Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Med Phys ; 38(10): 5612-29, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21992379

ABSTRACT

PURPOSE: This work applies a cascaded systems model for cone-beam CT imaging performance to the design and optimization of a system for musculoskeletal extremity imaging. The model provides a quantitative guide to the selection of system geometry, source and detector components, acquisition techniques, and reconstruction parameters. METHODS: The model is based on cascaded systems analysis of the 3D noise-power spectrum (NPS) and noise-equivalent quanta (NEQ) combined with factors of system geometry (magnification, focal spot size, and scatter-to-primary ratio) and anatomical background clutter. The model was extended to task-based analysis of detectability index (d') for tasks ranging in contrast and frequency content, and d' was computed as a function of system magnification, detector pixel size, focal spot size, kVp, dose, electronic noise, voxel size, and reconstruction filter to examine trade-offs and optima among such factors in multivariate analysis. The model was tested quantitatively versus the measured NPS and qualitatively in cadaver images as a function of kVp, dose, pixel size, and reconstruction filter under conditions corresponding to the proposed scanner. RESULTS: The analysis quantified trade-offs among factors of spatial resolution, noise, and dose. System magnification (M) was a critical design parameter with strong effect on spatial resolution, dose, and x-ray scatter, and a fairly robust optimum was identified at M ∼ 1.3 for the imaging tasks considered. The results suggested kVp selection in the range of ∼65-90 kVp, the lower end (65 kVp) maximizing subject contrast and the upper end maximizing NEQ (90 kVp). The analysis quantified fairly intuitive results-e.g., ∼0.1-0.2 mm pixel size (and a sharp reconstruction filter) optimal for high-frequency tasks (bone detail) compared to ∼0.4 mm pixel size (and a smooth reconstruction filter) for low-frequency (soft-tissue) tasks. This result suggests a specific protocol for 1 × 1 (full-resolution) projection data acquisition followed by full-resolution reconstruction with a sharp filter for high-frequency tasks along with 2 × 2 binning reconstruction with a smooth filter for low-frequency tasks. The analysis guided selection of specific source and detector components implemented on the proposed scanner. The analysis also quantified the potential benefits and points of diminishing return in focal spot size, reduced electronic noise, finer detector pixels, and low-dose limits of detectability. Theoretical results agreed quantitatively with the measured NPS and qualitatively with evaluation of cadaver images by a musculoskeletal radiologist. CONCLUSIONS: A fairly comprehensive model for 3D imaging performance in cone-beam CT combines factors of quantum noise, system geometry, anatomical background, and imaging task. The analysis provided a valuable, quantitative guide to design, optimization, and technique selection for a musculoskeletal extremities imaging system under development.


Subject(s)
Cone-Beam Computed Tomography/methods , Diagnostic Imaging/methods , Algorithms , Humans , Imaging, Three-Dimensional/methods , Models, Anatomic , Models, Statistical , Models, Theoretical , Multivariate Analysis , Phantoms, Imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Reproducibility of Results
2.
Med Phys ; 37(5): 1948-65, 2010 May.
Article in English | MEDLINE | ID: mdl-20527529

ABSTRACT

PURPOSE: Anatomical background presents a major impediment to detectability in 2D radiography as well as 3D tomosynthesis and cone-beam CT (CBCT). This article incorporates theoretical and experimental analysis of anatomical background "noise" in cascaded systems analysis of 2D and 3D imaging performance to yield "generalized" metrics of noise-equivalent quanta (NEQ) and detectability index as a function of the orbital extent of the (circular arc) source-detector orbit. METHODS: A physical phantom was designed based on principles of fractal self-similarity to exhibit power-law spectral density (kappa/Fbeta) comparable to various anatomical sites (e.g., breast and lung). Background power spectra [S(B)(F)] were computed as a function of source-detector orbital extent, including tomosynthesis (approximately 10 degrees -180 degrees) and CBCT (180 degrees + fan to 360 degrees) under two acquisition schemes: (1) Constant angular separation between projections (variable dose) and (2) constant total number of projections (constant dose). The resulting S(B) was incorporated in the generalized NEQ, and detectability index was computed from 3D cascaded systems analysis for a variety of imaging tasks. RESULTS: The phantom yielded power-law spectra within the expected spatial frequency range, quantifying the dependence of clutter magnitude (kappa) and correlation (beta) with increasing tomosynthesis angle. Incorporation of S(B) in the 3D NEQ provided a useful framework for analyzing the tradeoffs among anatomical, quantum, and electronic noise with dose and orbital extent. Distinct implications are posed for breast and chest tomosynthesis imaging system design-applications varying significantly in kappa and beta, and imaging task and, therefore, in optimal selection of orbital extent, number of projections, and dose. For example, low-frequency tasks (e.g., soft-tissue masses or nodules) tend to benefit from larger orbital extent and more fully 3D tomographic imaging, whereas high-frequency tasks (e.g., microcalcifications) require careful, application-specific selection of orbital extent and number of projections to minimize negative effects of quantum and electronic noise. CONCLUSIONS: The complex tradeoffs among anatomical background, quantum noise, and electronic noise in projection imaging, tomosynthesis, and CBCT can be described by generalized cascaded systems analysis, providing a useful framework for system design and optimization.


Subject(s)
Cone-Beam Computed Tomography/methods , Image Processing, Computer-Assisted/methods , Humans , Phantoms, Imaging
3.
Med Phys ; 36(2): 351-63, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19291974

ABSTRACT

Dual-energy (DE) imaging of the chest improves the conspicuity of subtle lung nodules through the removal of overlying anatomical noise. Recent work has shown double-shot DE imaging (i.e., successive acquisition of low- and high-energy projections) to provide detective quantum efficiency, spectral separation (and therefore contrast), and radiation dose superior to single-shot DE imaging configurations (e.g., with a CR cassette). However, the temporal separation between high-energy (HE) and low-energy (LE) image acquisition can result in motion artifacts in the DE images, reducing image quality and diminishing diagnostic performance. This has motivated the development of a deformable registration technique that aligns the HE image onto the LE image before DE decomposition. The algorithm reported here operates in multiple passes at progressively smaller scales and increasing resolution. The first pass addresses large-scale motion by means of mutual information optimization, while successive passes (2-4) correct misregistration at finer scales by means of normalized cross correlation. Evaluation of registration performance in 129 patients imaged using an experimental DE imaging prototype demonstrated a statistically significant improvement in image alignment. Specific to the cardiac region, the registration algorithm was found to outperform a simple cardiac-gating system designed to trigger both HE and LE exposures during diastole. Modulation transfer function (MTF) analysis reveals additional advantages in DE image quality in terms of noise reduction and edge enhancement. This algorithm could offer an important tool in enhancing DE image quality and potentially improving diagnostic performance.


Subject(s)
Image Processing, Computer-Assisted/methods , Radiography/methods , Artifacts , Cardiac-Gated Imaging Techniques , Clinical Trials as Topic , Humans , Reproducibility of Results
4.
Article in English | MEDLINE | ID: mdl-31057199

ABSTRACT

Volume-of-interest (VOI) imaging is a promising strategy for dose reduction in computed tomography (CT) while retaining image quality. However, implementation of VOI-CT has been challenged by the lack of adequate hardware and the interior tomography reconstruction problem. Multiple aperture devices (MAD) are a novel filtration scheme that can achieve x-ray fluence field modulation in a compact design with small translations. In this work, we propose a general approach for VOI imaging using MADs. MAD trajectories are designed to dynamically tailor the fluence for prescribed VOI. A penalized-likelihood reconstruction algorithm is proposed for fully truncated projections extended with scout views. Physical experiments were conducted to verify the feasibility for non-centered elliptic VOIs. Image quality and dose were estimated and compared with standard fullfield protocols. The ability of MAD-based VOI imaging to retain high image quality while significantly decreasing the total dose is demonstrated, suggesting the potential for dose reduction in clinical CT applications.

5.
Article in English | MEDLINE | ID: mdl-29622857

ABSTRACT

PURPOSE: Model based iterative reconstruction (MBIR) algorithms such as penalized-likelihood (PL) methods have data-dependent and shift-variant image properties. Predictors of local reconstructed noise and resolution have found application in a number of methods that seek to understand, control, and optimize CT data acquisition and reconstruction parameters in a prospective fashion (as opposed to studies based on exhaustive evaluation). However, previous MBIR prediction methods have relied on idealized system models. In this work, we develop and validate new predictors using accurate physical models specific to flat-panel CT systems. METHODS: Novel predictors for estimation of local spatial resolution and noise properties are developed for PL reconstruction that include a physical model for blur and correlated noise in flat-panel cone-beam CT (CBCT) acquisitions. Prospective predictions (e.g., without reconstruction) of local point spread function and and local noise power spectrum (NPS) model are applied, compared, and validated using a flat-panel CBCT test bench. RESULTS: Comparisons between prediction and physical measurements show excellent agreement for both spatial resolution and noise properties. In comparison, traditional prediction methods (that ignore blur/correlation found in flat-panel data) fail to capture important data characteristics and show significant mismatch. CONCLUSION: Novel image property predictors permit prospective assessment of flat-panel CBCT using MBIR. Such predictors enable standard and task-based performance assessments, and are well-suited to evaluation, control, and optimization of the CT imaging chain (e.g., x-ray technique, reconstruction parameters, novel data acquisition methods, etc.) for improved imaging performance and/or dose utilization.

6.
Proc SPIE Int Soc Opt Eng ; 101322017 Feb 11.
Article in English | MEDLINE | ID: mdl-28626290

ABSTRACT

PURPOSE: This work presents a task-driven joint optimization of fluence field modulation (FFM) and regularization in quadratic penalized-likelihood (PL) reconstruction. Conventional FFM strategies proposed for filtered-backprojection (FBP) are evaluated in the context of PL reconstruction for comparison. METHODS: We present a task-driven framework that leverages prior knowledge of the patient anatomy and imaging task to identify FFM and regularization. We adopted a maxi-min objective that ensures a minimum level of detectability index (d') across sample locations in the image volume. The FFM designs were parameterized by 2D Gaussian basis functions to reduce dimensionality of the optimization and basis function coefficients were estimated using the covariance matrix adaptation evolutionary strategy (CMA-ES) algorithm. The FFM was jointly optimized with both space-invariant and spatially-varying regularization strength (ß) - the former via an exhaustive search through discrete values and the latter using an alternating optimization where ß was exhaustively optimized locally and interpolated to form a spatially-varying map. RESULTS: The optimal FFM inverts as ß increases, demonstrating the importance of a joint optimization. For the task and object investigated, the optimal FFM assigns more fluence through less attenuating views, counter to conventional FFM schemes proposed for FBP. The maxi-min objective homogenizes detectability throughout the image and achieves a higher minimum detectability than conventional FFM strategies. CONCLUSIONS: The task-driven FFM designs found in this work are counter to conventional patterns for FBP and yield better performance in terms of the maxi-min objective, suggesting opportunities for improved image quality and/or dose reduction when model-based reconstructions are applied in conjunction with FFM.

7.
Article in English | MEDLINE | ID: mdl-27110053

ABSTRACT

PURPOSE: This work applies task-driven optimization to design CT tube current modulation and directional regularization in penalized-likelihood (PL) reconstruction. The relative performance of modulation schemes commonly adopted for filtered-backprojection (FBP) reconstruction were also evaluated for PL in comparison. METHODS: We adopt a task-driven imaging framework that utilizes a patient-specific anatomical model and information of the imaging task to optimize imaging performance in terms of detectability index (d'). This framework leverages a theoretical model based on implicit function theorem and Fourier approximations to predict local spatial resolution and noise characteristics of PL reconstruction as a function of the imaging parameters to be optimized. Tube current modulation was parameterized as a linear combination of Gaussian basis functions, and regularization was based on the design of (directional) pairwise penalty weights for the 8 in-plane neighboring voxels. Detectability was optimized using a covariance matrix adaptation evolutionary strategy algorithm. Task-driven designs were compared to conventional tube current modulation strategies for a Gaussian detection task in an abdomen phantom. RESULTS: The task-driven design yielded the best performance, improving d' by ~20% over an unmodulated acquisition. Contrary to FBP, PL reconstruction using automatic exposure control and modulation based on minimum variance (in FBP) performed worse than the unmodulated case, decreasing d' by 16% and 9%, respectively. CONCLUSIONS: This work shows that conventional tube current modulation schemes suitable for FBP can be suboptimal for PL reconstruction. Thus, the proposed task-driven optimization provides additional opportunities for improved imaging performance and dose reduction beyond that achievable with conventional acquisition and reconstruction.

8.
Phys Med Biol ; 61(7): 2613-32, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26961687

ABSTRACT

Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a 'self-calibration' of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM-e.g. on the CBCT bench, FWHM = 0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p < 0.001). Similar improvements were measured in RPE-e.g. on the robotic C-arm, RPE = 0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p < 0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is applicable to situations where conventional calibration is not feasible, such as complex non-circular CBCT orbits and systems with irreproducible source-detector trajectory.


Subject(s)
Cone-Beam Computed Tomography/standards , Imaging, Three-Dimensional/standards , Algorithms , Calibration , Cone-Beam Computed Tomography/methods , Humans , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Phantoms, Imaging
9.
Article in English | MEDLINE | ID: mdl-26052176

ABSTRACT

PURPOSE: Conventional workflow in interventional imaging often ignores a wealth of prior information of the patient anatomy and the imaging task. This work introduces a task-driven imaging framework that utilizes such information to prospectively design acquisition and reconstruction techniques for cone-beam CT (CBCT) in a manner that maximizes task-based performance in subsequent imaging procedures. METHODS: The framework is employed in jointly optimizing tube current modulation, orbital tilt, and reconstruction parameters in filtered backprojection reconstruction for interventional imaging. Theoretical predictors of noise and resolution relates acquisition and reconstruction parameters to task-based detectability. Given a patient-specific prior image and specification of the imaging task, an optimization algorithm prospectively identifies the combination of imaging parameters that maximizes task-based detectability. Initial investigations were performed for a variety of imaging tasks in an elliptical phantom and an anthropomorphic head phantom. RESULTS: Optimization of tube current modulation and view-dependent reconstruction kernel was shown to have greatest benefits for a directional task (e.g., identification of device or tissue orientation). The task-driven approach yielded techniques in which the dose and sharp kernels were concentrated in views contributing the most to the signal power associated with the imaging task. For example, detectability of a line pair detection task was improved by at least three fold compared to conventional approaches. For radially symmetric tasks, the task-driven strategy yielded results similar to a minimum variance strategy in the absence of kernel modulation. Optimization of the orbital tilt successfully avoided highly attenuating structures that can confound the imaging task by introducing noise correlations masquerading at spatial frequencies of interest. CONCLUSIONS: This work demonstrated the potential of a task-driven imaging framework to improve image quality and reduce dose beyond that achievable with conventional imaging approaches.

10.
Med Phys ; 41(6): 061909, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24877820

ABSTRACT

PURPOSE: To investigate the effect of the number of projection views on image noise in cone-beam CT (CBCT) with a flat-panel detector. METHODS: This fairly fundamental consideration in CBCT system design and operation was addressed experimentally (using a phantom presenting a uniform medium as well as statistically motivated "clutter") and theoretically (using a cascaded systems model describing CBCT noise) to elucidate the contributing factors of quantum noise (σ(Q)), electronic noise (σ(E)), and view aliasing (σ(view)). Analysis included investigation of the noise, noise-power spectrum, and modulation transfer function as a function of the number of projections (N(proj)), dose (D(tot)), and voxel size (b(vox)). RESULTS: The results reveal a nonmonotonic relationship between image noise and N(proj) at fixed total dose: for the CBCT system considered, noise decreased with increasing N(proj) due to reduction of view sampling effects in the regime N(proj) <~200, above which noise increased with N(proj) due to increased electronic noise. View sampling effects were shown to depend on the heterogeneity of the object in a direct analytical relationship to power-law anatomical clutter of the form κ/f(ß)--and a general model of individual noise components (σ(Q), σ(E), and σ(view)) demonstrated agreement with measurements over a broad range in N(proj), D(tot), and b(vox). CONCLUSIONS: The work elucidates fairly basic elements of CBCT noise in a manner that demonstrates the role of distinct noise components (viz., quantum, electronic, and view sampling noise). For configurations fairly typical of CBCT with a flat-panel detector (FPD), the analysis reveals a "sweet spot" (i.e., minimum noise) in the range N(proj) ~ 250-350, nearly an order of magnitude lower in N(proj) than typical of multidetector CT, owing to the relatively high electronic noise in FPDs. The analysis explicitly relates view aliasing and quantum noise in a manner that includes aspects of the object ("clutter") and imaging chain (including nonidealities of detector blur and electronic noise) to provide a more rigorous basis for commonly held intuition and heurism in CBCT system design and operation.


Subject(s)
Artifacts , Cone-Beam Computed Tomography/instrumentation , Cone-Beam Computed Tomography/methods , Algorithms , Models, Theoretical , Phantoms, Imaging , Radiation Dosage
11.
Med Phys ; 41(2): 021908, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24506629

ABSTRACT

PURPOSE: Cone-beam CT (CBCT) with a flat-panel detector (FPD) is finding application in areas such as breast and musculoskeletal imaging, where dual-energy (DE) capabilities offer potential benefit. The authors investigate the accuracy of material classification in DE CBCT using filtered backprojection (FBP) and penalized likelihood (PL) reconstruction and optimize contrast-enhanced DE CBCT of the joints as a function of dose, material concentration, and detail size. METHODS: Phantoms consisting of a 15 cm diameter water cylinder with solid calcium inserts (50-200 mg/ml, 3-28.4 mm diameter) and solid iodine inserts (2-10 mg/ml, 3-28.4 mm diameter), as well as a cadaveric knee with intra-articular injection of iodine were imaged on a CBCT bench with a Varian 4343 FPD. The low energy (LE) beam was 70 kVp (+0.2 mm Cu), and the high energy (HE) beam was 120 kVp (+0.2 mm Cu, +0.5 mm Ag). Total dose (LE+HE) was varied from 3.1 to 15.6 mGy with equal dose allocation. Image-based DE classification involved a nearest distance classifier in the space of LE versus HE attenuation values. Recognizing the differences in noise between LE and HE beams, the LE and HE data were differentially filtered (in FBP) or regularized (in PL). Both a quadratic (PLQ) and a total-variation penalty (PLTV) were investigated for PL. The performance of DE CBCT material discrimination was quantified in terms of voxelwise specificity, sensitivity, and accuracy. RESULTS: Noise in the HE image was primarily responsible for classification errors within the contrast inserts, whereas noise in the LE image mainly influenced classification in the surrounding water. For inserts of diameter 28.4 mm, DE CBCT reconstructions were optimized to maximize the total combined accuracy across the range of calcium and iodine concentrations, yielding values of ∼ 88% for FBP and PLQ, and ∼ 95% for PLTV at 3.1 mGy total dose, increasing to ∼ 95% for FBP and PLQ, and ∼ 98% for PLTV at 15.6 mGy total dose. For a fixed iodine concentration of 5 mg/ml and reconstructions maximizing overall accuracy across the range of insert diameters, the minimum diameter classified with accuracy >80% was ∼ 15 mm for FBP and PLQ and ∼ 10 mm for PLTV, improving to ∼ 7 mm for FBP and PLQ and ∼ 3 mm for PLTV at 15.6 mGy. The results indicate similar performance for FBP and PLQ and showed improved classification accuracy with edge-preserving PLTV. A slight preference for increased smoothing of the HE data was found. DE CBCT discrimination of iodine and bone in the knee was demonstrated with FBP and PLTV at 6.2 mGy total dose. CONCLUSIONS: For iodine concentrations >5 mg/ml and detail size ∼ 20 mm, material classification accuracy of >90% was achieved in DE CBCT with both FBP and PL at total doses <10 mGy. Optimal performance was attained by selection of reconstruction parameters based on the differences in noise between HE and LE data, typically favoring stronger smoothing of the HE data, and by using penalties matched to the imaging task (e.g., edge-preserving PLTV in areas of uniform enhancement).


Subject(s)
Algorithms , Cone-Beam Computed Tomography/methods , Image Processing, Computer-Assisted/methods , Calibration , Humans , Knee/diagnostic imaging , Radiation Dosage
12.
Article in English | MEDLINE | ID: mdl-34295016

ABSTRACT

PURPOSE: Nonstationarity of CT noise presents a major challenge to the assessment of image quality. This work presents models for imaging performance in both filtered backprojection (FBP) and penalized likelihood (PL) reconstruction that describe not only the dependence on the imaging chain but also the dependence on the object as well as the nonstationary characteristics of the signal and noise. The work furthermore demonstrates the ability to impart control over the imaging process by adjusting reconstruction parameters to exploit nonstationarity in a manner advantageous to a particular imaging task. METHODS: A cascaded systems analysis model was used to model the local noise-power spectrum (NPS) and modulation transfer function (MTF) for FBP reconstruction, with locality achieved by separate calculation of fluence and system gain for each view as a function of detector location. The covariance and impulse response function for PL reconstruction (quadratic penalty) were computed using the implicit function theorem and Taylor expansion. Detectability index was calculated under the assumption of local stationarity to show the variation in task-dependent image quality throughout the image for simple and complex, heterogeneous objects. Control of noise magnitude and correlation was achieved by applying a spatially varying roughness penalty in PL reconstruction in a manner that improved overall detectability. RESULTS: The models provide a foundation for task-based imaging performance assessment in FBP and PL image reconstruction. For both FBP and PL, noise is anisotropic and varies in a manner dependent on the path length of each view traversing the object. The anisotropy in turn affects task performance, where detectability is enhanced or diminished depending on the frequency content of the task relative to that of the NPS. Spatial variation of the roughness penalty can be exploited to control noise magnitude and correlation (and hence detectability). CONCLUSIONS: Nonstationarity of image noise is a significant effect that can be modeled in both FBP and PL image reconstruction. Prevalent spatial-frequency-dependent metrics of spatial resolution and noise can be analyzed under assumptions of local stationarity, providing a means to analyze imaging performance as a function of location throughout the image. Knowledgeable selection of a spatially-varying roughness penalty in PL can potentially improve local noise and spatial resolution in a manner tuned to a particular imaging task.

13.
Article in English | MEDLINE | ID: mdl-34188349

ABSTRACT

The optimization of dual-energy computed tomography (DE-CT) is challenged by the lack of a theoretical foundation for image quality. This work reports a cascaded systems analysis model that was used to derive signal and noise propagation in DE-CBCT in prevalent Fourier metrics such as the noise-power spectrum (NPS) and noise-equivalent quanta (NEQ). The model was validated in comparison to measurements of the 3D NPS and NEQ in DE-CBCT images acquired using an experimental imaging bench. Task-based detectability index was derived using DE-NPS and NEQ as an objective function in optimizing DE imaging parameters such as the dose allocation factor (DA) and kVp pair. The resulting dose allocation optimization is in agreement with the practice of assigning more dose to the high-energy image (DA < 0.5), and the model provides a quantitative basis for examining the optimal dose allocation as a function of total dose, kVp pair, the presence of electronics noise, and the imaging task. An example optimization is shown for a breast tumor detection task. Using DE decomposition to cancel fibroglandular tissue (rendering a DE-CBCT image of breast tumor against an adipose tissue background) and assuming a total dose of 15mGy, the optimal kVp pair is identified at [45, 105]kVp with DA=0.46. The model is sufficiently general for applications beyond this example, demonstrating utility in the optimization in a broad range of imaging parameters. The model provides a new, valuable framework for understanding the theoretical limits of DE-CBCT imaging performance and maximizing image quality while minimizing radiation dose.

14.
Proc SPIE Int Soc Opt Eng ; 76222010 Mar 22.
Article in English | MEDLINE | ID: mdl-24307930

ABSTRACT

PURPOSE: In the early development of new imaging modalities - such as tomosynthesis and cone-beam CT (CBCT) - an accurate predictive model for imaging performance is particularly valuable in identifying the physical factors that govern image quality and guiding system optimization. In this work, a task-based cascaded systems model for detectability index is proposed that describes not only the signal and noise propagation in the 2D (projection) and 3D (reconstruction) imaging chain but also the influence of background anatomical noise. The extent to which generalized detectability index provides a valid metric for imaging performance was assessed through direct comparison to human observer experiments. METHODS: Detectability index (d') was generalized to include anatomical background noise in the same manner as the generalized noise-equivalent quanta (NEQ) proposed by Barrett et al. (Proc. SPIE Med. Imaging, Vol. 1090, 1989). Anatomical background noise was measured from a custom phantom designed to present power-law spectral density comparable to various anatomical sites (e.g., breast and lung). Theoretical calculations of d' as a function of the source-detector orbital extent (θtot) was obtained from a 3D cascaded systems analysis model for tomosynthesis and cone-beam CT (CBCT). Four model observers were considered in the calculation of d': prewhitening (PW), non-prewhitening (NPW), prewhitening with eye filter and internal noise (PWE), and non-prewhitening with eye filter and internal noise (NPWE). Human observer performance was measured from 9AFC tests for a variety of idealized imaging tasks presented within a clutter phantom. Theoretical results (d') were converted to area under the ROC curve (Az ) and compared directly to human observer performance as a function of imaging task and orbital extent. RESULTS: Theoretical results demonstrated reasonable correspondence with human observer response for all tasks across the continuum in θtot ranging from low-angle tomosynthesis (θtot ~10°) to CBCT (θtot ~180°). Both theoretical and experimental Az were found to increase with acquisition angle, consistent with increased rejection of out-of-plane clutter for larger tomosynthesis angle. Of the four theoretical model observers considered, the prewhitening models tended to overestimate real observer performance, while the non-prewhitening models demonstrated reasonable agreement. CONCLUSIONS: Generalized detectability index was shown to provide a meaningful metric for imaging performance, helping to bridge the gap between real observer performance and prevalent Fourier-based metrics based in first principles of spatial-frequency-dependent NEQ and imaging task.

SELECTION OF CITATIONS
SEARCH DETAIL