Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Cancers (Basel) ; 13(6)2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33807050

ABSTRACT

Glioblastoma (GBM) is an utterly devastating cerebral neoplasm and current therapies only marginally improve patients' overall survival (OS). The PI3K/AKT/mTOR pathway participates in gliomagenesis through regulation of cell growth and proliferation. Since it is an upstream regulator of the rate-limiting translation initiation step of protein synthesis, controlled by eukaryotic initiation factors (eIFs), we aimed for a profound basic characterization of 17 eIFs to identify potential novel therapeutic targets for gliomas. Therefore, we retrospectively analyzed expressions of mTOR-related proteins and eIFs in human astrocytoma samples (WHO grades I-IV) and compared them to non-neoplastic cortical control brain tissue (CCBT) using immunoblot analyses and immunohistochemistry. We examined mRNA expression using qRT-PCR and additionally performed in silico analyses to observe the influence of eIFs on patients' survival. Protein and mRNA expressions of eIF3B, eIF3I, eIF4A1, eIF4H, eIF5 and eIF6 were significantly increased in high grade gliomas compared to CCBT and partially in low grade gliomas. However, short OS was only associated with high eIF3I gene expression in low grade gliomas, but not in GBM. In GBM, high eIF4H gene expression significantly correlated with shorter patient survival. In conclusion, we identified eIF3I and eIF4H as the most promising targets for future therapy for glioma patients.

2.
Eur J Cancer ; 101: 165-180, 2018 09.
Article in English | MEDLINE | ID: mdl-30077122

ABSTRACT

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide. Dysregulation of protein synthesis plays a major role in carcinogenesis, a process regulated at multiple levels, including translation of mRNA into proteins. Ribosome assembly requires correct association of ribosome subunits, which is ensured by eukaryotic translation initiation factors (eIFs). eIFs have become targets in cancer therapy studies, and promising data on eIF6 in various cancer entities have been reported. Therefore, we hypothesised that eIF6 represents a crossroad for pulmonary carcinogenesis. High levels of eIF6 are associated with shorter patient overall survival in adenocarcinoma (ADC), but not in squamous cell carcinoma (SQC) of the lung. We demonstrate significantly higher protein expression of eIF6 in ADC and SQC than in healthy lung tissue based on immunohistochemical data from tissue microarrays (TMAs) and on fresh frozen lung tissue. Depletion of eIF6 in ADC and SQC lung cancer cell lines inhibited cell proliferation and induced apoptosis. Knockdown of eIF6 led to pre-rRNA processing and ribosomal 60S maturation defects. Our data indicate that eIF6 is upregulated in NSCLC, suggesting an important contribution of eIF6 to the development and progression of NSCLC and a potential for new treatment strategies against NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Eukaryotic Initiation Factors/biosynthesis , Lung Neoplasms/metabolism , A549 Cells , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Aged , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Survival/genetics , Disease Progression , Eukaryotic Initiation Factors/genetics , Female , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , RNA Interference
4.
Oncotarget ; 8(60): 101224-101243, 2017 Nov 24.
Article in English | MEDLINE | ID: mdl-29254159

ABSTRACT

Colorectal cancer (CRC) is the third most common cause of cancer related death worldwide. Furthermore, with more than 1.2 million cases registered per year, it constitutes the third most frequent diagnosed cancer entity worldwide. Deregulation of protein synthesis has received considerable attention as a major step in cancer development and progression. Eukaryotic translation initiation factors (eIFs) are involved in the regulation of protein synthesis and are functionally linked to the phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway. The identification of factors accounting for colorectal carcinoma (CRC) development is a major gap in the field. Besides the importance of eIF3 subunits and the eIF4 complex, eIF1, eIF5 and eIF6 were found to be altered in primary and metastatic CRC. We observed significant difference in the expression profile between low and high grade CRC. eIF1, eIF5 and eIF6 are involved in translational control in CRC. Our findings also indicate a probable clinical impact when separating them into low and high grade colon and rectum carcinoma. eIF and mTOR expression were analysed on protein and mRNA level in primary low and high grade colon carcinoma (CC) and rectum carcinoma (RC) samples in comparison to non-neoplastic tissue without any disease-related pathology. To assess the therapeutic potential of targeting eIF1, eIF5 and eIF6 siRNA knockdown in HCT116 and HT29 cells was performed. We evaluated the eIF knockdown efficacy on protein and mRNA level and investigated proliferation, apoptosis, invasion, as well as colony forming and polysome associated fractions. These results indicate that eIFs, in particular eIF1, eIF5 and eIF6 play a major role in translational control in colon and rectum cancer.

5.
Sci Rep ; 6: 36714, 2016 11 07.
Article in English | MEDLINE | ID: mdl-27819319

ABSTRACT

After their cytoplasmic synthesis, ribosomal proteins need to be transported into the nucleus, where they assemble with ribosomal RNA into pre-ribosomal particles. Due to their physicochemical properties, they need protection from aggregation on this path. Newly synthesized ribosomal protein Rps3 forms a dimer that is associated with one molecule of its specific chaperone Yar1. Here we report that redundant pathways contribute to the nuclear import of Rps3, with the classical importin α/ß pathway (Kap60/Kap95 in yeast) constituting a main import route. The Kap60/Kap95 heterodimer mediates efficient nuclear import of Rps3 by recognition of an N-terminal monopartite nuclear localization signal (NLS). This Rps3-NLS is located directly adjacent to the Yar1-binding site and, upon binding of Kap60 to Rps3, Yar1 is displaced from the ribosomal protein in vitro. While Yar1 does not directly interact with Kap60 in vitro, affinity purifications of Yar1 and Rps3, however, revealed that Kap60 is present in the Rps3/Yar1 complex in vivo. Indeed we could reconstitute such a protein complex containing Rps3 and both Yar1 and Kap60 in vitro. Our data suggest that binding of Yar1 to one N-domain and binding of Kap60 to the second N-domain of dimerized Rps3 orchestrates import and protection of the ribosomal protein.


Subject(s)
Active Transport, Cell Nucleus , Ribosomal Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , alpha Karyopherins/metabolism , beta Karyopherins/metabolism , Cell Nucleus/metabolism , Cytoplasm/metabolism , Microscopy, Fluorescence , Molecular Chaperones/metabolism , Nuclear Localization Signals/metabolism , Protein Binding , Protein Domains , Ribosomes/chemistry , Saccharomyces cerevisiae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL