Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Am J Bot ; 108(1): 172-176, 2021 01.
Article in English | MEDLINE | ID: mdl-33448059

ABSTRACT

PREMISE: Abiotic factors and plant species traits have been shown to drive latitudinal gradients in herbivory, and yet, population-level factors have been largely overlooked within this context. One such factor is plant density, which may influence the strength of herbivory and may vary with latitude. METHODS: We measured insect herbivory and conspecific plant density (CPD) of oak (Quercus robur) seedlings and saplings along a 17° latitudinal gradient (2700 km) to test whether herbivory exhibited a latitudinal gradient, whether herbivory was associated with CPD, and whether such an association changed with latitude. RESULTS: We found a positive but saturating association between latitude and leaf herbivory. Furthermore, we found no significant relationship between CPD and herbivory, and such lack of density effects remained consistent throughout the sampled latitudinal gradient. CONCLUSIONS: Despite the apparently negligible influence of plant density on herbivory for Q. robur, further research with other plant taxa and in different types of plant communities are needed to investigate density-dependent processes shaping geographical variation in plant-herbivore interactions.


Subject(s)
Herbivory , Quercus , Animals , Insecta , Plant Leaves , Seedlings
2.
Ann Bot ; 126(5): 865-872, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32463869

ABSTRACT

BACKGROUND AND AIMS: Highly controlled experiments document that plant genetic diversity and relatedness can shape herbivore communities and patterns of herbivory. Evidence from the field is, however, scarce and inconsistent. We assessed whether a genetic signal underlying herbivory can be detected in oak woodlands when accounting for variation at smaller (within-tree) and larger (among-stand) scales. METHODS: We tested relationships between tree genetic relatedness, leaf chemical defences and insect herbivory for different canopy layers in 240 trees from 15 pedunculate oak (Quercus robur) forest stands. We partitioned sources of variability in herbivory and defences among stands, individuals and branches. KEY RESULTS: Leaf defences, insect herbivory and their relationship differed systematically between the upper and the lower tree canopy. When accounting for this canopy effect, the variation explained by tree genetic relatedness rose from 2.8 to 34.1 % for herbivory and from 7.1 to 13.8 % for leaf defences. The effect was driven by markedly stronger relationships in the upper canopy. CONCLUSIONS: Our findings illustrate that considerable effects of the host plant genotype on levels of leaf chemical defences and associated insect herbivory can be detected in natural tree populations when within-individual variation is properly accounted for.


Subject(s)
Herbivory , Quercus , Animals , Insecta , Plant Leaves , Quercus/genetics , Trees/genetics
3.
Ann Bot ; 125(6): 881-890, 2020 05 13.
Article in English | MEDLINE | ID: mdl-31858135

ABSTRACT

BACKGROUND AND AIMS: Classic theory on geographical gradients in plant-herbivore interactions assumes that herbivore pressure and plant defences increase towards warmer and more stable climates found at lower latitudes. However, the generality of these expectations has been recently called into question by conflicting empirical evidence. One possible explanation for this ambiguity is that most studies have reported on patterns of either herbivory or plant defences whereas few have measured both, thus preventing a full understanding of the implications of observed patterns for plant-herbivore interactions. In addition, studies have typically not measured climatic factors affecting plant-herbivore interactions, despite their expected influence on plant and herbivore traits. METHODS: Here we tested for latitudinal variation in insect seed predation and seed traits putatively associated with insect attack across 36 Quercus robur populations distributed along a 20° latitudinal gradient. We then further investigated the associations between climatic factors, seed traits and seed predation to test for climate-based mechanisms of latitudinal variation in seed predation. KEY RESULTS: We found strong but contrasting latitudinal clines in seed predation and seed traits, whereby seed predation increased whereas seed phenolics and phosphorus decreased towards lower latitudes. We also found a strong direct association between temperature and seed predation, with the latter increasing towards warmer climates. In addition, temperature was negatively associated with seed traits, with populations at warmer sites having lower levels of total phenolics and phosphorus. In turn, these negative associations between temperature and seed traits led to a positive indirect association between temperature and seed predation. CONCLUSIONS: These results help unravel how plant-herbivore interactions play out along latitudinal gradients and expose the role of climate in driving these outcomes through its dual effects on plant defences and herbivores. Accordingly, this emphasizes the need to account for abiotic variation while testing concurrently for latitudinal variation in plant traits and herbivore pressure.


