ABSTRACT
Reprogramming somatic cells to induced pluripotency by Yamanaka factors is usually slow and inefficient and is thought to be a stochastic process. We identified a privileged somatic cell state, from which acquisition of pluripotency could occur in a nonstochastic manner. Subsets of murine hematopoietic progenitors are privileged whose progeny cells predominantly adopt the pluripotent fate with activation of endogenous Oct4 locus after four to five divisions in reprogramming conditions. Privileged cells display an ultrafast cell cycle of â¼8 hr. In fibroblasts, a subpopulation cycling at a similar ultrafast speed is observed after 6 days of factor expression and is increased by p53 knockdown. This ultrafast cycling population accounts for >99% of the bulk reprogramming activity in wild-type or p53 knockdown fibroblasts. Our data demonstrate that the stochastic nature of reprogramming can be overcome in a privileged somatic cell state and suggest that cell-cycle acceleration toward a critical threshold is an important bottleneck for reprogramming. PAPERCLIP:
Subject(s)
Cellular Reprogramming , Granulocyte-Macrophage Progenitor Cells/cytology , Induced Pluripotent Stem Cells , Animals , Bone Marrow Cells , Cell Differentiation , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Knockdown Techniques , Genes, p53 , Granulocyte-Macrophage Progenitor Cells/metabolism , MiceABSTRACT
ABSTRACT: Regulation of RNA polymerase II (RNAPII) activity is an essential process that governs gene expression; however, its contribution to the fundamental process of erythropoiesis remains unclear. hexamethylene bis-acetamide inducible 1 (HEXIM1) regulates RNAPII activity by controlling the location and activity of positive transcription factor ß. We identified a key role for HEXIM1 in controlling erythroid gene expression and function, with overexpression of HEXIM1 promoting erythroid proliferation and fetal globin expression. HEXIM1 regulated erythroid proliferation by enforcing RNAPII pausing at cell cycle check point genes and increasing RNAPII occupancy at genes that promote cycle progression. Genome-wide profiling of HEXIM1 revealed that it was increased at both repressed and activated genes. Surprisingly, there were also genome-wide changes in the distribution of GATA-binding factor 1 (GATA1) and RNAPII. The most dramatic changes occurred at the ß-globin loci, where there was loss of RNAPII and GATA1 at ß-globin and gain of these factors at γ-globin. This resulted in increased expression of fetal globin, and BGLT3, a long noncoding RNA in the ß-globin locus that regulates fetal globin expression. GATA1 was a key determinant of the ability of HEXIM1 to repress or activate gene expression. Genes that gained both HEXIM1 and GATA1 had increased RNAPII and increased gene expression, whereas genes that gained HEXIM1 but lost GATA1 had an increase in RNAPII pausing and decreased expression. Together, our findings reveal a central role for universal transcription machinery in regulating key aspects of erythropoiesis, including cell cycle progression and fetal gene expression, which could be exploited for therapeutic benefit.
Subject(s)
Erythropoiesis , Transcription Factors , Humans , Erythropoiesis/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation , Transcription, Genetic , beta-Globins/genetics , beta-Globins/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , GATA1 Transcription Factor/genetics , GATA1 Transcription Factor/metabolism , RNA-Binding Proteins/geneticsABSTRACT
Inherited platelet disorders (IPDs) are a heterogeneous group of conditions that present significant challenges in diagnosis and management. Here, we report two cases of patients presenting with clinically significant bleeding but with unclear etiologies by conventional clinical laboratory testing. Further evaluation, utilizing a combination of high-dimensional multiplexed mass cytometry and genetic sequencing, revealed the underlying causes of bleeding in both cases, leading to definitive diagnoses. These cases underscore the potential utility of combined multimodal approaches in evaluating patients with bleeding disorders. Moreover, these high-parameter methods can offer substantial mechanistic insights and can enhance our understanding of the molecular pathogenesis of IPDs. Future studies involving larger patient cohorts are needed to further validate this strategy, directly comparing its diagnostic yield and accuracy with current clinical laboratory testing approaches, which can ultimately improve patient care.
ABSTRACT
The World Health Organization estimates that approximately a quarter of the world's population suffers from anemia, including almost half of preschool-age children. Globally, iron deficiency anemia is the most common cause of anemia. Other important causes of anemia in children are hemoglobinopathies, infection, and other chronic diseases. Anemia is associated with increased morbidity, including neurologic complications, increased risk of low birth weight, infection, and heart failure, as well as increased mortality. When approaching a child with anemia, detailed historical information, particularly diet, environmental exposures, and family history, often yield important clues to the diagnosis. Dysmorphic features on physical examination may indicate syndromic causes of anemia. Diagnostic testing involves a stepwise approach utilizing various laboratory techniques. The increasing availability of genetic testing is providing new mechanistic insights into inherited anemias and allowing diagnosis in many previously undiagnosed cases. Population-based approaches are being taken to address nutritional anemias. Novel pharmacologic agents and advances in gene therapy-based therapeutics have the potential to ameliorate anemia-associated disease and provide treatment strategies even in the most difficult and complex cases.
Subject(s)
Anemia, Iron-Deficiency , Anemia , Nervous System Diseases , Anemia/diagnosis , Anemia/etiology , Anemia/therapy , Anemia, Iron-Deficiency/drug therapy , Child , Child, Preschool , Genetic Testing , HumansABSTRACT
Anemia of inflammation, also known as anemia of chronic disease, is refractory to erythropoietin (EPO) treatment, but the mechanisms underlying the EPO refractory state are unclear. Here, we demonstrate that high mobility group box-1 protein (HMGB1), a damage-associated molecular pattern molecule recently implicated in anemia development during sepsis, leads to reduced expansion and increased death of EPO-sensitive erythroid precursors in human models of erythropoiesis. HMGB1 significantly attenuates EPO-mediated phosphorylation of the Janus kinase 2/STAT5 and mTOR signaling pathways. Genetic ablation of receptor for advanced glycation end products, the only known HMGB1 receptor expressed by erythroid precursors, does not rescue the deleterious effects of HMGB1 on EPO signaling, either in human or murine precursors. Furthermore, surface plasmon resonance studies highlight the ability of HMGB1 to interfere with the binding between EPO and the EPOR. Administration of a monoclonal anti-HMGB1 antibody after sepsis onset in mice partially restores EPO signaling in vivo. Thus, HMGB1-mediated restriction of EPO signaling contributes to the chronic phase of anemia of inflammation.
Subject(s)
Anemia , Erythropoietin , HMGB1 Protein , Sepsis , Anemia/genetics , Animals , Erythropoiesis/genetics , Erythropoietin/metabolism , Inflammation , Mice , Receptors, Erythropoietin/metabolism , Sepsis/complicationsABSTRACT
INTRODUCTION: Joint bleeds are a common and frequent complication associated with hemophilia, increasing the risk of hemophilic arthropathy. It is important to define and characterize the presence of joint complications in mild hemophilia to develop strategies to mitigate disease burden. AIMS: To characterize the prevalence, clinical characteristics of joint bleeds, and risk factors that may lead to hemarthrosis in people with mild hemophilia. METHODS: Following Institutional Review Board approval, a retrospective chart review was conducted for patients with mild hemophilia seen at the Yale Hemophilia Treatment Center or Classical Hematology Program. RESULTS: The medical records of 70 patients were reviewed. Eighty one percent were male and 19 percent were female. Twenty individuals with mild hemophilia had a history of joint bleeding, 13 were traumatic bleeds, 7 were spontaneous. The age of first joint bleed ranged from 4 to 58 years old, with an average age of 20.8-years old. Ten patients developed joint bleeds between the ages of 10 and 20 years old. The most common locations of joint bleeding were the knee (n = 11) and ankle (n = 7). Eight of 70 patients had hepatitis C (HCV), 6 experienced joint bleeding. CONCLUSIONS: In this study, almost one third of patients with mild hemophilia experienced joint bleeding, often without history of trauma. Joint range of motion was abnormal in more than a third of the patients with mild hemophilia regardless. These data highlight the need for ongoing evaluation and characterization of joint health in individuals with mild hemophilia. HIGHLIGHTS: Twenty-nine percent of individuals with mild hemophilia had history of joint bleed. PwH and mild diseases with previous or current hepatitis C had higher likelihood of joint bleeding. Approximately 15% of PwH and mild diseases had abnormal joint examinations without a confirmed history of joint bleeding.
Subject(s)
Hemophilia A , Hepatitis C , Humans , Male , Female , Child , Adolescent , Young Adult , Adult , Child, Preschool , Middle Aged , Hemophilia A/complications , Hemarthrosis/complications , Retrospective Studies , Prevalence , Hepatitis C/complicationsABSTRACT
Human erythropoiesis is a complex process leading to the production of 2.5 million red blood cells per second. Following commitment of hematopoietic stem cells to the erythroid lineage, this process can be divided into three distinct stages: erythroid progenitor differentiation, terminal erythropoiesis, and reticulocyte maturation. We recently resolved the heterogeneity of erythroid progenitors into four different subpopulations termed EP1-EP4. Here, we characterized the growth factor(s) responsiveness of these four progenitor populations in terms of proliferation and differentiation. Using mass spectrometry-based proteomics on sorted erythroid progenitors, we quantified the absolute expression of ~5500 proteins from EP1 to EP4. Further functional analyses highlighted dynamic changes in cell cycle in these populations with an acceleration of the cell cycle during erythroid progenitor differentiation. The finding that E2F4 expression was increased from EP1 to EP4 is consistent with the noted changes in cell cycle. Finally, our proteomic data suggest that the protein machinery necessary for both oxidative phosphorylation and glycolysis is present in these progenitor cells. Together, our data provide comprehensive insights into growth factor-dependence of erythroid progenitor proliferation and the proteome of four distinct populations of human erythroid progenitors which will be a useful framework for the study of erythroid disorders.
Subject(s)
Hematopoietic Stem Cells , Proteomics , Humans , Cell Differentiation , Cell Cycle , Erythropoiesis , Metabolic Networks and Pathways , Intercellular Signaling Peptides and Proteins/metabolism , Erythroid Precursor CellsABSTRACT
Modulation of intracellular chloride concentration ([Cl(-)](i)) plays a fundamental role in cell volume regulation and neuronal response to GABA. Cl(-) exit via K-Cl cotransporters (KCCs) is a major determinant of [Cl(-)](I); however, mechanisms governing KCC activities are poorly understood. We identified two sites in KCC3 that are rapidly dephosphorylated in hypotonic conditions in cultured cells and human red blood cells in parallel with increased transport activity. Alanine substitutions at these sites result in constitutively active cotransport. These sites are highly phosphorylated in plasma membrane KCC3 in isotonic conditions, suggesting that dephosphorylation increases KCC3's intrinsic transport activity. Reduction of WNK1 expression via RNA interference reduces phosphorylation at these sites. Homologous sites are phosphorylated in all human KCCs. KCC2 is partially phosphorylated in neonatal mouse brain and dephosphorylated in parallel with KCC2 activation. These findings provide insight into regulation of [Cl(-)](i) and have implications for control of cell volume and neuronal function.
Subject(s)
Symporters/chemistry , Symporters/metabolism , Amino Acid Sequence , Amino Acid Substitution , Animals , Humans , Mice , Molecular Sequence Data , Phosphorylation , Sequence Alignment , K Cl- CotransportersABSTRACT
BACKGROUND: Vascular smooth muscle cell (VSMC) phenotypic switching contributes to cardiovascular diseases. Epigenetic regulation is emerging as a key regulatory mechanism, with the methylcytosine dioxygenase TET2 acting as a master regulator of smooth muscle cell phenotype. The histone acetyl-transferases p300 and CREB-binding protein (CBP) are highly homologous and often considered to be interchangeable, and their roles in smooth muscle cell phenotypic regulation are not known. METHODS: We assessed the roles of p300 and CBP in human VSMC with knockdown, in inducible smooth muscle-specific knockout mice (inducible knockout [iKO]; p300iKO or CBPiKO), and in samples of human intimal hyperplasia. RESULTS: P300, CBP, and histone acetylation were differently regulated in VSMCs undergoing phenotypic switching and in vessel remodeling after vascular injury. Medial p300 expression and activity were repressed by injury, but CBP and histone acetylation were induced in neointima. Knockdown experiments revealed opposing effects of p300 and CBP in the VSMC phenotype: p300 promoted contractile protein expression and inhibited migration, but CBP inhibited contractile genes and enhanced migration. p300iKO mice exhibited severe intimal hyperplasia after arterial injury compared with controls, whereas CBPiKO mice were entirely protected. In normal aorta, p300iKO reduced, but CBPiKO enhanced, contractile protein expression and contractility compared with controls. Mechanistically, we found that these histone acetyl-transferases oppositely regulate histone acetylation, DNA hydroxymethylation, and PolII (RNA polymerase II) binding to promoters of differentiation-specific contractile genes. Our data indicate that p300 and TET2 function together, because p300 was required for TET2-dependent hydroxymethylation of contractile promoters, and TET2 was required for p300-dependent acetylation of these loci. TET2 coimmunoprecipitated with p300, and this interaction was enhanced by rapamycin but repressed by platelet-derived growth factor (PDGF) treatment, with p300 promoting TET2 protein stability. CBP did not associate with TET2, but instead facilitated recruitment of histone deacetylases (HDAC2, HDAC5) to contractile protein promoters. Furthermore, CBP inhibited TET2 mRNA levels. Immunostaining of cardiac allograft vasculopathy samples revealed that p300 expression is repressed but CBP is induced in human intimal hyperplasia. CONCLUSIONS: This work reveals that p300 and CBP serve nonredundant and opposing functions in VSMC phenotypic switching and coordinately regulate chromatin modifications through distinct functional interactions with TET2 or HDACs. Targeting specific histone acetyl-transferases may hold therapeutic promise for cardiovascular diseases.
Subject(s)
Cardiovascular Diseases , Muscle, Smooth, Vascular , p300-CBP Transcription Factors/metabolism , Acetylation , Animals , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Cardiovascular Diseases/metabolism , Chromatin Assembly and Disassembly , Contractile Proteins/metabolism , Epigenesis, Genetic , Histones/metabolism , Humans , Hyperplasia/metabolism , Mice , Mice, Knockout , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolismABSTRACT
The terminal maturation of human erythroblasts requires significant changes in gene expression in the context of dramatic nuclear condensation. Defects in this process are associated with inherited anemias and myelodysplastic syndromes. The progressively dense appearance of the condensing nucleus in maturing erythroblasts led to the assumption that heterochromatin accumulation underlies this process, but despite extensive study, the precise mechanisms underlying this essential biologic process remain elusive. To delineate the epigenetic changes associated with the terminal maturation of human erythroblasts, we performed mass spectrometry of histone posttranslational modifications combined with chromatin immunoprecipitation coupled with high-throughput sequencing, Assay for Transposase Accessible Chromatin, and RNA sequencing. Our studies revealed that the terminal maturation of human erythroblasts is associated with a dramatic decline in histone marks associated with active transcription elongation, without accumulation of heterochromatin. Chromatin structure and gene expression were instead correlated with dynamic changes in occupancy of elongation competent RNA polymerase II, suggesting that terminal erythroid maturation is controlled largely at the level of transcription. We further demonstrate that RNA polymerase II "pausing" is highly correlated with transcriptional repression, with elongation competent RNA polymerase II becoming a scare resource in late-stage erythroblasts, allocated to erythroid-specific genes. Functional studies confirmed an essential role for maturation stage-specific regulation of RNA polymerase II activity during erythroid maturation and demonstrate a critical role for HEXIM1 in the regulation of gene expression and RNA polymerase II activity in maturing erythroblasts. Taken together, our findings reveal important insights into the mechanisms that regulate terminal erythroid maturation and provide a novel paradigm for understanding normal and perturbed erythropoiesis.
Subject(s)
Erythroblasts/metabolism , Erythroid Cells/metabolism , RNA Polymerase II/metabolism , Cell Line , Chromatin/genetics , Chromatin/metabolism , Erythroblasts/cytology , Erythroid Cells/cytology , Erythropoiesis , Gene Expression Regulation, Developmental , Histones/genetics , Histones/metabolism , Humans , RNA Polymerase II/genetics , Transcription, GeneticABSTRACT
Histone deacetylases (HDACs) are a group of enzymes that catalyze the removal of acetyl groups from histone and nonhistone proteins. HDACs have been shown to have diverse functions in a wide range of biological processes. However, their roles in mammalian erythropoiesis remain to be fully defined. This study showed that, of the 11 classic HDAC family members, 6 (HDAC1, -2, -3, and HDAC5, -6, -7) are expressed in human erythroid cells, with HDAC5 most significantly upregulated during terminal erythroid differentiation. Knockdown of HDAC5 by either short hairpin RNA or small interfering RNA in human CD34+ cells followed by erythroid cell culture led to increased apoptosis, decreased chromatin condensation, and impaired enucleation of erythroblasts. Biochemical analyses revealed that HDAC5 deficiency resulted in activation of p53 in association with increased acetylation of p53. Furthermore, although acetylation of histone 4 (H4) is decreased during normal terminal erythroid differentiation, HDAC5 deficiency led to increased acetylation of H4 (K12) in late-stage erythroblasts. This increased acetylation was accompanied by decreased chromatin condensation, implying a role for H4 (K12) deacetylation in chromatin condensation. ATAC-seq and RNA sequencing analyses revealed that HDAC5 knockdown leads to increased chromatin accessibility genome-wide and global changes in gene expression. Moreover, pharmacological inhibition of HDAC5 by the inhibitor LMK235 also led to increased H4 acetylation, impaired chromatin condensation, and enucleation. Taken together, our findings have uncovered previously unrecognized roles and molecular mechanisms of action for HDAC5 in human erythropoiesis. These results may provide insights into understanding the anemia associated with HDAC inhibitor treatment.
Subject(s)
Erythroid Cells/cytology , Erythropoiesis , Histone Deacetylases/genetics , Apoptosis , Erythroblasts/cytology , Erythroblasts/metabolism , Erythroid Cells/metabolism , Humans , RNA Interference , RNA, Small Interfering/genetics , Up-RegulationABSTRACT
D-bifunctional protein (DBP) deficiency is a rare, autosomal recessive peroxisomal enzyme deficiency resulting in a high burden of morbidity and early mortality. Patients with DBP deficiency resemble those with a severe Zellweger phenotype, with neonatal hypotonia, seizures, craniofacial dysmorphisms, psychomotor delay, deafness, blindness, and death typically within the first 2 years of life, although patients with residual enzyme function can survive longer. The clinical severity of the disease depends on the degree of enzyme deficiency. Loss-of-function variants typically result in no residual enzyme activity; however, splice variants may result in protein with residual function. We describe a full-term newborn presenting with hypotonia, seizures, and unexplained hypoglycemia, who was later found to have rickets at follow up. Rapid whole genome sequencing identified two HSD17B4 variants in trans; one likely pathogenic variant and one variant of uncertain significance (VUS) located in the polypyrimidine tract of intron 13. To determine the functional consequence of the VUS, we analyzed RNA from the patient's father with RNA-seq which showed skipping of Exon 14, resulting in a frameshift mutation three amino acids from the new reading frame. This RNA-seq analysis was correlated with virtually absent enzyme activity, elevated very-long-chain fatty acids in fibroblasts, and a clinically severe phenotype. Both variants are reclassified as pathogenic. Due to the clinical spectrum of DBP deficiency, this provides important prognostic information, including early mortality. Furthermore, we add persistent hypoglycemia to the clinical spectrum of the disease, and advocate for the early management of fat-soluble vitamin deficiencies to reduce complications.
Subject(s)
Hearing Loss, Sensorineural , Hypoglycemia , Protein Deficiency , Exons , Hearing Loss, Sensorineural/genetics , Humans , Hypoglycemia/genetics , Infant, Newborn , Peroxisomal Multifunctional Protein-2/genetics , Protein Deficiency/geneticsABSTRACT
The erythroblastic island (EBI), composed of a central macrophage and surrounding erythroid cells, was the first hematopoietic niche discovered. The identity of EBI macrophages has thus far remained elusive. Given that Epo is essential for erythropoiesis and that Epor is expressed in numerous nonerythroid cells, we hypothesized that EBI macrophages express Epor so that Epo can act on both erythroid cells and EBI macrophages simultaneously to ensure efficient erythropoiesis. To test this notion, we used Epor-eGFPcre knockin mouse model. We show that in bone marrow (BM) and fetal liver, a subset of macrophages express Epor-eGFP. Imaging flow cytometry analyses revealed that >90% of native EBIs comprised F4/80+Epor-eGFP+ macrophages. Human fetal liver EBIs also comprised EPOR+ macrophages. Gene expression profiles of BM F4/80+Epor-eGFP+ macrophages suggest a specialized function in supporting erythropoiesis. Molecules known to be important for EBI macrophage function such as Vcam1, CD169, Mertk, and Dnase2α were highly expressed in F4/80+Epor-eGFP+ macrophages compared with F4/80+Epor-eGFP- macrophages. Key molecules involved in iron recycling were also highly expressed in BM F4/80+Epor-eGFP+ macrophages, suggesting that EBI macrophages may provide an iron source for erythropoiesis within this niche. Thus, we have characterized EBI macrophages in mouse and man. Our findings provide important resources for future studies of EBI macrophage function during normal as well as disordered erythropoiesis in hematologic diseases such as thalassemia, polycythemia vera, and myelodysplastic syndromes.
Subject(s)
Erythroblasts/metabolism , Gene Expression Profiling , Macrophages/metabolism , Transcriptome , Animals , Biomarkers , Computational Biology/methods , Erythropoiesis/genetics , Gene Expression , Humans , Immunophenotyping , Mice , Monocytes/metabolism , Receptors, Erythropoietin/genetics , Receptors, Erythropoietin/metabolism , Stem Cell Niche/genetics , Stress, PhysiologicalABSTRACT
Identification of stage-specific erythroid cells is critical for studies of normal and disordered human erythropoiesis. While immunophenotypic strategies have previously been developed to identify cells at each stage of terminal erythroid differentiation, erythroid progenitors are currently defined very broadly. Refined strategies to identify and characterize BFU-E and CFU-E subsets are critically needed. To address this unmet need, a flow cytometry-based technique was developed that combines the established surface markers CD34 and CD36 with CD117, CD71, and CD105. This combination allowed for the separation of erythroid progenitor cells into four discrete populations along a continuum of progressive maturation, with increasing cell size and decreasing nuclear/cytoplasmic ratio, proliferative capacity and stem cell factor responsiveness. This strategy was validated in uncultured, primary erythroid cells isolated from bone marrow of healthy individuals. Functional colony assays of these progenitor populations revealed enrichment of BFU-E only in the earliest population, transitioning to cells yielding BFU-E and CFU-E, then CFU-E only. Utilizing CD34/CD105 and GPA/CD105 profiles, all four progenitor stages and all five stages of terminal erythroid differentiation could be identified. Applying this immunophenotyping strategy to primary bone marrow cells from patients with myelodysplastic syndrome, identified defects in erythroid progenitors and in terminal erythroid differentiation. This novel immunophenotyping technique will be a valuable tool for studies of normal and perturbed human erythropoiesis. It will allow for the discovery of stage-specific molecular and functional insights into normal erythropoiesis as well as for identification and characterization of stage-specific defects in inherited and acquired disorders of erythropoiesis.
Subject(s)
Erythroid Cells/cytology , Erythroid Precursor Cells/cytology , Erythropoiesis , Antigens, CD/analysis , Antigens, CD34/analysis , Bone Marrow Cells/cytology , Cells, Cultured , Endoglin/analysis , Flow Cytometry/methods , Humans , Immunophenotyping/methodsABSTRACT
Methemoglobinemia is a rare disorder associated with oxidization of divalent ferro-iron of hemoglobin (Hb) to ferri-iron of methemoglobin (MetHb). Methemoglobinemia can result from either inherited or acquired processes. Acquired forms are the most common, mainly due to the exposure to substances that cause oxidation of the Hb both directly or indirectly. Inherited forms are due either to autosomal recessive variants in the CYB5R3 gene or to autosomal dominant variants in the globin genes, collectively known as HbM disease. Our recommendations are based on a systematic literature search. A series of questions regarding the key signs and symptoms, the methods for diagnosis, the clinical management in neonatal/childhood/adulthood period, and the therapeutic approach of methemoglobinemia were formulated and the relative recommendations were produced. An agreement was obtained using a Delphi-like approach and the experts panel reached a final consensus >75% of agreement for all the questions.
Subject(s)
Methemoglobinemia/diagnosis , Methemoglobinemia/therapy , Consensus , Diagnosis, Differential , Disease Management , Humans , Methemoglobinemia/physiopathologyABSTRACT
An international, multicenter registry was established to collect retrospective and prospective clinical data on patients with pyruvate kinase (PK) deficiency, the most common glycolytic defect causing congenital nonspherocytic hemolytic anemia. Medical history and laboratory and radiologic data were retrospectively collected at enrollment for 254 patients with molecularly confirmed PK deficiency. Perinatal complications were common, including anemia that required transfusions, hyperbilirubinemia, hydrops, and prematurity. Nearly all newborns were treated with phototherapy (93%), and many were treated with exchange transfusions (46%). Children age 5 years and younger were often transfused until splenectomy. Splenectomy (150 [59%] of 254 patients) was associated with a median increase in hemoglobin of 1.6 g/dL and a decreased transfusion burden in 90% of patients. Predictors of a response to splenectomy included higher presplenectomy hemoglobin (P = .007), lower indirect bilirubin (P = .005), and missense PKLR mutations (P = .0017). Postsplenectomy thrombosis was reported in 11% of patients. The most frequent complications included iron overload (48%) and gallstones (45%), but other complications such as aplastic crises, osteopenia/bone fragility, extramedullary hematopoiesis, postsplenectomy sepsis, pulmonary hypertension, and leg ulcers were not uncommon. Overall, 87 (34%) of 254 patients had both a splenectomy and cholecystectomy. In those who had a splenectomy without simultaneous cholecystectomy, 48% later required a cholecystectomy. Although the risk of complications increases with severity of anemia and a genotype-phenotype relationship was observed, complications were common in all patients with PK deficiency. Diagnostic testing for PK deficiency should be considered in patients with apparent congenital hemolytic anemia and close monitoring for iron overload, gallstones, and other complications is needed regardless of baseline hemoglobin. This trial was registered at www.clinicaltrials.gov as #NCT02053480.
Subject(s)
Anemia, Hemolytic, Congenital Nonspherocytic/diagnosis , Genetic Association Studies , Pyruvate Kinase/deficiency , Pyruvate Metabolism, Inborn Errors/diagnosis , Adolescent , Adult , Anemia, Hemolytic, Congenital Nonspherocytic/etiology , Anemia, Hemolytic, Congenital Nonspherocytic/metabolism , Anemia, Hemolytic, Congenital Nonspherocytic/therapy , Blood Transfusion , Child , Child, Preschool , Cholecystectomy/adverse effects , Cholecystectomy/methods , Combined Modality Therapy , Enzyme Activation , Female , Genotype , Humans , Infant , Infant, Newborn , Male , Middle Aged , Mutation , Phenotype , Pyruvate Kinase/metabolism , Pyruvate Metabolism, Inborn Errors/etiology , Pyruvate Metabolism, Inborn Errors/metabolism , Pyruvate Metabolism, Inborn Errors/therapy , Splenectomy/adverse effects , Splenectomy/methods , Symptom Assessment , Treatment Outcome , Young AdultABSTRACT
Pyruvate kinase (PK) deficiency is a rare recessive congenital hemolytic anemia caused by mutations in the PKLR gene. This study reports the molecular features of 257 patients enrolled in the PKD Natural History Study. Of the 127 different pathogenic variants detected, 84 were missense and 43 non-missense, including 20 stop-gain, 11 affecting splicing, five large deletions, four in-frame indels, and three promoter variants. Within the 177 unrelated patients, 35 were homozygous and 142 compound heterozygous (77 for two missense, 48 for one missense and one non-missense, and 17 for two non-missense variants); the two most frequent mutations were p.R510Q in 23% and p.R486W in 9% of mutated alleles. Fifty-five (21%) patients were found to have at least one previously unreported variant with 45 newly described mutations. Patients with two non-missense mutations had lower hemoglobin levels, higher numbers of lifetime transfusions, and higher rates of complications including iron overload, extramedullary hematopoiesis, and pulmonary hypertension. Rare severe complications, including lower extremity ulcerations and hepatic failure, were seen more frequently in patients with non-missense mutations or with missense mutations characterized by severe protein instability. The PKLR genotype did not correlate with the frequency of complications in utero or in the newborn period. With ICCs ranging from 0.4 to 0.61, about the same degree of clinical similarity exists within siblings as it does between siblings, in terms of hemoglobin, total bilirubin, splenectomy status, and cholecystectomy status. Pregnancy outcomes were similar across genotypes in PK deficient women. This report confirms the wide genetic heterogeneity of PK deficiency.
Subject(s)
Anemia, Hemolytic, Congenital Nonspherocytic/genetics , Genetic Association Studies/methods , Pyruvate Kinase/deficiency , Pyruvate Metabolism, Inborn Errors/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Pyruvate Kinase/genetics , Young AdultABSTRACT
Follicular helper T (Tfh) cells are necessary for germinal center B cell maturation during primary immune responses; however, the T cells that promote humoral recall responses via memory B cells are less well defined. In this article, we characterize a human tonsillar CD4+ T cell subset with this function. These cells are similar to Tfh cells in terms of expression of the chemokine receptor CXCR5 and the inhibitory receptor PD-1, IL-21 secretion, and expression of the transcription factor BCL6; however, unlike Tfh cells that are located within the B cell follicle and germinal center, they reside at the border of the T cell zone and the B cell follicle in proximity to memory B cells, a position dictated by their unique chemokine receptor expression. They promote memory B cells to produce Abs via CD40L, IL-10, and IL-21. Our results reveal a unique extrafollicular CD4+ T cell subset in human tonsils, which specialize in promoting T cell-dependent humoral recall responses.
Subject(s)
Antibody Formation , B-Lymphocytes/immunology , Immunoglobulin G/immunology , Immunologic Memory , T-Lymphocytes, Helper-Inducer/immunology , Adolescent , B-Lymphocytes/cytology , Child , Child, Preschool , Cytokines/immunology , Female , Gene Expression Regulation/immunology , Humans , Male , Programmed Cell Death 1 Receptor/immunology , Proto-Oncogene Proteins c-bcl-6/immunology , Receptors, CXCR5/immunology , T-Lymphocytes, Helper-Inducer/cytologyABSTRACT
BACKGROUND: People living with sickle cell disease (SCD) are prone to red blood cell (RBC) alloimmunization. We hypothesized that subjects with alloantibodies (responders) would have differences in circulating T-follicular helper (Tfh)-like cells compared to subjects without alloantibodies (non-responders). MATERIALS AND METHODS: Peripheral blood mononuclear cells were collected from 28 subjects, including those with SCD and controls. Circulating CD4 T-cell subsets were first evaluated at baseline. CD4 T-cell subsets were also evaluated after naïve CD4 T-cells were differentiated into Tfh-like cells following in vitro culture with CD3/CD28 beads, IL-7, IL-12, and Activin A. Transfusion and alloantibody histories were extracted from the electronic medical record. RESULTS: Non-responders had a lower percentage of CD45RA negative Tmemory cells than responders or controls (p<0.05). Notably, there were no differences in circulating Tfh-like cells between any group. However, naïve CD4 T-cells from subjects with SCD were more likely to express CXCR5 after in vitro culture than cells from controls. After culture, CXCR5 expressing cells from responders were more likely to express PD1 and ICOS (16.43 %, sd. 20.23) compared to non-responders (3.69 %, s.d. 3.09) or controls (2.78 %, s.d. 2.04). DISCUSSION: The tendency for naïve CD4 T-cells from responders to differentiate into Tfh-like cells after in vitro culture may suggest these cells are prepared to assist B-cells with antibody production regardless of antigen specificity. Further studies are needed, but it is possible that these results may explain why some responders form RBC alloantibodies with multiple specificities, in addition to RBC autoantibodies and HLA alloantibodies.
Subject(s)
Anemia, Sickle Cell/immunology , Erythrocyte Transfusion/methods , T-Lymphocyte Subsets/immunology , Transfusion Medicine/methods , Adult , Female , Humans , MaleABSTRACT
Tactile-foraging ducks are specialist birds known for their touch-dependent feeding behavior. They use dabbling, straining, and filtering to find edible matter in murky water, relying on the sense of touch in their bill. Here, we present the molecular characterization of embryonic duck bill, which we show contains a high density of mechanosensory corpuscles innervated by functional rapidly adapting trigeminal afferents. In contrast to chicken, a visually foraging bird, the majority of duck trigeminal neurons are mechanoreceptors that express the Piezo2 ion channel and produce slowly inactivating mechano-current before hatching. Furthermore, duck neurons have a significantly reduced mechano-activation threshold and elevated mechano-current amplitude. Cloning and electrophysiological characterization of duck Piezo2 in a heterologous expression system shows that duck Piezo2 is functionally similar to the mouse ortholog but with prolonged inactivation kinetics, particularly at positive potentials. Knockdown of Piezo2 in duck trigeminal neurons attenuates mechano current with intermediate and slow inactivation kinetics. This suggests that Piezo2 is capable of contributing to a larger range of mechano-activated currents in duck trigeminal ganglia than in mouse trigeminal ganglia. Our results provide insights into the molecular basis of mechanotransduction in a tactile-specialist vertebrate.