Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Environ Sci Technol ; 58(1): 639-648, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38111142

ABSTRACT

Wildfire smoke contains PAHs that, after infiltrating indoors, accumulate on indoor materials through particle deposition and partitioning from air. We report the magnitude and persistence of select surface associated PAHs on three common indoor materials: glass, cotton, and mechanical air filter media. Materials were loaded with PAHs through both spiking with standards and exposure to a wildfire smoke proxy. Loaded materials were aged indoors over ∼4 months to determine PAH persistence. For materials spiked with standards, total PAH decay rates were 0.010 ± 0.002, 0.025 ± 0.005, and 0.051 ± 0.009 day-1, for mechanical air filter media, glass, and cotton, respectively. PAH decay on smoke-exposed samples is consistent with that predicated by decay constants from spiked materials. Decay curves of smoke loaded samples show that PAH surface concentrations are elevated above background for ∼40 days after the smoke clears. Cleaning processes efficiently remove PAHs, with reductions of 71% and 62% after cleaning smoke-exposed glass with ethanol and a commercial cleaner, respectively. Laundering smoke-exposed cotton in a washing machine and heated drying removed 48% of PAHs. An exposure assessment indicates that both inhalation and dermal PAH exposure pathways may be relevant following wildfire smoke events.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Polycyclic Aromatic Hydrocarbons , Wildfires , Smoke/analysis , Air Pollution, Indoor/analysis , Air Pollutants/analysis , Environmental Monitoring
2.
Risk Anal ; 2023 Nov 12.
Article in English | MEDLINE | ID: mdl-37953395

ABSTRACT

The smoke produced by wildfires can travel great distances and lead to respiratory and/or cardiovascular health impacts through inhalation. Individuals can reduce exposure by implementing smoke mitigation measures in their homes and beyond. In this article, we examine household level survey data (n = 543) on wildfire smoke mitigation in response to the September 2020 wildfires that occurred in the state of Oregon (and beyond). The air quality was hazardous for about 10 days in many affected regions. This study assessed the implementation of six commonly referenced approaches to reducing exposure to smoke: staying indoors; keeping doors and windows closed, turning on HVAC; using air purifiers; replacing air filters, and wearing face masks. We found high levels of implementation of staying indoors and keeping doors and windows closed; however, statistical analysis of socioeconomic demographics suggests that respondents vary in the implementation of the other measures. Income, number of exposure days, and access to information on smoke mitigation were positively associated with the implementation. Given the importance of information access for implementation for three of the measures, we also present data on how different age groups prefer to be contacted about air quality and smoke mitigation. For example, participants above 65 years of age prefer local TV as opposed to social media, whereas text messages were favored by all age groups. These survey results will help to inform the design of campaigns to engage community members differentially and potentially affect best communication practices and other assistance/preparation for smoke mitigation across demographics.

3.
Build Environ ; 2342023 Apr 15.
Article in English | MEDLINE | ID: mdl-37065504

ABSTRACT

Vegetation plays an important role in biosphere-atmosphere exchange, including emission of biogenic volatile organic compounds (BVOCs) that influence the formation of secondary pollutants. Gaps exist in our knowledge of BVOC emissions from succulent plants, which are often selected for urban greening on building roofs and walls. In this study, we characterize the CO2 uptake and BVOC emission of eight succulents and one moss using proton transfer reaction - time of flight - mass spectrometry in controlled laboratory experiments. CO2 uptake ranged 0 to 0.16 µmol [g DW (leaf dry weight)]-1 s-1 and net BVOC emission ranges -0.10 to 3.11 µg [g DW]-1 h-1. Specific BVOCs emitted or removed varied across plants studied; methanol was the dominant BVOC emitted, and acetaldehyde had the largest removal. Isoprene and monoterpene emissions of studied plants were generally low compared to other urban trees and shrubs, ranging 0 to 0.092 µg [g DW]-1 h-1 and 0 to 0.44 µg [g DW]-1 h-1, respectively. Calculated ozone formation potentials (OFP) of the succulents and moss range 4×10-7 - 4×10-4 g O3 [g DW]-1 d-1. Results of this study can inform selection of plants used in urban greening. For example, on a per leaf mass basis, Phedimus takesimensis and Crassula ovata have OFP lower than many plants presently classified as low OFP and may be promising candidates for greening in urban areas with ozone exceedances.

