Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters

Publication year range
1.
Environ Sci Technol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958378

ABSTRACT

Dissolved organic matter (DOM) in aquatic systems is a highly heterogeneous mixture of water-soluble organic compounds, acting as a major carbon reservoir driving biogeochemical cycles. Understanding DOM molecular composition is thus of vital interest for the health assessment of aquatic ecosystems, yet its characterization poses challenges due to its complex and dynamic chemical profile. Here, we performed a comprehensive chemical analysis of DOM from highly urbanized river and seawater sources and compared it to drinking water. Extensive analyses by nontargeted direct infusion (DI) and liquid chromatography (LC) high-resolution mass spectrometry (HRMS) through Orbitrap were integrated with novel computational workflows to allow molecular- and structural-level characterization of DOM. Across all water samples, over 7000 molecular formulas were calculated using both methods (∼4200 in DI and ∼3600 in LC). While the DI approach was limited to molecular formula calculation, the downstream data processing of MS2 spectral information combining library matching and in silico predictions enabled a comprehensive structural-level characterization of 16% of the molecular space detected by LC-HRMS across all water samples. Both analytical methods proved complementary, covering a broad chemical space that includes more highly polar compounds with DI and more less polar ones with LC. The innovative integration of diverse analytical techniques and computational workflow introduces a robust and largely available framework in the field, providing a widely applicable approach that significantly contributes to understanding the complex molecular composition of DOM.

2.
Eur Radiol ; 33(12): 9120-9129, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37439938

ABSTRACT

OBJECTIVES: Adult solitary intra-axial cerebellar tumors are uncommon. Their presurgical differentiation based on neuroimaging is crucial, since management differs substantially. Comprehensive full assessment of MR dynamic-susceptibility-contrast perfusion-weighted imaging (DSC-PWI) may reveal key differences between entities. This study aims to provide new insights on perfusion patterns of these tumors and to explore the potential of DSC-PWI in their presurgical discrimination. METHODS: Adult patients with a solitary cerebellar tumor on presurgical MR and confirmed histological diagnosis of metastasis, medulloblastoma, hemangioblastoma, or pilocytic astrocytoma were retrospectively retrieved (2008-2023). Volumetric segmentation of tumors and normal-appearing white matter (for normalization) was semi-automatically performed on CE-T1WI and coregistered with DSC-PWI. Mean normalized values per patient tumor-mask of relative cerebral blood volume (rCBV), percentage of signal recovery (PSR), peak height (PH), and normalized time-intensity curves (nTIC) were extracted. Statistical comparisons were done. Then, the dataset was split into training (75%) and test (25%) cohorts and a classifier was created considering nTIC, rCBV, PSR, and PH in the model. RESULTS: Sixty-eight patients (31 metastases, 13 medulloblastomas, 13 hemangioblastomas, and 11 pilocytic astrocytomas) were included. Relevant differences between tumor types' nTICs were demonstrated. Hemangioblastoma showed the highest rCBV and PH, pilocytic astrocytoma the highest PSR. All parameters showed significant differences on the Kruskal-Wallis tests (p < 0.001). The classifier yielded an accuracy of 98% (47/48) in the training and 85% (17/20) in the test sets. CONCLUSIONS: Intra-axial cerebellar tumors in adults have singular and significantly different DSC-PWI signatures. The combination of perfusion metrics through data-analysis rendered excellent accuracies in discriminating these entities. CLINICAL RELEVANCE STATEMENT: In this study, the authors constructed a classifier for the non-invasive imaging presurgical diagnosis of adult intra-axial cerebellar tumors. The resultant tool can be a support for decision-making in the clinical practice and enables optimal personalized patient management. KEY POINTS: • Adult intra-axial cerebellar tumors exhibit specific, singular, and statistically significant different MR dynamic-susceptibility-contrast perfusion-weighted imaging (DSC-PWI) signatures. • Data-analysis, applied to MR DSC-PWI, could provide added value in the presurgical diagnosis of solitary cerebellar metastasis, medulloblastoma, hemangioblastoma, and pilocytic astrocytoma. • A classifier based on DSC-PWI metrics yields excellent accuracy rates and could be used as a support tool for radiologic diagnosis with clinician-friendly displays.


Subject(s)
Astrocytoma , Brain Neoplasms , Cerebellar Neoplasms , Hemangioblastoma , Medulloblastoma , Adult , Humans , Cerebellar Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Retrospective Studies , Hemangioblastoma/diagnostic imaging , Astrocytoma/pathology , Perfusion , Magnetic Resonance Imaging/methods
3.
Environ Sci Technol ; 57(48): 19236-19252, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37934628

ABSTRACT

Understanding the potential impact of organic contaminants on male fertility is crucial, yet limited studies have examined these chemicals in semen, with most focusing on urine and blood. To address this gap, we developed and validated a robust LC-HRMS methodology for semen analysis, with a focus on polar and semipolar chemicals. Our methodology enables the quantitative (or semiquantitative) analysis of >2000 chemicals being compatible with suspect and nontarget strategies and providing unprecedented insights into the occurrence and potential bioaccumulation of diverse contaminants in this matrix. We comprehensively analyzed exogenous organic chemicals and associated metabolites in ten semen samples from Spanish participants collected in an area with a large presence of the chemical industry included in the LED-FERTYL Spanish study cohort. This investigation revealed the presence of various contaminants in semen, including plastic additives, PFAS, flame retardants, surfactants, and insecticides. Notably, prevalent plastic additives such as phthalic acid esters and bisphenols were identified, indicating potential health risks. Additionally, we uncovered previously understudied chemicals like the tire additive 2-mercaptobenzothiazole and specific organophosphate flame retardants. This study showcases the potential of our methodology as a valuable tool for large-scale cohort studies, providing insights into the association between contaminant exposure and the risk of male fertility impairments.


Subject(s)
Flame Retardants , Insecticides , Humans , Male , Semen/chemistry , Flame Retardants/analysis , Organic Chemicals/analysis , Semen Analysis
4.
Anal Bioanal Chem ; 415(29-30): 7297-7313, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37946034

ABSTRACT

Chemicals infiltrate our daily experiences through multiple exposure pathways. Human biomonitoring (HBM) is routinely used to comprehensively understand these chemical interactions. Historically, HBM depended on targeted screening methods limited to a relatively small set of chemicals with triple quadrupole instruments typically. However, recent advances in high-resolution mass spectrometry (HRMS) have facilitated the use of broad-scope target, suspect, and non-target strategies, enhancing chemical exposome characterization within acceptable detection limits. Despite these advancements, establishing robust and efficient sample treatment protocols is still essential for trustworthy broad-range chemical analysis. This study sought to validate a methodology leveraging HRMS-based strategies for accurate profiling of exogenous chemicals and related metabolites in urine samples. We evaluated five extraction protocols, each encompassing various chemical classes, such as pharmaceuticals, plastic additives, personal care products, and pesticides, in terms of their extraction recoveries, linearity, matrix effect, sensitivity, and reproducibility. The most effective protocol was extensively validated and subsequently applied to 10 real human urine samples using wide-scope target analysis encompassing over 2000 chemicals. We successfully identified and semi-quantified a total of 36 chemicals using an ionization efficiency-based model, affirming the methodology's robust performance. Notably, our results dismissed the need for a deconjugation step, a typically labor-intensive and time-consuming process.


Subject(s)
Environmental Monitoring , Humans , Environmental Monitoring/methods , Chromatography, Liquid/methods , Reproducibility of Results , Gas Chromatography-Mass Spectrometry , Mass Spectrometry/methods
5.
Anal Chem ; 93(33): 11601-11611, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34382770

ABSTRACT

There is an increasing need for comparable and harmonized retention times (tR) in liquid chromatography (LC) among different laboratories, to provide supplementary evidence for the identity of compounds in high-resolution mass spectrometry (HRMS)-based suspect and nontarget screening investigations. In this study, a rigorously tested, flexible, and less system-dependent unified retention time index (RTI) approach for LC is presented, based on the calibration of the elution pattern. Two sets of 18 calibrants were selected for each of ESI+ and ESI-based on the maximum overlap with the retention times and chemical similarity indices from a total set of 2123 compounds. The resulting calibration set, with RTI set to range between 1 and 1000, was proposed as the most appropriate RTI system after rigorous evaluation, coordinated by the NORMAN network. The validation of the proposed RTI system was done externally on different instrumentation and LC conditions. The RTI can also be used to check the reproducibility and quality of LC conditions. Two quantitative structure-retention relationship (QSRR)-based models were built based on the developed RTI systems, which assist in the removal of false-positive annotations. The applicability domains of the QSRR models allowed completing the identification process with higher confidence for substances within the domain, while indicating those substances for which results should be treated with caution. The proposed RTI system was used to improve confidence in suspect and nontarget screening and increase the comparability between laboratories as demonstrated for two examples. All RTI-related calculations can be performed online at http://rti.chem.uoa.gr/.


Subject(s)
Reproducibility of Results , Calibration , Chromatography, Liquid , Mass Spectrometry
6.
Environ Sci Technol ; 55(15): 10343-10353, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34291901

ABSTRACT

Pesticides are widespread anthropogenic chemicals and well-known environmental contaminants of concern. Much less is known about transformation products (TPs) of pesticides and their presence in the environment. We developed a novel suspect screening approach for not well-explored pesticides (n = 16) and pesticide TPs (n = 242) by integrating knowledge from national monitoring with high-resolution mass spectrometry data. Weekly time-integrated samples were collected in two Swedish agricultural streams using the novel Time-Integrating, MicroFlow, In-line Extraction (TIMFIE) sampler. The integration of national monitoring data in the screening approach increased the number of prioritized compounds approximately twofold (from 23 to 42). Ultimately, 11 pesticide TPs were confirmed by reference standards and 12 TPs were considered tentatively identified with varying levels of confidence. Semiquantification of the newly confirmed TPs indicated higher concentrations than their corresponding parent pesticides in some cases, which highlights concerns related to (unknown) pesticide TPs in the environment. Some TPs were present in the environment without co-occurrence of their corresponding parent compounds, indicating higher persistency or mobility of the identified TPs. This study showcased the benefits of integrating monitoring knowledge in this type of studies, with advantages for suspect screening performance and the possibility to increase relevance of future monitoring programs.


Subject(s)
Pesticides , Water Pollutants, Chemical , Agriculture , Environmental Monitoring , Pesticides/analysis , Water , Water Pollutants, Chemical/analysis
7.
J Environ Manage ; 246: 920-928, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31279249

ABSTRACT

A bench-scale column experiment was performed to study the removal of 31 selected organic micropollutants (MPs) and phosphorus by lignite, xyloid lignite (Xylit), granular activated carbon (GAC), Polonite® and sand over a period of 12 weeks. In total 29 out of the 31 MPs showed removal efficiency >90% by GAC with an average removal of 97 ±â€¯6%. Xylit and lignite were less efficient with an average removal of 80 ±â€¯28% and 68 ±â€¯29%, respectively. The removal efficiency was found to be impacted by the characterization of the sorbents and physicochemical properties of the compounds, as well as the interaction between the sorbents and compounds. For instance, Xylit and lignite performed well for relatively hydrophobic (log octanol/water partition coefficient (Kow) ≥3) MPs, while the removal efficiency of moderately hydrophilic, highly hydrophilic and negatively charged MPs were lower. The organic sorbents were found to have more functional groups at their surfaces, which might explain the higher adsorption of MPs to these sorbents. The removal of several MPs improved after four weeks in sand, Xylit, GAC and lignite which may be related to increased biological activity and biofilm development. GAC and sand had limited ability to remove phosphorus (12 ±â€¯27% and 14 ±â€¯2%, respectively), while the calcium-silicate material Polonite® precipitated phosphorus efficiently and increased the total phosphorus removal from 12% to 96% after the GAC filter.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Charcoal , Phosphorus , Waste Disposal, Fluid , Wastewater
9.
Environ Sci Technol ; 52(12): 6881-6894, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29782800

ABSTRACT

This study demonstrates that regulatory databases combined with the latest advances in high resolution mass spectrometry (HRMS) can be efficiently used to prioritize and identify new, potentially hazardous pollutants being discharged into the aquatic environment. Of the approximately 23000 chemicals registered in the database of the National Swedish Product Register, 160 potential organic micropollutants were prioritized through quantitative knowledge of market availability, quantity used, extent of use on the market, and predicted compartment-specific environmental exposure during usage. Advanced liquid chromatography (LC)-HRMS-based suspect screening strategies were used to search for the selected compounds in 24 h composite samples collected from the effluent of three major wastewater treatment plants (WWTPs) in Sweden. In total, 36 tentative identifications were successfully achieved, mostly for substances not previously considered by environmental scientists. Of these substances, 23 were further confirmed with reference standards, showing the efficiency of combining a systematic prioritization strategy based on a regulatory database and a suspect-screening approach. These findings show that close collaboration between scientists and regulatory authorities is a promising way forward for enhancing identification rates of emerging pollutants and expanding knowledge on the occurrence of potentially hazardous substances in the environment.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Mass Spectrometry , Sweden , Wastewater
12.
Environ Sci Technol ; 50(18): 10065-72, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27556594

ABSTRACT

The economic crisis plaguing Greece was expected to impact consumption of pharmaceuticals and illicit drugs - a priori to an unknown extent. We quantified the change of use for various classes of licit and illicit drugs by monitoring Athens' wastewater from 2010 to 2014. A high increase in the use of psychoactive drugs was detected between 2010 and 2014, especially for antipsychotics (35-fold), benzodiazepines (19-fold), and antidepressants (11-fold). This directly reflects the perceived increase of incidences associated with mental illnesses in the population, as a consequence of severe socioeconomic changes. Other therapeutic classes, like antiepileptics, hypertensives, and gastric and ulcer drugs also showed an increase in use (from 2-fold increase for antiepileptics to 13-fold for hypertensives). In contrast, the overall use of antibiotics and NSAIDs decreased. For mefenamic acid, an almost 28-fold decrease was observed. This finding is likely related to the reduction in drug expenditure applied in public health. A 2-fold increase of methamphetamine use was detected, associated with a cheap street drug called ″sisa″ (related to marginal conducts), which is a health concern. MDMA (5-fold) and methadone (7-fold) use showed also an increase, while cocaine and cannabis estimates did not show a clear trend.


Subject(s)
Illicit Drugs , Wastewater , Cocaine , Humans , Methamphetamine , Psychotropic Drugs , Substance Abuse Detection , Substance-Related Disorders/epidemiology
13.
Environ Res ; 145: 126-134, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26674115

ABSTRACT

The hazardous potential of organic UV filters (UV-Fs) is becoming an issue of great concern due to the widespread application of these compounds in most daily-use goods, such as hygiene and beauty products. Nanomaterials (NMs) have also been used in personal care products (PCPs) for many years. Nowadays, both classes of chemicals are considered environmental emerging contaminants. Despite some studies performed in vitro and in vivo reported adverse effects of many UV-Fs on the normal development of organisms, there is scarce data regarding acute and chronic toxicity. The aim of the present study was to determine the EC50 values of selected UV-Fs using standardised toxicity assays on three aquatic species i.e. Daphnia magna, Raphidocelis subcapitata and Vibrio fischeri. EC50 values obtained were in the mgl(-1) range for all the species. The estimated toxicity data allowed us to assess the environmental risk posed by selected UV-Fs in urban groundwater from Barcelona (Spain). The calculated ecological risk indicated a negligible impact on the aquifer. Giving the increasing importance of studying mixtures of pollutants and due to the widespread presence of nanomaterials (NMs) in the aquatic environment, other objective of this work was to explore the response on D. magna after exposure to both binary combinations of UV-Fs among them and UV-F with NMs. In all cases but the nano-silver mixtures, joint toxicity was mitigated or even eradicated.


Subject(s)
Aquatic Organisms/drug effects , Environmental Monitoring/methods , Groundwater/chemistry , Nanostructures/toxicity , Sunscreening Agents/toxicity , Water Pollutants, Chemical/toxicity , Aliivibrio fischeri/drug effects , Animals , Daphnia/drug effects , Drug Interactions , Ecotoxicology , Nanostructures/analysis , Silver/analysis , Silver/toxicity , Spain , Sunscreening Agents/analysis , Toxicity Tests, Acute , Urbanization , Water Pollutants, Chemical/analysis
14.
Environ Sci Technol ; 49(20): 12333-41, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26418421

ABSTRACT

An integrated workflow based on liquid chromatography coupled to a quadrupole-time-of-flight mass spectrometer (LC-QTOF-MS) was developed and applied to detect and identify suspect and unknown contaminants in Greek wastewater. Tentative identifications were initially based on mass accuracy, isotopic pattern, plausibility of the chromatographic retention time and MS/MS spectral interpretation (comparison with spectral libraries, in silico fragmentation). Moreover, new specific strategies for the identification of metabolites were applied to obtain extra confidence including the comparison of diurnal and/or weekly concentration trends of the metabolite and parent compounds and the complementary use of HILIC. Thirteen of 284 predicted and literature metabolites of selected pharmaceuticals and nicotine were tentatively identified in influent samples from Athens and seven were finally confirmed with reference standards. Thirty four nontarget compounds were tentatively identified, four were also confirmed. The sulfonated surfactant diglycol ether sulfate was identified along with others in the homologous series (SO4C2H4(OC2H4)xOH), which have not been previously reported in wastewater. As many surfactants were originally found as nontargets, these compounds were studied in detail through retrospective analysis.


Subject(s)
Chromatography, Liquid/methods , Organic Chemicals/analysis , Tandem Mass Spectrometry/methods , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Metabolome , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/chemistry , Spectrometry, Mass, Electrospray Ionization , Surface-Active Agents/analysis
15.
Anal Bioanal Chem ; 407(15): 4287-97, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25716466

ABSTRACT

This paper describes the development and validation of a new method for the simultaneous determination of 148 substances in sewage sludge. The selected compounds belong to different classes of pharmaceuticals, including antibiotics, analgesic and/or anti-inflammatory drugs, antiepileptics, benzodiazepines, antipsychotics, and antidepressants, among others, and illicit drugs, including opiates, opioids, cocaine, amphetamines, cannabinoids, and their metabolites. As far as the authors are aware, this is the first method in the peer-reviewed literature covering such a large number of target drugs for determination in a complex matrix like sewage sludge. The method presented herein combines ultrasound-assisted extraction (USE) and liquid chromatography coupled to tandem mass spectrometry. Good analytical performance was achieved, with limit-of-detection values below 10 ng g(-1) d.w. for 91% of the analytes and absolute recovery in the range 50-110% for more than 77% of the studied compounds. A combination of methanol and acidified water, also containing EDTA, proved to be the optimum solvent mixture to perform the extractions. An extra solid-phase-extraction clean-up step was not required, substantially reducing sample-preparation time and solvent consumption. Finally, the developed method was applied to the analysis of different sewage-sludge samples from five wastewater treatment plants of Santorini Island (Greece). Out of the 148 target compounds, 36 were detected. Several compounds, including acetylsalicylic acid, citalopram, and ciprofloxacin among others, had maximum concentrations above 100 ng g(-1) d.w.


Subject(s)
Chromatography, High Pressure Liquid/methods , Illicit Drugs/analysis , Sewage/analysis , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods , Water Pollutants, Chemical/analysis , Edetic Acid/chemistry , Limit of Detection , Methanol/chemistry , Solvents/chemistry , Sonication/methods
16.
Anal Bioanal Chem ; 406(17): 4273-85, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24788889

ABSTRACT

The present work describes the development and validation of a highly sensitive analytical method for the simultaneous determination of 68 compounds, including illicit drugs (opiates, opioids, cocaine compounds, amphetamines, and hallucinogens), psychiatric drugs (benzodiazepines, barbiturates, anesthetics, antiepileptics, antipsychotics, antidepressants, and sympathomimetics), and selected human metabolites in influent and effluent wastewater (IWW and EWW) by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The method involves a pre-concentration and cleanup step, carried out by solid-phase extraction (SPE) using the adsorbent Strata-XC, followed by the instrumental analysis performed by LC-MS/MS, using a Kinetex pentafluorophenyl (PFP) reversed-phase fused-core column and electrospray ionization (ESI) in both positive and negative modes. A systematic optimization of mobile phases was performed to cope with the wide range of physicochemical properties of the analytes. The PFP column was also compared with two reversed-phase columns: fused-core C18 and XB-C18 (with a cross-butyl C18 ligand). SPE optimization and critical aspects associated with the trace level determination of the target compounds (e.g., matrix effects) have been also considered and discussed. Fragmentation patterns for all the classes were proposed. The validated method provides absolute recoveries between 75 and 120% for most compounds in IWW and EWW. Low method limits of detection were achieved (between 0.04 and 10.0 ng/L for 87% of the compounds), allowing a reliable and accurate quantification of the analytes at trace level. The method was successfully applied to the analysis of these compounds in five wastewater treatment plants in Santorini, a touristic island of the Aegean Sea, Greece. Thirty-two out of 68 compounds were detected in all IWW samples in the range between 0.6 ng/L (for nordiazepam) and 6,822 ng/L (for carbamazepine) and 22 out of 68 in all EWW samples, with values between 0.4 ng/L (for 9-OH risperidone) and 2,200 ng/L (for carbamazepine). The novel methodology described herein maximizes the information on the environmental analysis of these substances and also provides a first profile of 68 drugs in a Greek touristic area.


Subject(s)
Chromatography, High Pressure Liquid/methods , Illicit Drugs/chemistry , Psychotropic Drugs/chemistry , Tandem Mass Spectrometry/methods , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Humans , Illicit Drugs/isolation & purification , Illicit Drugs/metabolism , Psychotropic Drugs/isolation & purification , Psychotropic Drugs/metabolism , Sensitivity and Specificity , Solid Phase Extraction , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/metabolism
17.
J Expo Sci Environ Epidemiol ; 34(1): 108-114, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37553410

ABSTRACT

Contaminants in drinking water are a major contributor to the human exposome and adverse health effects. Assessing drinking water exposure accurately in health studies is challenging, as several of the following study design domains should be addressed as adequately as possible. In this paper, we identify the domains Time, Space, Data Quality, Data Accessibility, economic considerations of Study Size, and Complex Mixtures. We present case studies for three approaches or technologies that address these domains differently in the context of exposure assessment of drinking water quality: regulated contaminants in monitoring databases, high-resolution mass spectrometry (HRMS)-based wide-scope chemical analysis, and effect-based bioassay methods. While none of these approaches address all the domains sufficiently, together they have the potential to carry out exposure assessments that would complement each other and could advance the state-of-science towards more accurate risk analysis. The aim of our study is to give researchers investigating health effects of drinking water quality the impetus to consider how their exposure assessments relate to the above-mentioned domains and whether it would be worthwhile to integrate the advanced technologies presented into planned risk analyses. We highly suggest this three-pronged approach should be further evaluated in health risk analyses, especially epidemiological studies concerning contaminants in drinking water. The state of the knowledge regarding potential benefits of these technologies, especially when applied in tandem, provides more than sufficient evidence to support future research to determine the implications of combining the approaches described in our case studies in terms of protection of public health.


Subject(s)
Drinking Water , Exposome , Humans , Gas Chromatography-Mass Spectrometry , Biological Assay , Databases, Factual
18.
Curr Opin Chem Biol ; 78: 102407, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38086287

ABSTRACT

The aetiology of every human disease lies in a combination of genetic and environmental factors, each contributing in varying proportions. While genomics investigates the former, a comparable holistic paradigm was proposed for environmental exposures in 2005, marking the onset of exposome research. Since then, the exposome definition has broadened to include a wide array of physical, chemical, and psychosocial factors that interact with the human body and potentially alter the epigenome, the transcriptome, the proteome, and the metabolome. The chemical exposome, deeply intertwined with the metabolome, includes all small molecules originating from diet as well as pharmaceuticals, personal care and consumer products, or pollutants in air and water. The set of techniques to interrogate these exposures, primarily mass spectrometry and nuclear magnetic resonance spectroscopy, are also extensively used in metabolomics. Recent advances in untargeted metabolomics using high resolution mass spectrometry have paved the way for the development of methods able to provide in depth characterisation of both the internal chemical exposome and the endogenous metabolome simultaneously. Herein we review the available tools, databases, and workflows currently available for such work, and discuss how these can bridge the gap between the study of the metabolome and the exposome.


Subject(s)
Environmental Pollutants , Exposome , Humans , Environmental Exposure/adverse effects , Metabolome , Metabolomics/methods
19.
J Hazard Mater ; 465: 132974, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38218030

ABSTRACT

The comprehensive monitoring of pharmaceutically active compounds (PhACs) in the environment is challenging given the myriad of substances continuously discharged, the increasing number of new compounds being produced (and released), or the variety of the associated human metabolites and transformation products (TPs). Approaches such as high-resolution mass spectrometry (HRMS)-based suspect analysis have emerged to overcome the drawbacks of classical target analytical methods, e.g., restricted chemical coverage. In this study, we assess the readiness of HRMS-based suspect screening to replace or rather complement target methodologies by comparing the performance of both approaches in terms of i) detection of PhACs in various environmental samples (water, sediments, biofilm, fish plasma, muscle and liver) in a field study; ii) PhACs (semi)quantification and iii) prediction of their environmental risks. Our findings revealed that target strategies alone significantly underestimate the variety of PhACs potentially impacting the environment. However, relying solely on suspect strategies can misjudge the presence and risk of low-level but potentially risky PhACs. Additionally, semiquantitative approaches, despite slightly overestimating concentrations, can provide a realistic overview of PhACs concentrations. Hence, it is recommended to adopt a combined strategy that first evaluates suspected threats and subsequently includes the relevant ones in the established target methodologies.


Subject(s)
Water Pollutants, Chemical , Animals , Humans , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Mass Spectrometry , Spectrum Analysis , Pharmaceutical Preparations
20.
J Hazard Mater ; 465: 133377, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38237439

ABSTRACT

The regeneration of wastewater has been recognized as an effective strategy to counter water scarcity. Nonetheless, Wastewater Treatment Plant (WWTP) effluents still contain a wide range of contaminants of emerging concern (CECs) even after water depuration. Filtration through Soil Aquifer Treatment (SAT) systems has proven efficient for CECs removal although the attenuation of their associated biological effects still remains poorly understood. To evaluate this, three pilot SAT systems were monitored, two of them enhanced with different reactive barriers. SATs were fed with secondary effluents during two consecutive campaigns. Fifteen water samples were collected from the WWTP effluent, below the barriers and 15 m into the aquifer. The potential attenuation of effluent-associated biological effects by SATs was evaluated through toxicogenomic bioassays using zebrafish eleutheroembryos and human hepatic cells. Transcriptomic analyses revealed a wide range of toxic activities exerted by the WWTP effluents that were reduced by more than 70% by SAT. Similar results were observed when HepG2 hepatic cells were tested for cytotoxic and dioxin-like responses. Toxicity reduction appeared partially determined by the barrier composition and/or SAT managing and correlated with CECs removal. SAT appears as a promising approach to efficiently reduce effluent-associated toxicity contributing to environmental and human health preservation.


Subject(s)
Groundwater , Water Pollutants, Chemical , Water Purification , Animals , Humans , Zebrafish , Soil , Water Pollutants, Chemical/analysis , Water/analysis , Environmental Monitoring , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL