Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Nanotechnology ; 28(20): 205701, 2017 May 19.
Article in English | MEDLINE | ID: mdl-28358717

ABSTRACT

This work reports the structural and vibrational properties of nanocrystals of corundum-type In2O3 (rh-In2O3) at high pressures by using angle-dispersive x-ray diffraction and Raman scattering measurements up to 30 GPa. The equation of state and the pressure dependence of the Raman-active modes of the corundum phase in nanocrystals are in good agreement with previous studies on bulk material and theoretical simulations on bulk rh-In2O3. Nanocrystalline rh-In2O3 showed stability under compression at least up to 20 GPa, unlike bulk rh-In2O3 which gradually transforms to the orthorhombic Pbca (Rh2O3-III-type) structure above 12-14 GPa. The different stability range found in nanocrystalline and bulk corundum-type In2O3 is discussed.

2.
Inorg Chem ; 52(1): 355-61, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23244465

ABSTRACT

The structural behavior of mineral Stromeyerite, AgCuS, has been studied by means of angle-dispersive X-ray diffraction measurements up to 13 GPa and ab initio total-energy calculations. Two high-pressure phase transitions are found at 1.4 and 5.7 GPa, from the initial distorted Ni(2)In-type phase (AuRbS-type, RP, space group Cmc2(1)) through an anti-PbClF-type phase (HP1, space group P4/nmm) to a monoclinic distortion of this latter phase (HP2, space group P2(1)/m). The collapse of the metal-metal interatomic distances at the RP-HP1 transition suggests a stronger metallic behavior of the high-pressure phase. The compressibility of the lattice parameters and the equation of state of the first pressure-induced phase have been experimentally determined. First-principles calculations present an overall agreement with the experimental results in terms of the high-pressure sequence and provide chemical insight into the AgCuS behavior under hydrostatic pressure.

3.
J Phys Condens Matter ; 25(47): 475402, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24172595

ABSTRACT

An experimental and theoretical study of the structural properties of monoclinic bismuth oxide (α-Bi2O3) under high pressures is here reported. Both synthetic and mineral bismite powder samples have been compressed up to 45 GPa and their equations of state have been determined with angle-dispersive x-ray diffraction measurements. Experimental results have been also compared with theoretical calculations which suggest the possibility of several phase transitions below 10 GPa. However, experiments reveal only a pressure-induced amorphization between 15 and 25 GPa, depending on sample quality and deviatoric stresses. The amorphous phase has been followed up to 45 GPa and its nature discussed.

SELECTION OF CITATIONS
SEARCH DETAIL