Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.482
Filter
Add more filters

Publication year range
1.
Cell ; 186(5): 1026-1038.e20, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36868208

ABSTRACT

Down syndrome (DS) is a neurological disorder with multiple immune-related symptoms; however, crosstalk between the CNS and peripheral immune system remains unexplored. Using parabiosis and plasma infusion, we found that blood-borne factors drive synaptic deficits in DS. Proteomic analysis revealed elevation of ß2-microglobulin (B2M), a major histocompatibility complex class I (MHC-I) component, in human DS plasma. Systemic administration of B2M in wild-type mice led to synaptic and memory defects similar to those observed in DS mice. Moreover, genetic ablation of B2m or systemic administration of an anti-B2M antibody counteracts synaptic impairments in DS mice. Mechanistically, we demonstrate that B2M antagonizes NMDA receptor (NMDAR) function through interactions with the GluN1-S2 loop; blocking B2M-NMDAR interactions using competitive peptides restores NMDAR-dependent synaptic function. Our findings identify B2M as an endogenous NMDAR antagonist and reveal a pathophysiological role for circulating B2M in NMDAR dysfunction in DS and related cognitive disorders.


Subject(s)
Down Syndrome , Receptors, N-Methyl-D-Aspartate , beta 2-Microglobulin , Animals , Humans , Mice , beta 2-Microglobulin/metabolism , beta 2-Microglobulin/pharmacology , Cognitive Dysfunction/metabolism , Cross Reactions , Parabiosis , Proteomics , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Down Syndrome/blood , Down Syndrome/metabolism
2.
Nature ; 626(7998): 313-318, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326591

ABSTRACT

Calcium-oxygen (Ca-O2) batteries can theoretically afford high capacity by the reduction of O2 to calcium oxide compounds (CaOx) at low cost1-5. Yet, a rechargeable Ca-O2 battery that operates at room temperature has not been achieved because the CaOx/O2 chemistry typically involves inert discharge products and few electrolytes can accommodate both a highly reductive Ca metal anode and O2. Here we report a Ca-O2 battery that is rechargeable for 700 cycles at room temperature. Our battery relies on a highly reversible two-electron redox to form chemically reactive calcium peroxide (CaO2) as the discharge product. Using a durable ionic liquid-based electrolyte, this two-electron reaction is enabled by the facilitated Ca plating-stripping in the Ca metal anode at room temperature and improved CaO2/O2 redox in the air cathode. We show the proposed Ca-O2 battery is stable in air and can be made into flexible fibres that are weaved into textile batteries for next-generation wearable systems.

3.
Nature ; 598(7882): 590-596, 2021 10.
Article in English | MEDLINE | ID: mdl-34671167

ABSTRACT

Although solid-state lithium (Li)-metal batteries promise both high energy density and safety, existing solid ion conductors fail to satisfy the rigorous requirements of battery operations. Inorganic ion conductors allow fast ion transport, but their rigid and brittle nature prevents good interfacial contact with electrodes. Conversely, polymer ion conductors that are Li-metal-stable usually provide better interfacial compatibility and mechanical tolerance, but typically suffer from inferior ionic conductivity owing to the coupling of the ion transport with the motion of the polymer chains1-3. Here we report a general strategy for achieving high-performance solid polymer ion conductors by engineering of molecular channels. Through the coordination of copper ions (Cu2+) with one-dimensional cellulose nanofibrils, we show that the opening of molecular channels within the normally ion-insulating cellulose enables rapid transport of Li+ ions along the polymer chains. In addition to high Li+ conductivity (1.5 × 10-3 siemens per centimetre at room temperature along the molecular chain direction), the Cu2+-coordinated cellulose ion conductor also exhibits a high transference number (0.78, compared with 0.2-0.5 in other polymers2) and a wide window of electrochemical stability (0-4.5 volts) that can accommodate both the Li-metal anode and high-voltage cathodes. This one-dimensional ion conductor also allows ion percolation in thick LiFePO4 solid-state cathodes for application in batteries with a high energy density. Furthermore, we have verified the universality of this molecular-channel engineering approach with other polymers and cations, achieving similarly high conductivities, with implications that could go beyond safe, high-performance solid-state batteries.