Subject(s)
Quercus , Animals , Herbivory , Phenotype , Plant Leaves , Seeds
4.
Am J Bot ; 106(12): 1558-1565, 2019 12.
Article in English | MEDLINE | ID: mdl-31724166

ABSTRACT

PREMISE: Herbivory is predicted to increase toward warmer and more stable climates found at lower elevations, and this increase should select for higher plant defenses. Still, a number of recent studies have reported either no evidence of such gradients or reverse patterns. One source of inconsistency may be that plant ontogenetic variation is usually not accounted for and may influence levels of plant defenses and herbivory. METHODS: We tested for elevational gradients in insect leaf herbivory and leaf traits putatively associated with herbivore resistance across eight oak (Quercus, Fagaceae) species and compared these patterns for saplings and adult trees. To this end, we surveyed insect leaf herbivory and leaf traits (phenolic compounds, toughness and nutrients) in naturally occurring populations of each oak species at low-, mid- or high-elevation sites throughout the Iberian Peninsula. RESULTS: Leaf herbivory and chemical defenses (lignins) were unexpectedly higher at mid- and high-elevation sites than at low-elevation sites. In addition, leaf chemical defenses (lignins and condensed tannins) were higher for saplings than adult trees, whereas herbivory did not significantly differ between ontogenetic stages. Overall, elevational variation in herbivory and plant chemical defenses were consistent across ontogenetic stages (i.e., elevational gradients were not contingent upon tree ontogeny), and herbivory and leaf traits were not associated across elevations. CONCLUSIONS: These findings suggest disassociated patterns of elevational variation in herbivory and leaf traits, which, in turn, are independent of plant ontogenetic stage.


Subject(s)
Quercus , Animals , Europe , Herbivory , Insecta , Plant Leaves , Trees
5.
Biol Lett ; 14(12): 20180281, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30958244

ABSTRACT

Herbivory is strongly influenced by different sources of plant variation, from traits such as secondary metabolites to features associated with population- and community-level variation. However, most studies have assessed the influence of these drivers in isolation. We conducted a large-scale study to evaluate the associations between multiple types of plant-based variation and insect leaf herbivory in alder ( Alnus glutinosa) trees sampled in riparian forests throughout northwestern Spain. We assessed the associations between insect leaf herbivory and alder mean production of leaf secondary metabolites (phenolic compounds), variation among neighbouring alder trees in leaf phenolics and community-related features including alder relative size and frequency and tree species phylogenetic diversity. Structural equation modelling indicated that increasing concentrations of alder leaf flavonoids (but not other types of phenolic compounds) and increasing variation in phenolics among neighbouring alders were both significantly negatively associated with herbivory. In addition, increasing relative frequency of alder was positively associated with leaf damage, whereas the size of alders relative to other trees and phylogenetic diversity were not significantly associated with herbivory. These results demonstrate the concurrent and independent influences of different sources of plant-based variation on insect herbivory and argue for further future work simultaneously addressing multiple plant-based bottom-up controls.


Subject(s)
Alnus/metabolism , Herbivory , Insecta , Animals , Phenols/analysis , Phylogeny , Plant Leaves/chemistry , Spain , Trees
6.
Ecol Evol ; 12(3): e8709, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35342614

ABSTRACT

Urbanization is an important driver of the diversity and abundance of tree-associated insect herbivores, but its consequences for insect herbivory are poorly understood. A likely source of variability among studies is the insufficient consideration of intra-urban variability in forest cover. With the help of citizen scientists, we investigated the independent and interactive effects of local canopy cover and percentage of impervious surface on insect herbivory in the pedunculate oak (Quercus robur L.) throughout most of its geographic range in Europe. We found that the damage caused by chewing insect herbivores as well as the incidence of leaf-mining and gall-inducing herbivores consistently decreased with increasing impervious surface around focal oaks. Herbivory by chewing herbivores increased with increasing forest cover, regardless of impervious surface. In contrast, an increase in local canopy cover buffered the negative effect of impervious surface on leaf miners and strengthened its effect on gall inducers. These results show that-just like in non-urban areas-plant-herbivore interactions in cities are structured by a complex set of interacting factors. This highlights that local habitat characteristics within cities have the potential to attenuate or modify the effect of impervious surfaces on biotic interactions.

7.
Tree Physiol ; 39(4): 606-614, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30597091

ABSTRACT

Elevational gradients have been highly useful for understanding the underlying forces driving variation in plant traits and plant-insect herbivore interactions. A widely held view from these studies has been that greater herbivory under warmer and less variable climatic conditions found at low elevations has resulted in stronger herbivore selection on plant defences. However, this prediction has been called into question by conflicting empirical evidence, which could be explained by a number of causes such as an incomplete assessment of defensive strategies (ignoring other axes of defence such as defence inducibility) or unaccounted variation in abiotic factors along elevational clines. We conducted a greenhouse experiment testing for inter-specific variation in constitutive leaf chemical defences (phenolic compounds) and their inducibility in response to feeding by gypsy moth larvae (Lymantria dispar L., Lepidoptera) using saplings of 18 oak (Quercus, Fagaceae) species. These species vary in their elevational distribution and together span >2400 m in elevation, therefore allowing us to test for among-species elevational clines in defences based on the elevational range of each species. In addition, we further tested for elevational gradients in the correlated expression of constitutive defences and their inducibility and for associations between defences and climatic factors potentially underlying elevational gradients in defences. Our results showed that oak species with high elevational ranges exhibited a greater inducibility of phenolic compounds (hydrolysable tannins), but this gradient was not accounted for by climatic predictors. In contrast, constitutive defences and the correlated expression of constitutive phenolics and their inducibility did not exhibit elevational clines. Overall, this study builds towards a more robust and integrative understanding of how multivariate plant defensive phenotypes vary along ecological gradients and their underlying abiotic drivers.


Subject(s)
Host-Parasite Interactions , Moths/physiology , Plant Diseases/immunology , Quercus/physiology , Tannins/metabolism , Altitude , Animals , Ecology , Herbivory , Phenotype , Plant Diseases/parasitology , Plant Leaves/chemistry , Plant Leaves/immunology , Plant Leaves/physiology , Quercus/chemistry , Quercus/immunology
8.
PLoS One ; 13(8): e0202548, 2018.
Article in English | MEDLINE | ID: mdl-30125315

ABSTRACT

Plants exhibit a diverse set of functional traits and ecological strategies which reflect an adaptation process to the biotic and abiotic components of the environment. The Plant Economic Spectrum organizes these traits along a continuum from conservative to acquisitive resource use strategies and shows how the abiotic environment governs a species' position along the continuum. However, this framework does not typically account for leaf traits associated with herbivore resistance, despite fundamental metabolic links (and therefore co-variance) between resource use traits and defensive traits. Here we analyzed a suite of leaf traits associated with either resource use (specific leaf area [SLA], nutrients and water content) or defenses (phenolic compounds) for saplings of 11 species of oaks (Quercus spp.), and further investigated whether climatic variables underlie patterns of trait interspecific variation. An ordination of leaf traits revealed the primary axis of trait variation to be leaf economic spectrum traits associated with resource use (SLA, nitrogen, water content) in conjunction with a defensive trait (condensed tannins). Secondary and tertiary axes of trait variation were mainly associated with other defensive traits (lignins, flavonoids, and hydrolysable tannins). Within the primary axis we found a trade-off between resource use traits and both water content and condensed tannins; species with high SLA and leaf N values invested less in condensed tannins and viceversa. Moreover, temperature and precipitation mediated the trait space occupied by species, such that species distributed in warmer and drier climates had less leaf N, lower SLA, and more defenses (condensed tannins, lignins and flavonoids), whereas opposite values were observed for species distributed in colder and wetter climates. These results emphasize the role of abiotic controls over all-inclusive axes of trait variation and contribute to a more complete understanding of interspecific variation in plant functional strategies.


Subject(s)
Adaptation, Physiological , Ecosystem , Plant Leaves/growth & development , Quercus/growth & development , Climatic Processes , Herbivory/physiology , Lignin/metabolism , Nitrogen/metabolism , Phenols/metabolism , Phenotype , Principal Component Analysis
9.
Phytochemistry ; 153: 64-73, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29886158

ABSTRACT

Biogeographical factors and phylogenetic history are key determinants of inter-specific variation in plant defences. However, few studies have conducted broad-scale geographical comparisons of plant defences while controlling for phylogenetic relationships, and, in doing so, none have separated constitutive from induced defences. This gap has limited our understanding of how historical or large-scale processes mediate biogeographical patterns in plant defences since these may be contingent upon shared evolutionary history and phylogenetic constraints. We conducted a phylogenetically-controlled experiment testing for differences in constitutive leaf chemical defences and their inducibility between Palearctic and Nearctic oak species (Quercus, total 18 species). We induced defences in one-year old plants by inflicting damage by gypsy moth larvae (Lymantria dispar), estimated the amount of leaf area consumed, and quantified various groups of phenolic compounds. There was no detectable phylogenetic signal for constitutive or induced levels of most defensive traits except for constitutive condensed tannins, as well as no phylogenetic signal in leaf herbivory. We did, however, find marked differences in defence levels between oak species from each region: Palearctic species had higher levels of constitutive condensed tannins, but less constitutive lignins and less constitutive and induced hydrolysable tannins compared with Nearctic species. Additionally, Palearctic species had lower levels of leaf damage compared with Nearctic species. These differences in leaf damage, lignins and hydrolysable (but not condensed) tannins were lost after accounting for phylogeny, suggesting that geographical structuring of phylogenetic relationships mediated biogeographical differences in defences and herbivore resistance. Together, these findings suggest that historical processes and large-scale drivers have shaped differences in allocation to constitutive defences (and in turn resistance) between Palearctic and Nearctic oaks. Moreover, although evidence of phylogenetic conservatism in the studied traits is rather weak, shared evolutionary history appears to mediate some of these biogeographical patterns in allocation to chemical defences.


Subject(s)
Quercus/chemistry , Quercus/genetics , Phylogeny , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL