitors , Acetylcholinesterase/metabolism , Carbonic Anhydrase I , Carbonic Anhydrase II , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Molecular Docking Simulation , Molecular Structure , Spectroscopy, Fourier Transform Infrared , Structure-Activity Relationship , Benzimidazoles/chemistry , Benzimidazoles/pharmacology
5.
Acta Crystallogr C ; 63(Pt 4): o215-8, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17413230

ABSTRACT

The title Schiff base compound, C(28)H(26)N(2)O(2), possesses both OH and NH tautomeric character in its molecular structure. While the OH side of the compound is described as an intermediate state, its NH side adopts a predominantly zwitterionic form. The molecular structure of the compound is stabilized by both N(+)-H...O(-) and O-H...N intramolecular hydrogen bonds. There are two weak C-H...O hydrogen bonds leading to polymeric chains of topology C(5) and C(13) running along the b axis of the unit cell. In addition, intermolecular C-H...pi interactions serve to stabilize the extended structure.

SELECTION OF CITATIONS
SEARCH DETAIL