4.
Plant Physiol ; 195(3): 1906-1924, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38497551

ABSTRACT

Root hairs (RHs), extensive structures of root epidermal cells, are important for plant nutrient acquisition, soil anchorage, and environmental interactions. Excessive production of the phytohormone ethylene (ET) leads to substantial root hair growth, manifested as tolerance to plant nutrient deficiencies. However, the molecular basis of ET production during root hair growth in response to nutrient starvation remains unknown. Herein, we found that a critical transcription factor, GLABRA 2 (GL2), inhibits ET production during root hair growth in Arabidopsis (Arabidopsis thaliana). GL2 directly binds to the promoter of the gene encoding ET OVERPRODUCER 1 (ETO1), one of the most important ET-production-regulation factors, in vitro and in vivo, and then regulates the accumulation and function of ETO1 in root hair growth. The GL2-regulated-ETO1 module is required for promoting root hair growth under nitrogen, phosphorus, or potassium deficiency. Genome-wide analysis revealed numerous genes, such as ROOT HAIR DEFECTIVE 6-LIKE 4, ETHYLENE-INSENSITIVE 3-LIKE 2, ROOT HAIR SPECIFIC 13, are involved in the GL2-regulated-ETO1 module. Our work reveals a key transcription mechanism in the control of ET production during root hair growth under three major nutrient deficiencies.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Ethylenes , Gene Expression Regulation, Plant , Plant Roots , Transcription Factors , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/genetics , Arabidopsis/growth & development , Arabidopsis/genetics , Arabidopsis/metabolism , Ethylenes/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Promoter Regions, Genetic/genetics , Nitrogen/metabolism , Nitrogen/deficiency , Nutrients/metabolism , Phosphorus/deficiency , Phosphorus/metabolism , Homeodomain Proteins
5.
FASEB J ; 38(13): e23762, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38923643

ABSTRACT

Exosomes play significant roles in the communications between tumor cells and tumor microenvironment. However, the specific mechanisms by which exosomes modulate tumor development under hypoxia in pancreatic neuroendocrine tumors (pNETs) are not well understood. This study aims to investigate these mechanisms and made several important discoveries. We found that hypoxic exosomes derived from pNETs cells can activate tumor-associated macrophages (TAM) to the M2 phenotype, in turn, the M2-polarized TAM, facilitate the migration and invasion of pNETs cells. Further investigation revealed that CEACAM5, a protein highly expressed in hypoxic pNETs cells, is enriched in hypoxic pNETs cell-derived exosomes. Hypoxic exosomal CEACAM5 was observed to induce M2 polarization of TAM through activation of the MAPK signaling pathway. Coculturing pNETs cells with TAM or treated with hypoxic exosomes enhanced the metastatic capacity of pNETs cells. In conclusion, these findings suggest that pNETs cells generate CEACAM5-rich exosomes in a hypoxic microenvironment, which in turn polarize TAM promote malignant invasion of pNETs cells. Targeting exosomal CEACAM5 could potentially serve as a diagnostic and therapeutic strategy for pNETs.


Subject(s)
Antigens, CD , Exosomes , GPI-Linked Proteins , Matrix Metalloproteinase 9 , Neuroendocrine Tumors , Pancreatic Neoplasms , Tumor Microenvironment , Tumor-Associated Macrophages , Exosomes/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Humans , Animals , Neuroendocrine Tumors/metabolism , Neuroendocrine Tumors/pathology , Matrix Metalloproteinase 9/metabolism , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology , Mice , Cell Line, Tumor , Antigens, CD/metabolism , GPI-Linked Proteins/metabolism , Cell Adhesion Molecules/metabolism , Cell Movement , Neoplasm Metastasis , Mice, Nude , Hypoxia/metabolism , Cell Hypoxia/physiology , Carcinoembryonic Antigen
6.
Nucleic Acids Res ; 51(D1): D861-D869, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36243976

ABSTRACT

During the complex process of tumour development, the unique destiny of cells is driven by the fine-tuning of multilevel features such as gene expression, network regulation and pathway activation. The dynamic formation of the tumour microenvironment influences the therapeutic response and clinical outcome. Thus, characterizing the developmental landscape and identifying driver features at multiple levels will help us understand the pathological development of disease in individual cell populations and further contribute to precision medicine. Here, we describe a database, CellTracer (http://bio-bigdata.hrbmu.edu.cn/CellTracer), which aims to dissect the causative multilevel interplay contributing to cell development trajectories. CellTracer consists of the gene expression profiles of 1 941 552 cells from 222 single-cell datasets and provides the development trajectories of different cell populations exhibiting diverse behaviours. By using CellTracer, users can explore the significant alterations in molecular events and causative multilevel crosstalk among genes, biological contexts, cell characteristics and clinical treatments along distinct cell development trajectories. CellTracer also provides 12 flexible tools to retrieve and analyse gene expression, cell cluster distribution, cell development trajectories, cell-state variations and their relationship under different conditions. Collectively, CellTracer will provide comprehensive insights for investigating the causative multilevel interplay contributing to cell development trajectories and serve as a foundational resource for biomarker discovery and therapeutic exploration within the tumour microenvironment.


Subject(s)
Cell Lineage , Databases, Factual , Humans , Databases, Genetic , Neoplasms/genetics , Transcriptome , Tumor Microenvironment/genetics , Single-Cell Analysis
7.
Proc Natl Acad Sci U S A ; 119(18): e2118152119, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35452331

ABSTRACT

Arthropods maintain ecosystem balance while also contributing to the spread of disease. Plant-derived natural repellents represent an ecological method of pest control, but their direct molecular targets in arthropods remain to be further elucidated. Occupying a critical phylogenetic niche in arthropod evolution, scorpions retain an ancestral genetic profile. Here, using a behavior-guided screening of the Mesobuthus martensii genome, we identified a scorpion transient receptor potential (sTRP1) channel that senses Cymbopogon-derived natural repellents, while remaining insensitive to the synthetic chemical pesticide DEET. Scrutinizing orthologs of sTRP1 in Drosophila melanogaster, we further demonstrated dTRPγ ion channel as a chemosensory receptor of natural repellents to mediate avoidance behavior. This study sheds light on arthropod molecular targets of natural repellents, exemplifying the arthropod­plant adaptation. It should also help the rational design of insect control strategy and in conserving biodiversity.


Subject(s)
Arthropods , Insect Repellents , Scorpion Venoms , Animals , Arthropods/genetics , Drosophila melanogaster/genetics , Gene Library , Insect Repellents/pharmacology , Scorpion Venoms/chemistry , Scorpions
8.
PLoS Genet ; 18(9): e1010338, 2022 09.
Article in English | MEDLINE | ID: mdl-36095000

ABSTRACT

Actin cytoskeleton is essential for root hair formation. However, the underlying molecular mechanisms of actin dynamics in root hair formation in response to abiotic stress are largely undiscovered. Here, genetic analysis showed that actin-depolymerizing protein ADF7 and actin-bundling protein VILLIN1 (VLN1) were positively and negatively involved in root hair formation of Arabidopsis respectively. Moreover, RT-qPCR, GUS staining, western blotting, and genetic analysis revealed that ADF7 played an important role in inhibiting the expression and function of VLN1 during root hair formation. Filament actin (F-actin) dynamics observation and actin pharmacological experiments indicated that ADF7-inhibited-VLN1 pathway led to the decline of F-actin bundling and thick bundle formation, as well as the increase of F-actin depolymerization and turnover to promote root hair formation. Furthermore, the F-actin dynamics mediated by ADF7-inhibited-VLN1 pathway was associated with the reactive oxygen species (ROS) accumulation in root hair formation. Finally, ADF7-inhibited-VLN1 pathway was critical for osmotic stress-induced root hair formation. Our work demonstrates that ADF7 inhibits VLN1 to regulate F-actin dynamics in root hair formation in response to osmotic stress, providing the novel evidence on the F-actin dynamics and their molecular mechanisms in root hair formation and in abiotic stress.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Actin Cytoskeleton/genetics , Actin Cytoskeleton/metabolism , Actins/genetics , Actins/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Destrin/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Osmotic Pressure , Plant Roots/genetics , Plant Roots/metabolism , Reactive Oxygen Species/metabolism
9.
Proc Natl Acad Sci U S A ; 119(13): e2116342119, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35286217

ABSTRACT

SignificanceTo adapt to arboreal lifestyles, treefrogs have evolved a suite of complex traits that support vertical movement and gliding, thus presenting a unique case for studying the genetic basis for traits causally linked to vertical niche expansion. Here, based on two de novo-assembled Asian treefrog genomes, we determined that genes involved in limb development and keratin cytoskeleton likely played a role in the evolution of their climbing systems. Behavioral and morphological evaluation and time-ordered gene coexpression network analysis revealed the developmental patterns and regulatory pathways of the webbed feet used for gliding in Rhacophorus kio.


Subject(s)
Locomotion , Trees , Adaptation, Physiological/genetics , Animals , Anura , Biological Evolution , Biomechanical Phenomena , Genomics , Humans , Locomotion/genetics
10.
J Proteome Res ; 23(4): 1341-1350, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38421152

ABSTRACT

Tryptophan catabolism plays an important role in the metabolic reconnection in cancer cells to support special demands of tumor initiation and progression. The catabolic product of the tryptophan pathway, kynurenine, has the capability of suppressing the immune reactions of tumor cells. In this study, we conducted internal and external cohort studies to reveal the importance of tryptophan 2,3-dioxygenase (TDO) for lung adenocarcinoma (LUAD). Our study further demonstrated that the TDO2 expression was associated with the proliferation, survival, and invasion of LUAD cells, and targeting TDO2 for LUAD tumors could be a potential therapeutic strategy.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Tryptophan Oxygenase/genetics , Tryptophan Oxygenase/metabolism , Tryptophan/metabolism , Kynurenine/metabolism , Adenocarcinoma of Lung/genetics , Lung Neoplasms/genetics
11.
J Cell Mol Med ; 28(5): e18101, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38165009

ABSTRACT

Bladder cancer is one of the most common malignant tumours of the urogenital system, with high morbidity and mortality. In most cases, surgery is considered the first choice of treatment, followed by adjuvant chemotherapy. However, the 5-year recurrence rate is still as high as 65% in patients with non-invasive or in situ tumours and up to 73% in patients with slightly more advanced disease at initial diagnosis. Various treatment methods for bladder cancer have been developed, and hundreds of new immunotherapies are being tested. To date, only a small percentage of people have had success with new treatments, though studies have suggested that the combination of immunotherapy with other therapies improves treatment efficiency and positive outcomes for individuals, with great hopes for the future. In this article, we summarize the origins, therapeutic mechanisms and current status of research on immunotherapeutic agents for bladder cancer.

12.
Clin Infect Dis ; 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38236137

ABSTRACT

BACKGROUND: Most international treatment guidelines recommend rapid initiation of antiretroviral therapy (ART) for people newly diagnosed with HIV-1 infection, but experiences with rapid ART initiation remain limited in China. We aimed to evaluate the efficacy and safety of efavirenz (400-mg) plus lamivudine and tenofovir disoproxil fumarate (EFV + 3TC + TDF) versus coformulated bictegravir, emtricitabine, tenofovir alafenamide (BIC/FTC/TAF) in rapid ART initiation among HIV-positive men who have sex with men (MSM). METHODS: This multicenter, open-label, randomized clinical trial enrolled MSM aged ≥18 years to start ART within 14 days of confirmed HIV diagnosis. The participants were randomly assigned in a 1:1 ratio to receive EFV(400-mg) + 3TC + TDF or BIC/FTC/TAF. The primary end point was viral suppression (<50 copies/ml) at 48 weeks per FDA Snapshot analysis. RESULTS: Between March 2021 and July 2022, 300 participants were enrolled; 154 were assigned to receive EFV + 3TC + TDF (EFV group) and 146 BIC/FTC/TAF (BIC group). At week 48, 118 (79.2%) and 140 (95.9%) participants in the EFV and BIC group, respectively, were retained in care with viral suppression; and 24 (16.1%) and 1 (0.7%) participant in the EFV and BIC group (p < 0.001), respectively, discontinued treatment due to adverse effects, death, or loss to follow-up. The median increase of CD4 count was 181 and 223 cells/µL (p = 0.020), respectively, for the EFV and BIC group, at week 48. The overall incidence of adverse effects was significantly higher for the EFV group (65.8% vs 37.7%, P < 0.001). CONCLUSION: BIC/FTC/TAF was more efficacious and safer than EFV(400-mg) + 3TC + TDF for rapid ART initiation among HIV-positive MSM in China.

13.
Ann Surg ; 280(1): 144-149, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38501233

ABSTRACT

OBJECTIVE: To quantify health utilities of the Glasgow Outcome Scale-Extended (GOSE) states after actual traumatic brain injury (TBI). BACKGROUND: Recovery after TBI is measured using the GOSE, a validated clinical trial endpoint. A recent public survey quantified the health utilities of some GOSE states after hypothetical TBI as worse than death. However, no health utilities exist for disability after actual TBI. METHODS: This national computer-adaptive survey followed Enhancing the Quality and Transparency of Health Research-Checklist for Reporting Results of Internet E-Surveys guidelines and recruited adult TBI survivors (injury >1 year prior) through their available surrogates. Using a standard gamble approach in randomized order, participants gave preferences for post-TBI categorical health states ranging from GOSE 2 to GOSE 8. We calculated median (interquartile range) health utilities for each GOSE state, from -1 (worse than death) to 1 (full health), with 0 as reference (death, GOSE 1). RESULTS: Of 515 eligible, 298 surrogates (58%) consented and completed the scenarios on TBI survivors' behalf. TBI survivors had a current median GOSE 5 (3-7). GOSE 2, GOSE 3, and GOSE 4 were rated worse than death by 89%, 64%, and 38%, respectively. The relationship was nonlinear, and intervals were unequal between states, with a bimodal distribution for GOSE 4. CONCLUSIONS: In this index study of actual post-TBI disability, poor neurological outcomes represented by GOSE 2 to GOSE 4 were perceived as worse than death by at least one in 3 survivors. Similar to previously reported public perceptions after a hypothetical TBI, these long-term perceptions may inform earlier post-TBI shared decision-making, as well as help shape value-based research and quality of care. LEVEL OF EVIDENCE: Level II-economic and value-based evaluations.


Subject(s)
Brain Injuries, Traumatic , Glasgow Outcome Scale , Humans , Brain Injuries, Traumatic/psychology , Male , Female , Adult , Middle Aged , Functional Status , Survivors/psychology , Surveys and Questionnaires , Aged
14.
Small ; : e2400415, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698600

ABSTRACT

Highly flexible and superelastic aerogels at large deformation have become urgent mechanical demands in practical uses, but both properties are usually exclusive. Here a trans-scale porosity design is proposed in graphene nanofibrous aerogels (GNFAs) to break the trade-off between high flexibility and superelasticity. The resulting GNFAs can completely recover after 1000 fatigue cycles at 60% folding strain, and notably maintain excellent structural integrity after 10000 cycles at 90% compressive strain, outperforming most of the reported aerogels. The mechanical robustness is demonstrated to be derived from the trans-scale porous structure, which is composed of hyperbolic micropores and porous nanofibers to enable the large elastic deformation capability. It is further revealed that flexible and superelastic GNFAs exhibit high sensitivity and ultrastability as an electrical sensors to detect tension and flexion deformation. As proof, The GNFA sensor is implemented onto a human finger and achieves the intelligent recognition of sign language with high accuracy by multi-layer artificial neural network. This study proposes a highly flexible and elastic graphene aerogel for wearable human-machine interfaces in sensor technology.

15.
Small ; : e2400570, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38600895

ABSTRACT

Lithium (Li) metal batteries are deemed as promising next-generation power solutions but are hindered by the uncontrolled dendrite growth and infinite volume change of Li anodes. The extensively studied 3D scaffolds as solutions generally lead to undesired "top-growth" of Li due to their high electrical conductivity and the lack of ion-transporting pathways. Here, by reducing electrical conductivity and increasing the ionic conductivity of the scaffold, the deposition spot of Li to the bottom of the scaffold can be regulated, thus resulting in a safe bottom-up plating mode of the Li and dendrite-free Li deposition. The resulting symmetrical cells with these scaffolds, despite with a limited pre-plated Li capacity of 5 mAh cm-2, exhibit ultra-stable Li plating/stripping for over 1 year (11 000 h) at a high current density of 3 mA cm-2 and a high areal capacity of 3 mAh cm-2. Moreover, the full cells with these scaffolds further demonstrate high cycling stability under challenging conditions, including high cathode loading of 21.6 mg cm-2, low negative-to-positive ratio of 1.6, and limited electrolyte-to-capacity ratio of 4.2 g Ah-1.

16.
J Pharmacol Exp Ther ; 390(1): 88-98, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38719477

ABSTRACT

Constitutive androstane receptor (CAR) and peroxisome proliferator-activated receptor α (PPARα) are members of the nuclear receptor superfamily, which regulates various physiologic and pathologic processes. Phase separation is a dynamic biophysical process in which biomacromolecules form liquid-like condensates, which have been identified as contributors to many cellular functions, such as signal transduction and transcription regulation. However, the possibility of phase separation for CAR and PPARα remains unknown. This study explored the potential phase separation of CAR and PPARα The computational analysis utilizing algorithm tools examining the intrinsically disordered regions of CAR and PPARα suggested a limited likelihood of undergoing phase separation. Experimental assays under varying conditions of hyperosmotic stress and agonist treatments confirmed the absence of phase separation for these receptors. Additionally, the optoDroplets assay, which utilizes blue light stimulation to induce condensate formation, showed that there was no condensate formation of the fusion protein of Cry2 with CAR or PPARα Furthermore, phase separation of CAR or PPARα did not occur despite reduced target expression under hyperosmotic stress. In conclusion, these findings revealed that neither the activation of CAR and PPARα nor hyperosmotic stress induces phase separation of CAR and PPARα in cells. SIGNIFICANCE STATEMENT: Constitutive androstane receptor (CAR) and peroxisome proliferator-activated receptor α (PPARα) are key regulators of various functions in the body. This study showed that CAR and PPARα do not exhibit phase separation under hyperosmotic stress or after agonist-induced activation. These findings provide new insights into the CAR and PPARα biology and physiology.


Subject(s)
Constitutive Androstane Receptor , PPAR alpha , PPAR alpha/metabolism , Humans , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Osmotic Pressure , Phase Separation
17.
Brief Bioinform ; 23(1)2022 01 17.
Article in English | MEDLINE | ID: mdl-34864866

ABSTRACT

Intertumoral immune heterogeneity is a critical reason for distinct clinical benefits of immunotherapy in lung adenocarcinoma (LUAD). Tumor immunophenotype (immune 'Hot' or 'Cold') suggests immunological individual differences and potential clinical treatment guidelines. However, employing epigenome signatures to determine tumor immunophenotypes and responsive treatment is not well understood. To delineate the tumor immunophenotype and immune heterogeneity, we first distinguished the immune 'Hot' and 'Cold' tumors of LUAD based on five immune expression signatures. In terms of clinical presentation, the immune 'Hot' tumors usually had higher immunoactivity, lower disease stages and better survival outcomes than 'Cold' tumors. At the epigenome levels, we observed that distinct DNA methylation patterns between immunophenotypes were closely associated with LUAD development. Hence, we identified a set of five CpG sites as the immunophenotype-related methylation signature (iPMS) for tumor immunophenotyping and further confirmed its efficiency based on a machine learning framework. Furthermore, we found iPMS and immunophenotype-related immune checkpoints (IPCPs) could contribute to the risk of tumor progression, implying IPCP has the potential to be a novel immunotherapy blockade target. After further parsing of the role of iPMS-predicted immunophenotypes, we found immune 'Hot' was a protective factor leading to better survival outcomes when patients received the anti-PD-1/PD-L1 immunotherapy. And iPMS was also a well-performed signature (AUC = 0.752) for predicting the durable/nondurable clinical benefits. In summary, our study explored the role of epigenome signature in clinical tumor immunophenotyping. Utilizing iPMS to characterize tumor immunophenotypes will facilitate developing personalized epigenetic anticancer approaches.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/therapy , Biomarkers, Tumor/genetics , Epigenome , Humans , Immunophenotyping , Immunotherapy , Lung Neoplasms/drug therapy , Lung Neoplasms/therapy
18.
Brief Bioinform ; 23(6)2022 11 19.
Article in English | MEDLINE | ID: mdl-36239391

ABSTRACT

Discovering the biological basis of aging is one of the greatest remaining challenges for biomedical field. Work on the biology of aging has discovered a range of interventions and pathways that control aging rate. Thus, we developed AgingBank (http://bio-bigdata.hrbmu.edu.cn/AgingBank) which was a manually curated comprehensive database and high-throughput analysis platform that provided experimentally supported multi-omics data relevant to aging in multiple species. AgingBank contained 3771 experimentally verified aging-related multi-omics entries from studies across more than 50 model organisms, including human, mice, worms, flies and yeast. The records included genome (single nucleotide polymorphism, copy number variation and somatic mutation), transcriptome [mRNA, long non-coding RNA (lncRNA), microRNA (miRNA) and circular RNA (circRNA)], epigenome (DNA methylation and histone modification), other modification and regulation elements (transcription factor, enhancer, promoter, gene silence, alternative splicing and RNA editing). In addition, AgingBank was also an online computational analysis platform containing five useful tools (Aging Landscape, Differential Expression Analyzer, Data Heat Mapper, Co-Expression Network and Functional Annotation Analyzer), nearly 112 high-throughput experiments of genes, miRNAs, lncRNAs, circRNAs and methylation sites related with aging. Cancer & Aging module was developed to explore the relationships between aging and cancer. Submit & Analysis module allows users upload and analyze their experiments data. AginBank is a valuable resource for elucidating aging-related biomarkers and relationships with other diseases.


Subject(s)
MicroRNAs , Neoplasms , RNA, Long Noncoding , Humans , Mice , Animals , DNA Copy Number Variations , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Circular , MicroRNAs/genetics , Neoplasms/genetics , Knowledge Bases , Aging/genetics
19.
Brief Bioinform ; 23(1)2022 01 17.
Article in English | MEDLINE | ID: mdl-34581409

ABSTRACT

Long non-coding RNAs (lncRNAs) that emanate from enhancer regions (defined as enhancer-associated lncRNAs, or elncRNAs) are emerging as critical regulators in disease progression. However, their biological characteristics and clinical relevance have not been fully portrayed. Here, based on the traditional expression quantitative loci (eQTL) and our optimized residual eQTL method, we comprehensively described the genetic effect on elncRNA expression in more than 300 lymphoblastoid cell lines. Meanwhile, a chromatin atlas of elncRNAs relative to the genetic regulation state was depicted. By applying the maximum likelihood estimate method, we successfully identified causal elncRNAs for protein-coding gene expression reprogramming and showed their associated single nucleotide polymorphisms (SNPs) favor binding of transcription factors. Further epigenome analysis revealed two immune-associated elncRNAs AL662844.4 and LINC01215 possess high levels of H3K27ac and H3K4me1 in human cancer. Besides, pan-cancer analysis of 3D genome, transcriptome, and regulatome data showed they potentially regulate tumor-immune cell interaction through affecting MHC class I genes and CD47, respectively. Moreover, our study showed there exist associations between elncRNA and patient survival. Finally, we made a user-friendly web interface available for exploring the regulatory relationship of SNP-elncRNA-protein-coding gene triplets (http://bio-bigdata.hrbmu.edu.cn/elncVarReg). Our study provides critical mechanistic insights for elncRNA function and illustrates their implications in human cancer.


Subject(s)
Neoplasms , RNA, Long Noncoding , Chromatin/genetics , Gene Expression Regulation , Humans , Likelihood Functions , Neoplasms/genetics , Polymorphism, Single Nucleotide , RNA, Long Noncoding/genetics
20.
Drug Metab Dispos ; 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38296653

ABSTRACT

Pregnane X receptor (PXR) belongs to the nuclear receptor superfamily that plays a crucial role in hepatic physiological and pathological conditions. Phase separation is a process in which biomacromolecules aggregate and condense into a dense phase as liquid condensates and coexist with a dilute phase, contributing to various cellular and biological functions. Till now, whether PXR could undergo phase separation remains unclear. This study aimed to investigate whether PXR undergoes phase separation. Analysis of the intrinsically disordered regions (IDRs) using algorithms tools indicated a low propensity of PXR to undergo phase separation. Experimental assays such as hyperosmotic stress, agonist treatment, and optoDroplets assay demonstrated the absence of phase separation for PXR. OptoDroplets assay revealed the inability of the fusion protein of Cry2 with PXR to form condensates upon blue light stimulation. Moreover, phase separation of PXR did not occur even though the mRNA and protein expression levels of PXR target, CYP3A4, changed after sorbitol treatment. In conclusion, for the first time, these findings suggested that exogenous PXR does not undergo phase separation following activation or under hyperosmotic stress in nucleus of cells. Significance Statement PXR plays a critical role in hepatic physiological and pathological processes. The present study clearly demonstrated that exogenous PXR does not undergo phase separation after activation by agonist or under hyperosmotic stress in nucleus. These findings may help understand PXR biology.

SELECTION OF CITATIONS
SEARCH DETAIL