Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Sensors (Basel) ; 23(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36850828

ABSTRACT

Easy-to-use evaluation of Range Of Motion (ROM) during walking is necessary to make decisions during neurological rehabilitation programs and during follow-up visits in clinical and remote settings. This study discussed goniometer applications (DrGoniometer and Angles - Video Goniometer) that measure knee joint ROM during walking through smartphone cameras. The primary aim of the study is to test the inter-rater and intra-rater reliability of the collected measurements as well as their concurrent validity with an electro-goniometer. The secondary aim is to evaluate the usability of the two mobile applications. A total of 22 patients with Parkinson's disease (18 males, age 72 (8) years), 22 post-stroke patients (17 males, age 61 (13) years), and as many healthy volunteers (8 males, age 45 (5) years) underwent knee joint ROM evaluations during walking. Clinicians and inexperienced examiners used the two mobile applications to calculate the ROM, and then rated their perceived usability through the System Usability Scale (SUS). Intraclass correlation coefficients (ICC) and correlation coefficients (corr) were calculated. Both applications showed good reliability (ICC > 0.69) and validity (corr > 0.61), and acceptable usability (SUS > 68). Smartphone-based video goniometers could be used to assess the knee ROM during walking in neurological patients, because of their acceptable degree of reliability, validity and usability.


Subject(s)
Knee Joint , Mobile Applications , Male , Humans , Aged , Middle Aged , Reproducibility of Results , Walking , Healthy Volunteers
2.
Sensors (Basel) ; 22(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36080851

ABSTRACT

There is a need for unobtrusive and valid tools to collect gait parameters in patients with Parkinson's disease (PD). The novel promising tools are pressure-sensing insoles connected to a smartphone app; however, few studies investigated their measurement properties during simple or challenging conditions in PD patients. This study aimed to examine the validity and reliability of gait parameters computed by pressure-sensing insoles (FeetMe® insoles, Paris, France). Twenty-five PD patients (21 males, mean age: 69 (7) years) completed two walking assessment sessions. In each session, participants walked on an electronic pressure-sensitive walkway (GaitRite®, CIR System Inc., Franklin, NJ, USA) without other additional instructions (i.e., single-task condition) and while performing a concurrent cognitive task (i.e., dual-task condition). Spatiotemporal gait parameters were measured simultaneously using the pressure-sensing insoles and the electronic walkway. Concurrent validity was assessed by correlation coefficients and Bland-Altman methodology. Test-retest reliability was examined by intraclass correlation coefficients (ICC) and minimal detectable changes (MDC). The validity results showed moderate to excellent correlations and good agreement between the two systems. Concerning test-retest reliability, moderate-to-excellent ICC values and acceptable MDC demonstrated the repeatability of the measured gait parameters. Our findings support the use of these insoles as complementary instruments to conventional tools during single and dual-task conditions.


Subject(s)
Parkinson Disease , Aged , Cognition , Female , Gait , Humans , Male , Middle Aged , Reproducibility of Results , Walking
3.
Front Neurol ; 15: 1329044, 2024.
Article in English | MEDLINE | ID: mdl-38562428

ABSTRACT

Introduction: Understanding the residual recovery potential in stroke patients is crucial for tailoring effective neurorehabilitation programs. We propose using EEG and plasmatic Neurofilament light chain (NfL) levels as a model to depict longitudinal patterns of stroke recovery. Methods: We enrolled 13 patients (4 female, mean age 74.7 ± 8.8) who underwent stroke in the previous month and were hospitalized for 2-months rehabilitation. Patients underwent blood withdrawal, clinical evaluation and high-definition EEG at T1 (first week of rehabilitation) and at T2 (53 ± 10 days after). We assessed the levels of NfL and we analyzed the EEG signal extracting Spectral Exponent (SE) values. We compared our variables between the two timepoint and between cortical and non-cortical strokes. Results: We found a significant difference in the symmetry of SE values between cortical and non-cortical stroke at both T1 (p = 0.005) and T2 (p = 0.01). SE in the affected hemisphere showed significantly steeper values at T1 when compared with T2 (p = 0.001). EEG measures were consistently related to clinical scores, while NfL at T1 was related to the volume of ischemic lesions (r = 0.75; p = 0.003). Additionally, the combined use of NfL and SE indicated varying trends in longitudinal clinical recovery. Conclusion: We present proof of concept of a promising approach for the characterization of different recovery patterns in stroke patients.

4.
Front Neurol ; 14: 1093690, 2023.
Article in English | MEDLINE | ID: mdl-36846115

ABSTRACT

Introduction: Since the uptake of digitizers, quantitative spiral drawing assessment allowed gaining insight into motor impairments related to Parkinson's disease. However, the reduced naturalness of the gesture and the poor user-friendliness of the data acquisition hamper the adoption of such technologies in the clinical practice. To overcome such limitations, we present a novel smart ink pen for spiral drawing assessment, intending to better characterize Parkinson's disease motor symptoms. The device, used on paper as a normal pen, is enriched with motion and force sensors. Methods: Forty-five indicators were computed from spirals acquired from 29 Parkinsonian patients and 29 age-matched controls. We investigated between-group differences and correlations with clinical scores. We applied machine learning classification models to test the indicators ability to discriminate between groups, with a focus on model interpretability. Results: Compared to control, patients' drawings were characterized by reduced fluency and lower but more variable applied force, while tremor occurrence was reflected in kinematic spectral peaks selectively concentrated in the 4-7 Hz band. The indicators revealed aspects of the disease not captured by simple trace inspection, nor by the clinical scales, which, indeed, correlate moderately. The classification achieved 94.38% accuracy, with indicators related to fluency and power distribution emerging as the most important. Conclusion: Indicators were able to significantly identify Parkinson's disease motor symptoms. Our findings support the introduction of the smart ink pen as a time-efficient tool to juxtapose the clinical assessment with quantitative information, without changing the way the classical examination is performed.

5.
Eur J Phys Rehabil Med ; 58(3): 363-377, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34985239

ABSTRACT

INTRODUCTION: Electronic pressure-sensitive walkways are commonly available solutions to quantitatively assess gait parameters for clinical and research purposes. Many studies have evaluated their measurement properties in different conditions with variable findings. In order to be informed about the current evidence of their reliability for optimal clinical and scientific decision making, this systematic review provided a quantitative synthesis of the test-retest reliability and minimal detectable change of the captured gait parameters across different test conditions (single and cognitive dual-task conditions) and population groups. EVIDENCE ACQUISITION: A literature search was conducted in PubMed, Embase, and Scopus until November 2021 to identify articles that examined the test-retest reliability properties of the gait parameters captured by pressure-sensitive walkways (gait speed, cadence, stride length and time, double support time, base of support) in adult healthy individuals or patients. The methodological quality was rated using the Consensus-Based Standards for the Selection of Health Measurement Instruments Checklist. Data were meta-analyzed on intraclass correlation coefficient to examine the test-retest relative reliability. Quantitative synthesis was performed for absolute reliability, examined by the weighted average of minimal detectable change values. EVIDENCE SYNTHESIS: A total of 44 studies were included in this systematic review. The methodological quality was adequate in half of the included studies. The main finding was that pressure-sensitive walkways are reliable tools for objective assessment of spatial and temporal gait parameters both in single-and cognitive dual-task conditions. Despite few exceptions, the review identified intraclass correlation coefficient higher than 0.75 and minimal detectable change lower than 30%, demonstrating satisfactory relative and absolute reliability in all examined populations (healthy adults, elderly, patients with cognitive impairment, spinocerebellar ataxia type 14, Huntington's disease, multiple sclerosis, Parkinson's disease, rheumatoid arthritis, spinal cord injury, stroke or vestibular dysfunction). CONCLUSIONS: Current evidence suggested that, despite different populations and testing protocols used in the included studies, the test-retest reliability of the examined gait parameters was acceptable under single and cognitive dual-task conditions. Further high-quality studies with powered sample sizes are needed to examine the reliability findings of the currently understudied and unexplored pathologies and test conditions.


Subject(s)
Cognitive Dysfunction , Multiple Sclerosis , Adult , Aged , Gait , Humans , Reproducibility of Results , Walking Speed
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6475-6478, 2021 11.
Article in English | MEDLINE | ID: mdl-34892593

ABSTRACT

Handwriting skills could be highly impaired in patients affected by Parkinson's disease (PD), and for this reason its analysis had always been considered relevant. In handwriting assessment, Archimedes spiral drawing is one of the most proposed tasks, due to its peculiar shape and ease of execution. In the last decades, digitizing tablets had been widely employed for the evaluation of the spiral performance, providing a cheap and non-invasive way to gather quantitative information, to be combined with the classical clinical examination. Despite this advantage, such approach cannot easily be adopted in an unsupervised scenario and lacks the natural feel of the traditional pen-and-paper approach. This work aims at overcoming these limitations by employing a smart ink pen, designed to write on paper and instrumented with inertial and force sensors, to automatically collect data related to spiral drawing execution of PD patients (n=30) and age-matched healthy controls (n=30). From the raw data, several time and frequency domains features were extracted and compared between the groups. The statistical analysis revealed some significant differences, showing less smooth acceleration and force profiles for PD patients. However, given the heterogeneous symptoms presented by the PD cohort, a detailed analysis of exemplifying PD patients was conducted, showing the ability of Archimedes spiral drawing to capture and quantify PD characteristic features.Clinical Relevance- Among the first clinical manifestations of the pathology, handwriting impairment appears in PD patients. It is often underestimated and not investigated properly. This easy-to-use tool could be very useful as a large-scale screening, but also for treatment efficacy evaluation and for the identification of PD subgroups.


Subject(s)
Parkinson Disease , Acceleration , Handwriting , Humans , Ink , Physical Examination
7.
J Pers Med ; 11(11)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34834436

ABSTRACT

Music influences many physiological parameters, including some cardiovascular (CV) control indices. The complexity and heterogeneity of musical stimuli, the integrated response within the brain and the limited availability of quantitative methods for non-invasive assessment of the autonomic function are the main reasons for the scarcity of studies about the impact of music on CV control. This study aims to investigate the effects of listening to algorithmic music on the CV regulation of healthy subjects by means of the spectral analysis of heart period, approximated as the time distance between two consecutive R-wave peaks (RR), and systolic arterial pressure (SAP) variability. We studied 10 healthy volunteers (age 39 ± 6 years, 5 females) both while supine (REST) and during passive orthostatism (TILT). Activating and relaxing algorithmic music tracks were used to produce possible contrasting effects. At baseline, the group featured normal indices of CV sympathovagal modulation both at REST and during TILT. Compared to baseline, at REST, listening to both musical stimuli did not affect time and frequency domain markers of both SAP and RR, except for a significant increase in mean RR. A physiological TILT response was maintained while listening to both musical tracks in terms of time and frequency domain markers, compared to baseline, an increase in mean RR was again observed. In healthy subjects featuring a normal CV neural profile at baseline, algorithmic music reduced the heart rate, a potentially favorable effect. The innovative music approach of this study encourages further research, as in the presence of several diseases, such as ischemic heart disease, hypertension, and heart failure, a standardized musical stimulation could play a therapeutic role.

SELECTION OF CITATIONS
SEARCH DETAIL