4.
Environ Sci Technol ; 56(6): 3354-3364, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35130699

ABSTRACT

Using real-time measurements of CO2 and volatile organic compounds (VOCs) in the air handler of an occupied middle school, we quantified source strengths for 249 VOCs and apportioned the source to the building, occupants and their activities, outdoor air, or recirculation air. For VOCs quantified in this study, there is a source to the outdoors of 8.6 ± 1.8 g/h in building exhaust air, of which 5.9 ± 1.7 g/h can be attributed to indoor sources (the building and occupants and their activities). The corresponding whole-building area emission factor from indoor sources is 1020 ± 300 µg/(m2 h), including reactive VOCs like isoprene and monoterpenes (33 ± 5.1 and 29 ± 5.7 µg/(m2 h), respectively). Per-person emission factors are calculated for compounds associated with occupants and their activities, e.g., monoterpenes are emitted at a rate of 280 ± 80 µg/(person h). The air handler included carbon scrubbing, reducing supply air concentrations of 125 compounds by 38 ± 19% (mean ± std. dev.) with a net removal of 2.4 ± 0.4 g/h of organic compounds from the building. This carbon scrubber reduces steady-state indoor concentrations of organics by 65 µg/m3 and the contribution of indoor sources of VOCs to the outdoor environment by ∼40%. These data inform the design and operation of buildings to reduce human exposure to VOCs inside buildings. These data indicate the potential for gas-phase air cleaning to improve both indoor air quality and reduce VOC emissions from buildings to the outdoor environment.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Volatile Organic Compounds , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Carbon , Environmental Monitoring , Humans , Monoterpenes , Schools
5.
Proc Biol Sci ; 288(1946): 20202908, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33715431

ABSTRACT

A central problem in evolutionary biology is to identify the forces that maintain genetic variation for fitness in natural populations. Sexual antagonism, in which selection favours different variants in males and females, can slow the transit of a polymorphism through a population or can actively maintain fitness variation. The amount of sexually antagonistic variation to be expected depends in part on the genetic architecture of sexual dimorphism, about which we know relatively little. Here, we used a multivariate quantitative genetic approach to examine the genetic architecture of sexual dimorphism in a scent-based fertilization syndrome of the moss Ceratodon purpureus. We found sexual dimorphism in numerous traits, consistent with a history of sexually antagonistic selection. The cross-sex genetic correlations (rmf) were generally heterogeneous with many values indistinguishable from zero, which typically suggests that genetic constraints do not limit the response to sexually antagonistic selection. However, we detected no differentiation between the female- and male-specific trait (co)variance matrices (Gf and Gm, respectively), meaning the evolution of sexual dimorphism may be constrained. The cross-sex cross-trait covariance matrix B contained both symmetric and asymmetric elements, indicating that the response to sexually antagonistic or sexually concordant selection, and the constraint to sexual dimorphism, are highly dependent on the traits experiencing selection. The patterns of genetic variances and covariances among these fitness components is consistent with partly sex-specific genetic architectures having evolved in order to partially resolve multivariate genetic constraints (i.e. sexual conflict), enabling the sexes to evolve towards their sex-specific multivariate trait optima.


Subject(s)
Bryopsida , Sex Characteristics , Biological Evolution , Female , Genetic Variation , Male , Phenotype , Selection, Genetic
6.
Environ Sci Technol ; 55(1): 139-148, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33301299

ABSTRACT

The human body emits a wide range of chemicals, including CO2 and isoprene. To examine the impact of cognitive tasks on human emission rates of CO2 and isoprene, we conducted an across-subject, counterbalanced study in a controlled chamber involving 16 adults. The chamber replicated an office environment. In groups of four, participants engaged in 30 min each of cognitive tasks (stressed activity) and watching nature documentaries (relaxed activity). Measured biomarkers indicated higher stress levels were achieved during the stressed activity. Per-person CO2 emission rates were greater for stressed than relaxed activity (30.3 ± 2.1 vs 27.0 ± 1.7 g/h/p, p = 0.0044, mean ± standard deviation). Isoprene emission rates were also elevated under stressed versus relaxed activity (154 ± 25 µg/h/p vs 116 ± 20 µg/h/p, p = 0.041). The chamber temperature was held constant at 26.2 ± 0.49 °C; incidental variation in temperature did not explain the variance in emission rates. Isoprene emission rates increased linearly with salivary α-amylase levels (r2 = 0.6, p = 0.02). These results imply the possibility of considering cognitive tasks when determining building ventilation rates. They also present the possibility of monitoring indicators of cognitive tasks of occupants through measurement of air quality.


Subject(s)
Carbon Dioxide , Pentanes , Butadienes , Cognition , Hemiterpenes , Humans , Plant Leaves
7.
Environ Sci Technol ; 54(19): 11798-11808, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32841011

ABSTRACT

Schools in proximity to roadways expose students to traffic-related air pollution (TRAP). We investigate impacts of air-cleaning on indoor TRAP levels and indoor chemistry in a renovated school adjacent an interstate highway. We monitor air pollutants pre- and post-renovation and quantify efficiency of particle (MERV8 and 16 filters) and gas (functionalized activated carbon) air-cleaning. Time-resolved measurements show air-cleaning systems are effective, with in situ particle removal efficiency >94% across 10 nm to 10 µm. Activated carbon removed BTEX and NO2 with variability in removal efficiency. Over eight months of monitoring, NO2 removal efficiency was 96% initially and decreased to 61%; and BTEX removal efficiency was >80% or increased to >80%. Air-cleaning reduced indoor TRAP to below or near urban background. Air-cleaning systems suppressed indoor chemistry by reducing indoor levels of oxidants (NO2, O3) and reactive organics of indoor origin. When the air cleaning system was inactive, our data show that indoor SOA formation within the school was elevated. Loss rates of NO2 and O3 through the air-cleaning system were ∼1.5-2.4 h-1 and ∼2.3 h-1, respectively. Air-cleaning was 83% and 69% efficient, respectively, in removing monoterpenes and isoprene. By suppressing precursors, scaling calculations show air-cleaning prevented ∼3.4 mg/h of indoor SOA formation due to indoor ozone-monoterpene chemistry. For comparison, we estimate that filtration removed ∼130 mg/h of PM0.01-0.3.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , Ozone , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Filtration , Humans , Ozone/analysis , Schools
8.
Indoor Air ; 30(5): 942-954, 2020 09.
Article in English | MEDLINE | ID: mdl-32363587

ABSTRACT

This study evaluated the interrelations between indoor and outdoor bioaerosols in a bedroom under a living condition. Two wideband integrated bioaerosol sensors were utilized to measure indoor and outdoor particulate matter (PM) and fluorescent biological airborne particles (FBAPs), which were within a size range of 0.5-20 µm. Throughout this one-month case study, the median proportion of FBAPs in PM by number was 19% (5%; the interquartile range, hereafter) and 17% (3%) for indoors and outdoors, respectively, and those by mass were 78% (12%) and 55% (9%). According to the size-resolved data, FBAPs dominated above 2 and 3.5 µm indoors and outdoors, respectively. Comparing indoor upon outdoor ratios among occupancy and window conditions, the indoor FBAPs larger than 3.16 µm were dominated by indoor sources, while non-FBAPs were mainly from outdoors. The occupant dominated the indoor source of both FBAPs and non-FBAPs. Under awake and asleep, count- and mass-based mean emission rates were 45.9 and 18.7 × 106 #/h and 5.02 and 2.83 mg/h, respectively. Based on indoor activities and local outdoor air quality in Singapore, this study recommended opening the window when awake and closing it during sleep to lower indoor bioaerosol exposure.


Subject(s)
Aerosols/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring , Air Pollution, Indoor/statistics & numerical data , Humans , Particulate Matter/analysis , Singapore
9.
Environ Sci Technol ; 53(16): 9695-9704, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31322867

ABSTRACT

Much of human exposure to nitrogen oxides (NOx) of ambient origin occurs indoors. Reactions with materials inside building envelopes are expected to influence the amount of ambient NOx that infiltrates indoors. However, envelope penetration factors for ambient NOx constituents have never been measured. Here, we develop and apply methods to measure the penetration factor and indoor loss rates for ambient NOx constituents using time-resolved measurements in an unoccupied apartment unit. Multiple test methods and parameter estimation approaches were tested, including natural and artificial indoor NOx elevation with and without accounting for indoor oxidation reactions. Twelve of 16 tests yielded successful estimates of penetration factors and indoor loss rates. The penetration factor for NO was confirmed to be ∼1 and the mean (±s.d.) NO2 penetration factor was 0.72 ± 0.06 with a mean relative uncertainty of ∼15%. The mean (±s.d.) indoor NO2 loss rate was 0.27 ± 0.12 h-1, ranging 0.06-0.47 h-1, with strong correlations with indoor relative and absolute humidity. Indoor NO loss rates were strongly correlated with the estimated ozone concentration in infiltrating air. Results suggest that envelope penetration factors and loss rates for NOx constituents can be reasonably estimated across a wide range of conditions using these approaches.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Ozone , Environmental Monitoring , Humans , Nitrogen Oxides
10.
Build Environ ; 170: 1-16, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-32055099

ABSTRACT

Carpet and rugs currently represent about half of the United States flooring market and offer many benefits as a flooring type. How carpets influence our exposure to both microorganisms and chemicals in indoor environments has important health implications but is not well understood. The goal of this manuscript is to consolidate what is known about how carpet impacts indoor chemistry and microbiology, as well as to identify the important research gaps that remain. After describing the current use of carpet indoors, questions focus on five specific areas: 1) indoor chemistry, 2) indoor microbiology, 3) resuspension and exposure, 4) current practices and future needs, and 5) sustainability. Overall, it is clear that carpet can influence our exposures to particles and volatile compounds in the indoor environment by acting as a direct source, as a reservoir of environmental contaminants, and as a surface supporting chemical and biological transformations. However, the health implications of these processes are not well known, nor how cleaning practices could be optimized to minimize potential negative impacts. Current standards and recommendations focus largely on carpets as a primary source of chemicals and on limiting moisture that would support microbial growth. Future research should consider enhancing knowledge related to the impact of carpet in the indoor environment and how we might improve the design and maintenance of this common material to reduce our exposure to harmful contaminants while retaining the benefits to consumers.

11.
Environ Sci Technol ; 49(7): 4398-406, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25748309

ABSTRACT

We develop an ozone transport and reaction model to determine reaction probabilities and assess the importance of physical properties such as porosity, pore diameter, and material thickness on reactive uptake of ozone to five materials. The one-dimensional model accounts for molecular diffusion from bulk air to the air-material interface, reaction at the interface, and diffusive transport and reaction through material pore volumes. Material-ozone reaction probabilities that account for internal transport and internal pore area, γ(ipa), are determined by a minimization of residuals between predicted and experimentally derived ozone concentrations. Values of γ(ipa) are generally less than effective reaction probabilities (γ(eff)) determined previously, likely because of the inclusion of diffusion into substrates and reaction with internal surface area (rather than the use of the horizontally projected external material areas). Estimates of γ(ipa) average 1 × 10(-7), 2 × 10(-7), 4 × 10(-5), 2 × 10(-5), and 4 × 10(-7) for two types of cellulose paper, pervious pavement, Portland cement concrete, and an activated carbon cloth, respectively. The transport and reaction model developed here accounts for observed differences in ozone removal to varying thicknesses of the cellulose paper, and estimates a near constant γ(ipa) as material thickness increases from 0.02 to 0.16 cm.


Subject(s)
Models, Theoretical , Ozone/chemistry , Cellulose , Charcoal , Diffusion , Paper , Porosity
12.
Environ Sci Technol ; 48(7): 3682-90, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24568620

ABSTRACT

Models of reactive uptake of ozone in indoor environments generally describe materials through aerial (horizontal) projections of surface area, a potentially limiting assumption for porous materials. We investigated the effect of changing porosity/pore size, material thickness, and chamber fluid mechanic conditions on the reactive uptake of ozone to five materials: two cellulose filter papers, two cementitious materials, and an activated carbon cloth. Results include (1) material porosity and pore size distributions, (2) effective diffusion coefficients for ozone in materials, and (3) material-ozone deposition velocities and reaction probabilities. At small length scales (0.02-0.16 cm) increasing thickness caused increases in estimated reaction probabilities from 1 × 10(-6) to 5 × 10(-6) for one type of filter paper and from 1 × 10(-6) to 1 × 10(-5) for a second type of filter paper, an effect not observed for materials tested at larger thicknesses. For high porosity materials, increasing chamber transport-limited deposition velocities resulted in increases in reaction probabilities by factors of 1.4-2.0. The impact of physical properties and transport effects on values of the Thiele modulus, ranging across all materials from 0.03 to 13, is discussed in terms of the challenges in estimating reaction probabilities to porous materials in scenarios relevant to indoor environments.


Subject(s)
Cellulose/chemistry , Manufactured Materials , Ozone/isolation & purification , Physical Phenomena , Charcoal/chemistry , Construction Materials , Diffusion , Mercury/analysis , Micropore Filters , Models, Theoretical , Paper , Porosity , Rheology
13.
Pollutants ; 4(1): 26-41, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38356641

ABSTRACT

Increasingly large and frequent wildfires affect air quality even indoors by emitting and dispersing fine/ultrafine particulate matter known to pose health risks to residents. With this health threat, we are working to help the building science community develop simplified tools that may be used to estimate impacts to large numbers of homes based on high-level housing characteristics. In addition to reviewing literature sources, we performed an experiment to evaluate interventions to mitigate degraded indoor air quality. We instrumented one residence for one week during an extreme wildfire event in the Pacific Northwest. Outdoor ambient concentrations of PM2.5 reached historic levels, sustained at over 200 µg/m3 for multiple days. Outdoor and indoor PM2.5 were monitored, and data regarding building characteristics, infiltration, and mechanical system operation were gathered to be consistent with the type of information commonly known for residential energy models. Two conditions were studied: a high-capture minimum efficiency rated value (MERV 13) filter integrated into a central forced air (CFA) system, and a CFA with MERV 13 filtration operating with a portable air cleaner (PAC). With intermittent CFA operation and no PAC, indoor corrected concentrations of PM2.5 reached 280 µg/m3, and indoor/outdoor (I/O) ratios reached a mean of 0.55. The measured I/O ratio was reduced to a mean of 0.22 when both intermittent CFA and the PAC were in operation. Data gathered from the test home were used in a modeling exercise to assess expected I/O ratios from both interventions. The mean modeled I/O ratio for the CFA with an MERV 13 filter was 0.48, and 0.28 when the PAC was added. The model overpredicted the MERV 13 performance and underpredicted the CFA with an MERV 13 filter plus a PAC, though both conditions were predicted within 0.15 standard deviation. The results illustrate the ways that models can be used to estimate indoor PM2.5 concentrations in residences during extreme wildfire smoke events.

14.
Am J Public Health ; 103(4): e67-72, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23409891

ABSTRACT

Exposure to indoor air pollution (IAP) from the burning of solid fuels for cooking, heating, and lighting accounts for a significant portion of the global burden of death and disease, and disproportionately affects women and children in developing regions. Clean cookstove campaigns recently received more attention and investment, but their successes might hinge on greater integration of the public health community with a variety of other disciplines. To help guide public health research in alleviating this important global environmental health burden, we synthesized previous research on IAP in developing countries, summarized successes and challenges of previous cookstove implementation programs, and provided key research and implementation needs from structured discussions at a recent symposium.


Subject(s)
Air Pollution, Indoor/prevention & control , Cooking/instrumentation , Developing Countries , Global Health , Health Promotion/organization & administration , Inhalation Exposure/adverse effects , Public Health , Air Pollution, Indoor/analysis , Female , Heating/instrumentation , Humans , Lighting/instrumentation , Male , Respiratory Tract Diseases/etiology
15.
ACS Omega ; 8(23): 20634-20641, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37332781

ABSTRACT

Wildfire smoke penetrates indoors, and polycyclic aromatic hydrocarbons (PAHs) in smoke may accumulate on indoor materials. We developed two approaches for measuring PAHs on common indoor materials: (1) solvent-soaked wiping of solid materials (glass and drywall) and (2) direct extraction of porous/fleecy materials (mechanical air filter media and cotton sheets). Samples are extracted by sonication in dichloromethane and analyzed with gas chromatography-mass spectrometry. Extraction recoveries range from 50-83% for surrogate standards and for PAHs recovered from direct application to isopropanol-soaked wipes, in line with prior studies. We evaluate our methods with a total recovery metric, defined as the sampling and extraction recovery of PAHs from a test material spiked with known PAH mass. Total recovery is higher for "heavy" PAHs (HPAHs, 4 or more aromatic rings) than for "light" PAHs (LPAHs, 2-3 aromatic rings). For glass, the total recovery range is 44-77% for HPAHs and 0-30% for LPAHs. Total recoveries from painted drywall are <20% for all PAHs tested. For filter media and cotton, total recoveries of HPAHs are 37-67 and 19-57%, respectively. These data show acceptable HPAH total recovery on glass, cotton, and filter media; total recovery of LPAHs may be unacceptably low for indoor materials using methods developed here. Our data also indicate that extraction recovery of surrogate standards may overestimate the total recovery of PAHs from glass using solvent wipe sampling. The developed method enables future studies of accumulation of PAHs indoors, including potential longer-term exposure derived from contaminated indoor surfaces.

16.
J Expo Sci Environ Epidemiol ; 33(3): 339-346, 2023 05.
Article in English | MEDLINE | ID: mdl-36424424

ABSTRACT

BACKGROUND: Several studies suggest that far-field transmission (>6 ft) explains a significant number of COVID-19 superspreading outbreaks. OBJECTIVE: Therefore, quantifying the ratio of near- and far-field exposure to emissions from a source is key to better understanding human-to-human airborne infectious disease transmission and associated risks. METHODS: In this study, we used an environmentally-controlled chamber to measure volatile organic compounds (VOCs) released from a healthy participant who consumed breath mints, which contained unique tracer compounds. Tracer measurements were made at 0.76 m (2.5 ft), 1.52 m (5 ft), 2.28 m (7.5 ft) from the participant, as well as in the exhaust plenum of the chamber. RESULTS: We observed that 0.76 m (2.5 ft) trials had ~36-44% higher concentrations than other distances during the first 20 minutes of experiments, highlighting the importance of the near-field exposure relative to the far-field before virus-laden respiratory aerosol plumes are continuously mixed into the far-field. However, for the conditions studied, the concentrations of human-sourced tracers after 20 minutes and approaching the end of the 60-minute trials at 0.76 m, 1.52 m, and 2.28 m were only ~18%, ~11%, and ~7.5% higher than volume-averaged concentrations, respectively. SIGNIFICANCE: This study suggests that for rooms with similar airflow parameters disease transmission risk is dominated by near-field exposures for shorter event durations (e.g., initial 20-25-minutes of event) whereas far-field exposures are critical throughout the entire event and are increasingly more important for longer event durations. IMPACT STATEMENT: We offer a novel methodology for studying the fate and transport of airborne bioaerosols in indoor spaces using VOCs as unique proxies for bioaerosols. We provide evidence that real-time measurement of VOCs can be applied in settings with human subjects to estimate the concentration of bioaerosol at different distances from the emitter. We also improve upon the conventional assumption that a well-mixed room exhibits instantaneous and perfect mixing by addressing spatial distances and mixing over time. We quantitatively assessed the exposure levels to breath tracers at alternate distances and provided more insights into the changes on "near-field to far-field" ratios over time. This method can be used in future to estimate the benefits of alternate environmental conditions and occupant behaviors.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Disease Transmission, Infectious , Air Pollutants/analysis , Breath Tests , Volatile Organic Compounds , Aerosols
17.
Environ Sci Technol ; 46(2): 929-36, 2012 Jan 17.
Article in English | MEDLINE | ID: mdl-22146069

ABSTRACT

Much of human exposure to ambient ozone and ozone reaction byproducts occurs inside buildings. However, there are currently no experimental data on the ability of ozone to penetrate through building envelopes and into residences. This paper presents a method to determine the penetration factor for ozone in buildings, and applies it in an unoccupied test house and seven single-family residences. The mean (±SD) ozone penetration factor was measured as 0.79 ± 0.13 in the eight homes using this method, ranging from 0.62 ± 0.09 to 1.02 ± 0.15. An analysis of tests across the homes revealed that ozone penetration was significantly higher in homes with more painted wood envelope materials, homes with larger air leakage exponents from fan pressurization tests, and older homes. The test method utilizes a large calibrated fan to elevate air exchange rates and steady-state indoor ozone concentrations to levels that can be accurately measured, so there is a potential for overpredicting ozone penetration factors. However, evidence suggests that this bias is likely small in most of the homes, and, even if a bias exists, the measured ozone penetration factors were lower than the usual assumption of unity in seven of the eight tested homes.


Subject(s)
Air Pollutants/chemistry , Air Pollution, Indoor/analysis , Environmental Monitoring , Housing , Ozone/chemistry , Air Movements
18.
Res Sq ; 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35291299

ABSTRACT

Several studies suggest that far-field transmission (> 6 ft) explains the significant number of COVID-19 superspreading outbreaks. Therefore, quantitative evaluation of near- and far-field exposure to emissions from a source is key to better understanding human-to-human airborne infectious disease transmission and associated risks. In this study, we used an environmentally-controlled chamber to measure volatile organic compounds (VOCs) released from a healthy participant who consumed breath mints, which contained unique tracer compounds. Tracer measurements were made at 2.5 ft, 5 ft, 7.5 ft from the participant, as well as in the exhaust plenum of the chamber. We observed that 2.5 ft trials had substantially (~36-44%) higher concentrations than other distances during the first 20 minutes of experiments, highlighting the importance of the near-field relative to the far-field before virus-laden respiratory aerosol plumes are continuously mixed into the far-field. However, for the conditions studied, the concentrations of human-sourced tracers after 20 minutes and approaching the end of the 60-minute trials at 2.5 ft, 5 ft, and 7.5 ft were only ~18%, ~11%, and ~7.5% higher than volume-averaged concentrations, respectively. Our findings highlight the importance of far-field transmission of airborne pathogens including SARS-CoV-2, which need to be considered in public health decision making.

19.
Appl Plant Sci ; 10(2): e11468, 2022.
Article in English | MEDLINE | ID: mdl-35495197

ABSTRACT

Mosses inhabit nearly all terrestrial ecosystems and engage in important interactions with nitrogen-fixing microbes, sperm-dispersing arthropods, and other plants. It is hypothesized that these interactions could be mediated by biogenic volatile organic compounds (BVOCs). Moss BVOCs may play fundamental roles in influencing local ecologies, such as biosphere-atmosphere-hydrosphere communications, physiological and evolutionary dynamics, plant-microbe interactions, and gametophyte stress physiology. Further progress in quantifying the composition, magnitude, and variability of moss BVOC emissions, and their response to environmental drivers and metabolic requirements, is limited by methodological and analytical challenges. We review several sampling techniques with various analytical approaches and describe best practices in generating moss gametophyte BVOC measures. We emphasize the importance of characterizing the composition and magnitude of moss BVOC emissions across a variety of species to better inform and stimulate important cross-disciplinary studies. We conclude by highlighting how current methods could be employed, as well as best practices for choosing methodologies.

20.
Environ Sci Process Impacts ; 21(8): 1255-1267, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-30938389

ABSTRACT

Building insulation materials can affect indoor air by (i) releasing primary volatile organic compounds (VOCs) from building enclosure cavities to the interior space, (ii) mitigating exposure to outdoor pollutants through reactive deposition (of oxidants, e.g., ozone) or filtration (of particles) in infiltration air, and (iii) generating secondary VOCs and other gas-phase byproducts resulting from oxidant reactions. This study reports primary VOC emission fluxes, ozone (O3) reaction probabilities (γ), and O3 reaction byproduct yields for eight common, commercially available insulation materials. Fluxes of primary VOCs from the materials, measured in a continuous flow reactor using proton transfer reaction-time of flight-mass spectrometry, ranged from 3 (polystyrene with thermal backing) to 61 (cellulose) µmol m-2 h-1 (with total VOC mass emission rates estimated to be between ∼0.3 and ∼3.3 mg m-2 h-1). Major primary VOC fluxes from cellulose were tentatively identified as compounds likely associated with cellulose chemical and thermal decomposition products. Ozone-material γ ranged from ∼1 × 10-6 to ∼30 × 10-6. Polystyrene with thermal backing and polyisocyanurate had the lowest γ, while cellulose and fiberglass had the highest. In the presence of O3, total observed volatile byproduct yields ranged from 0.25 (polystyrene) to 0.85 (recycled denim) moles of VOCs produced per mole of O3 consumed, or equivalent to secondary fluxes that range from 0.71 (polystyrene) to 10 (recycled denim) µmol m-2 h-1. Major emitted products in the presence of O3 were generally different from primary emissions and were characterized by yields of aldehydes and acetone. This work provides new data that can be used to evaluate and eventually model the impact of "hidden" materials (i.e., those present inside wall cavities) on indoor air quality. The data may also guide building enclosure material selection, especially for buildings in areas of high outdoor O3.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Construction Materials/analysis , Ozone/chemistry , Volatile Organic Compounds/analysis , Filtration
SELECTION OF CITATIONS
SEARCH DETAIL