Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Biol Rep ; 51(1): 467, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38551765

ABSTRACT

BACKGROUND: Osteosarcoma (OS) stands out as the most common bone tumor, with approximately 20% of the patients receiving a diagnosis of metastatic OS at their initial assessment. A significant challenge lies in the frequent existence of undetected metastases during the initial diagnosis. Mesenchymal stem cells (MSCs) possess unique abilities that facilitate tumor growth, and their interaction with OS cells is crucial for metastatic spread. METHODS AND RESULTS: We demonstrated that, in vitro, MSCs exhibited a heightened migration response toward the secretome of non-metastatic OS cells. When challenged to a secretome derived from lungs preloaded with OS cells, MSCs exhibited greater migration toward lungs colonized with metastatic OS cells. Moreover, in vivo, MSCs displayed preferential migratory and homing behavior toward lungs colonized by metastatic OS cells. Metastatic OS cells, in turn, demonstrated an increased migratory response to the MSCs' secretome. This behavior was associated with heightened cathepsin D (CTSD) expression and the release of active metalloproteinase 2 (MMP2) by metastatic OS cells. CONCLUSIONS: Our assessment focused on two complementary tumor capabilities crucial to metastatic spread, emphasizing the significance of inherent cell features. The findings underscore the pivotal role of signaling integration within the niche, with a complex interplay of migratory responses among established OS cells in the lungs, prometastatic OS cells in the primary tumor, and circulating MSCs. Pulmonary metastases continue to be a significant factor contributing to OS mortality. Understanding these mechanisms and identifying differentially expressed genes is essential for pinpointing markers and targets to manage metastatic spread and improve outcomes for patients with OS.


Subject(s)
Bone Neoplasms , Osteosarcoma , Animals , Humans , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Cell Proliferation/genetics , Lung/metabolism , Osteosarcoma/genetics , Osteosarcoma/pathology , Stromal Cells/pathology , Bone Neoplasms/metabolism , Cell Line, Tumor , Tumor Microenvironment
2.
Apoptosis ; 26(7-8): 447-459, 2021 08.
Article in English | MEDLINE | ID: mdl-34024019

ABSTRACT

Osteosarcoma (OS) is the most frequent malignant bone tumor, affecting predominantly children. Metastases represent a major clinical challenge and an estimated 80% would present undetectable micrometastases at diagnosis. The identification of metastatic traits and molecules would impact in micrometastasis management. We demonstrated that OS LM7 metastatic cells secretome was able to induce microvascular endothelium cell rearrangements, an angiogenic-related trait. A proteomic analysis indicated a gain in angiogenic-related pathways in these cells, as compared to their parental-non-metastatic OS SAOS2 cells counterpart. Further, factors with proangiogenic functions like VEGF and PDGF were upregulated in LM7 cells. However, no differential angiogenic response was induced by LM7 cells in vivo. Regulation of the Fas-FasL axis is key for OS cells to colonize the lungs in this model. Analysis of the proteomic data with emphasis in apoptosis pathways and related processes revealed that the percentage of genes associated with those, presented similar levels in SAOS2 and LM7 cells. Further, the balance of expression levels of proteins with pro- and antiapoptotic functions in both cell types was subtle. Interestingly and of relevance to the model, Fas associated Factor 1 (FAF1), which participates in Fas signaling, was present in LM7 cells and was not detected in SAOS2 cells. The subtle differences in apoptosis-related events and molecules, together with the reported cell-survival functions of the identified angiogenic factors and the increased survival features that we observed in LM7 cells, suggest that the gain in angiogenesis-related pathways in metastatic OS cells would relate to a prosurvival switch rather to an angiogenic switch as an advantage feature to colonize the lungs. OS metastatic cells also displayed higher adhesion towards microvascular endothelium cells suggesting an advantage for tissue colonization. A gain in angiogenesis pathways and molecules does not result in major angiogenic potential. Together, our results suggest that metastatic OS cells would elicit signaling associated to a prosurvival phenotype, allowing homing into the hostile site for metastasis. During the gain of metastatic traits process, cell populations displaying higher adhesive ability to microvascular endothelium, negative regulation of the Fas-FasL axis in the lung parenchyma and a prosurvival switch, would be selected. This opens a new scenario where antiangiogenic treatments would affect cell survival rather than angiogenesis, and provides a molecular panel of expression that may help in distinguishing OS cells with different metastatic potential.


Subject(s)
Bone Neoplasms , Lung Neoplasms , Osteosarcoma , Adaptor Proteins, Signal Transducing , Apoptosis , Apoptosis Regulatory Proteins , Bone Neoplasms/genetics , Cell Line, Tumor , Cell Survival , Humans , Lung Neoplasms/genetics , Osteosarcoma/genetics , Proteomics , Secretome , Up-Regulation
3.
Int J Mol Sci ; 22(10)2021 May 11.
Article in English | MEDLINE | ID: mdl-34064584

ABSTRACT

Liver fibrosis results from many chronic injuries and may often progress to cirrhosis and hepatocellular carcinoma (HCC). In fact, up to 90% of HCC arise in a cirrhotic liver. Conversely, stress is implicated in liver damage, worsening disease outcome. Hence, stress could play a role in disrupting liver homeostasis, a concept that has not been fully explored. Here, in a murine model of TAA-induced liver fibrosis we identified nerve growth factor (NGF) to be a crucial regulator of the stress-induced fibrogenesis signaling pathway as it activates its receptor p75 neurotrophin receptor (p75NTR), increasing liver damage. Additionally, blocking the NGF decreased liver fibrosis whereas treatment with recombinant NGF accelerated the fibrotic process to a similar extent than stress challenge. We further show that the fibrogenesis induced by stress is characterized by specific changes in the hepatoglycocode (increased ß1,6GlcNAc-branched complex N-glycans and decreased core 1 O-glycans expression) which are also observed in patients with advanced fibrosis compared to patients with a low level of fibrosis. Our study facilitates an understanding of stress-induced liver injury and identify NGF signaling pathway in early stages of the disease, which contributes to the established fibrogenesis.


Subject(s)
Gene Expression Regulation , Liver Cirrhosis/pathology , Nerve Growth Factor/metabolism , Polysaccharides/metabolism , Receptors, Nerve Growth Factor/metabolism , Stress, Physiological , Thioacetamide/toxicity , Animals , Liver Cirrhosis/chemically induced , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Male , Mice , Mice, Inbred C57BL , Nerve Growth Factor/genetics , Receptors, Nerve Growth Factor/genetics
4.
J Hepatol ; 71(1): 78-90, 2019 07.
Article in English | MEDLINE | ID: mdl-30880225

ABSTRACT

BACKGROUND & AIMS: A causal link has recently been established between epigenetic alterations and hepatocarcinogenesis, indicating that epigenetic inhibition may have therapeutic potential. We aimed to identify and target epigenetic modifiers that show molecular alterations in hepatocellular carcinoma (HCC). METHODS: We studied the molecular-clinical correlations of epigenetic modifiers including bromodomains, histone acetyltransferases, lysine methyltransferases and lysine demethylases in HCC using The Cancer Genome Atlas (TCGA) data of 365 patients with HCC. The therapeutic potential of epigenetic inhibitors was evaluated in vitro and in vivo. RNA sequencing analysis and its correlation with expression and clinical data in the TCGA dataset were used to identify expression programs normalized by Jumonji lysine demethylase (JmjC) inhibitors. RESULTS: Genetic alterations, aberrant expression, and correlation between tumor expression and poor patient prognosis of epigenetic enzymes are common events in HCC. Epigenetic inhibitors that target bromodomain (JQ-1), lysine methyltransferases (BIX-1294 and LLY-507) and JmjC lysine demethylases (JIB-04, GSK-J4 and SD-70) reduce HCC aggressiveness. The pan-JmjC inhibitor JIB-04 had a potent antitumor effect in tumor bearing mice. HCC cells treated with JmjC inhibitors showed overlapping changes in expression programs related with inhibition of cell proliferation and induction of cell death. JmjC inhibition reverses an aggressive HCC gene expression program that is also altered in patients with HCC. Several genes downregulated by JmjC inhibitors are highly expressed in tumor vs. non-tumor parenchyma, and their high expression correlates with a poor prognosis. We identified and validated a 4-gene expression prognostic signature consisting of CENPA, KIF20A, PLK1, and NCAPG. CONCLUSIONS: The epigenetic alterations identified in HCC can be used to predict prognosis and to define a subgroup of high-risk patients that would potentially benefit from JmjC inhibitor therapy. LAY SUMMARY: In this study, we found that mutations and changes in expression of epigenetic modifiers are common events in human hepatocellular carcinoma, leading to an aggressive gene expression program and poor clinical prognosis. The transcriptional program can be reversed by pharmacological inhibition of Jumonji enzymes. This inhibition blocks hepatocellular carcinoma progression, providing a novel potential therapeutic strategy.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinogenesis , Carcinoma, Hepatocellular , Epigenesis, Genetic/drug effects , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Liver Neoplasms , Animals , Carcinogenesis/drug effects , Carcinogenesis/genetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/enzymology , Carcinoma, Hepatocellular/genetics , Cell Cycle Proteins/genetics , Cell Line, Tumor , Centromere Protein A/genetics , Drug Discovery , Humans , Kinesins/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/enzymology , Liver Neoplasms/genetics , Mice , Mutation , Prognosis , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , Transcriptome , Polo-Like Kinase 1
5.
Glycobiology ; 25(8): 825-35, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25882295

ABSTRACT

Cirrhosis is characterized by an excessive accumulation of extracellular matrix components including hyaluronic acid (HA) and is widely considered a preneoplastic condition for hepatocellular carcinoma (HCC). 4-Methylumbelliferone (4MU) is an inhibitor of HA synthesis and has anticancer activity in an orthotopic HCC model with underlying fibrosis. Our aim was to explore the effects of HA inhibition by 4MU orally administered on tumor microenvironment. Hepa129 tumor cells were inoculated orthotopically in C3H/HeJ male mice with fibrosis induced by thioacetamide. Mice were orally treated with 4MU. The effects of 4MU on angiogenesis were evaluated by immunostaining of CD31 and quantification of proangiogenic factors (vascular endothelial growth factor, VEGF, interleukin-6, IL-6 and C-X-C motif chemokine 12, CXCL12). IL-6 was also quantified in Hepa129 cells in vitro after treatment with 4MU. Migration of endothelial cells and tube formation were also analyzed. As a result, 4MU treatment decreases tumor growth and increased animal survival. Systemic levels of VEGF were significantly inhibited in 4MU-treated mice. Expression of CD31 was reduced after 4MU therapy in liver parenchyma in comparison with control group. In addition, mRNA expression and protein levels of IL-6 and VEGF were inhibited both in tumor tissue and in nontumoral liver parenchyma. Interestingly, IL-6 production was dramatically reduced in Kupffer cells isolated from 4MU-treated mice, and in Hepa129 cells in vitro. Besides, 4MU was able to inhibit endothelial cell migration and tube formation. In conclusion, 4MU has antitumor activity in vivo and its mechanisms of action involve an inhibition of angiogenesis and IL-6 production. 4MU is an orally available molecule with potential for HCC treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Gene Expression Regulation, Neoplastic , Hymecromone/pharmacology , Liver Cirrhosis/drug therapy , Liver Neoplasms/drug therapy , Neovascularization, Pathologic/prevention & control , Administration, Oral , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/drug effects , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Interleukin-6/antagonists & inhibitors , Interleukin-6/genetics , Interleukin-6/metabolism , Kupffer Cells/drug effects , Kupffer Cells/metabolism , Kupffer Cells/pathology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/genetics , Liver Cirrhosis/mortality , Liver Neoplasms/genetics , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred C3H , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Signal Transduction , Survival Analysis , Thioacetamide , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
6.
Angiogenesis ; 17(1): 119-28, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24068342

ABSTRACT

During liver fibrogenesis the immune response and angiogenesis process are fine-tuned resulting in activation of hepatic stellate cells that produce an excess of extracellular matrix proteins. Dendritic cells (DC) play a central role modulating the liver immunity and have recently been implicated to favour fibrosis regression; although their ability to influence the development of fibrogenesis is unknown. Therefore, we explored whether the depletion of DC during early stages of liver injury has an impact in the development of fibrogenesis. Using the CD11c.DTR transgenic mice, DC were depleted in two experimental models of fibrosis in vivo. The effect of anti-angiogenic therapy was tested during early stages of liver fibrogenesis. DC depletion accelerates the development of fibrosis and as a consequence, the angiogenesis process is boosted. We observed up-regulation of pro-angiogenic factors together with an enhanced vascular endothelial growth factor (VEGF) bioavailability, mainly evidenced by the decrease of anti-angiogenic VEGF receptor 1 (also known as sFlt-1) levels. Interestingly, fibrogenesis process enhanced the expression of Flt-1 on hepatic DC and administration of sFlt-1 was sufficient to abrogate the acceleration of fibrogenesis upon DC depletion. Thus, DC emerge as novel players during the development of liver fibrosis regulating the angiogenesis process and thereby influencing fibrogenesis.


Subject(s)
Dendritic Cells/metabolism , Liver Cirrhosis/metabolism , Neovascularization, Physiologic , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism , Animals , CD11c Antigen/biosynthesis , CD11c Antigen/genetics , Dendritic Cells/pathology , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Liver Cirrhosis/physiopathology , Mice , Mice, Transgenic , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor Receptor-1/genetics
7.
Liver Int ; 34(3): 330-42, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24112437

ABSTRACT

Mesenchymal stromal cells (MSCs) are more often obtained from adult and extraembryonic tissues, with the latter sources being likely better from a therapeutic perspective. MSCs show tropism towards inflamed or tumourigenic sites. Mechanisms involved in MSC recruitment into tumours are comprehensively analysed, including chemoattractant signalling axes, endothelial adhesion and transmigration. In addition, signals derived from hepatocellular carcinoma (HCC) tumour microenvironment and their influence in MSC tropism and tumour recruitment are dissected, as well as the present controversy regarding their influence on tumour growth and/or metastasis. Finally, evidences available on the use of MSCs and other selected progenitor/stem cells as vehicles of antitumourigenic genes are discussed. A better knowledge of the mechanisms involved in progenitor/stem cell recruitment to HCC tumours is proposed in order to enhance their tumour targeting which may result in improvements in cell-based gene therapy strategies.


Subject(s)
Carcinoma, Hepatocellular/therapy , Liver Neoplasms/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Animals , Cell Differentiation , Cell Line, Tumor , Cell Movement , Disease Models, Animal , Genetic Therapy/methods , Humans , Mice , Tumor Microenvironment
8.
Cell Death Dis ; 15(8): 575, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39117607

ABSTRACT

Adverse intrauterine conditions may cause fetal growth restriction (FGR), a pregnancy complication frequently linked to perinatal morbidity and mortality. Although many studies have focused on FGR, the pathophysiological processes underlying this disorder are complex and incompletely understood. We have recently determined that galectin-3 (gal-3), a ß-galactoside-binding protein, regulates pregnancy-associated processes, including uterine receptibility, maternal vascular adaptation and placentation. Because gal-3 is expressed at both sides of the maternal-fetal interface, we unraveled the contribution of maternal- and paternal-derived gal-3 on fetal-placental development in the prenatal window and its effects on the post-natal period. Deficiency of maternal gal-3 induced maternal gut microbiome dysbiosis, resulting in a sex-specific fetal growth restriction mainly observed in female fetuses and offspring. In addition, poor placental metabolic adaptions (characterized by decreased trophoblast glycogen content and insulin-like growth factor 2 (Igf2) gene hypomethylation) were only associated with a lack of maternal-derived gal-3. Paternal gal-3 deficiency caused compromised vascularization in the placental labyrinth without affecting fetal growth trajectory. Thus, maternal-derived gal-3 may play a key role in fetal-placental development through the gut-placenta axis.


Subject(s)
Fetal Growth Retardation , Galectin 3 , Placenta , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/genetics , Pregnancy , Female , Animals , Placenta/metabolism , Mice , Galectin 3/metabolism , Galectin 3/deficiency , Galectin 3/genetics , Male , Gastrointestinal Microbiome , Mice, Inbred C57BL , Humans , Fetal Development , Insulin-Like Growth Factor II/metabolism , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/deficiency , Trophoblasts/metabolism
9.
Stem Cell Res Ther ; 15(1): 208, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992782

ABSTRACT

BACKGROUND: Mesenchymal stromal cells (MSCs) tropism for tumours allows their use as carriers of antitumoural factors and in vitro transcribed mRNA (IVT mRNA) is a promising tool for effective transient expression without insertional mutagenesis risk. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine with antitumor properties by stimulating the specific immune response. The aim of this work was to generate modified MSCs by IVT mRNA transfection to overexpress GM-CSF and determine their therapeutic effect alone or in combination with doxorubicin (Dox) in a murine model of hepatocellular carcinoma (HCC). METHODS: DsRed or GM-CSF IVT mRNAs were generated from a cDNA template designed with specific primers followed by reverse transcription. Lipofectamine was used to transfect MSCs with DsRed (MSC/DsRed) or GM-CSF IVT mRNA (MSC/GM-CSF). Gene expression and cell surface markers were determined by flow cytometry. GM-CSF secretion was determined by ELISA. For in vitro experiments, the J774 macrophage line and bone marrow monocytes from mice were used to test GM-CSF function. An HCC model was developed by subcutaneous inoculation (s.c.) of Hepa129 cells into C3H/HeN mice. After s.c. injection of MSC/GM-CSF, Dox, or their combination, tumour size and mouse survival were evaluated. Tumour samples were collected for mRNA analysis and flow cytometry. RESULTS: DsRed expression by MSCs was observed from 2 h to 15 days after IVT mRNA transfection. Tumour growth remained unaltered after the administration of DsRed-expressing MSCs in a murine model of HCC and MSCs expressing GM-CSF maintained their phenotypic characteristic and migration capability. GM-CSF secreted by modified MSCs induced the differentiation of murine monocytes to dendritic cells and promoted a proinflammatory phenotype in the J774 macrophage cell line. In vivo, MSC/GM-CSF in combination with Dox strongly reduced HCC tumour growth in C3H/HeN mice and extended mouse survival in comparison with individual treatments. In addition, the tumours in the MSC/GM-CSF + Dox treated group exhibited elevated expression of proinflammatory genes and increased infiltration of CD8 + T cells and macrophages. CONCLUSIONS: Our results showed that IVT mRNA transfection is a suitable strategy for obtaining modified MSCs for therapeutic purposes. MSC/GM-CSF in combination with low doses of Dox led to a synergistic effect by increasing the proinflammatory tumour microenvironment, enhancing the antitumoural response in HCC.


Subject(s)
Carcinoma, Hepatocellular , Doxorubicin , Granulocyte-Macrophage Colony-Stimulating Factor , Liver Neoplasms , Mesenchymal Stem Cells , RNA, Messenger , Animals , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Mesenchymal Stem Cells/metabolism , Mice , Liver Neoplasms/therapy , Liver Neoplasms/pathology , Liver Neoplasms/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Cell Line, Tumor , Mesenchymal Stem Cell Transplantation/methods , Humans , Mice, Inbred C3H , Transfection
10.
J Reprod Immunol ; 164: 104284, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908337

ABSTRACT

Abnormal placental angiogenesis during gestation resulting from high levels of anti-angiogenic factors, soluble fms-like tyrosine kinase-1 (sFLT1) and soluble endoglin, has been implicated in the progression of preeclampsia (PE). This heterogeneous syndrome (defined by hypertension with or without proteinuria after 20 weeks of pregnancy) remains a major global health burden with long-term consequences for both mothers and child. Previously, we showed that in vivo systemic human (hsFLT1) overexpression led to reduced placental efficiency and PE-like syndrome in mice. Galectins (gal-1, -3 and -9) are critical determinants of vascular adaptation to pregnancy and dysregulation of the galectin-glycan circuits is associated with the development of this life-threatening disease. In this study, we assessed the galectin-glycan networks at the maternal-fetal interface associated with the hsFLT1-induced PE in mice. We observed an increase on the maternal gal-1 expression in the decidua and junctional zone layers of the placenta derived from hs FLT1high pregnancies. In contrast, placental gal-3 and gal-9 expression were not sensitive to the hsFLT1 overexpression. In addition, O- and N-linked glycan expression, poly-LacNAc sequences and terminal sialylation were down-regulated in hsFLT1 high placentas. Thus, the gal-1-glycan axis appear to play an important role counteracting the anti-angiogenic status caused by sFLT1, becoming critical for vascular adaptation at the maternal-fetal interface.


Subject(s)
Placenta , Pre-Eclampsia , Vascular Endothelial Growth Factor Receptor-1 , Pregnancy , Female , Animals , Humans , Vascular Endothelial Growth Factor Receptor-1/metabolism , Mice , Pre-Eclampsia/metabolism , Placenta/metabolism , Glycosylation , Galectins/metabolism , Neovascularization, Pathologic/metabolism , Disease Models, Animal
11.
iScience ; 27(8): 110470, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39148710

ABSTRACT

Besides neutralizing antibodies, which are considered an important measure for vaccine immunogenicity, Fc-mediated antibody functions can contribute to antibody-mediated protection. They are strongly influenced by structural antibody properties such as subclass and Fc glycan composition. We here applied a systems serology approach to dissect humoral immune responses induced by MVA-MERS-S, an MVA-vectored vaccine against the Middle East respiratory syndrome coronavirus (MERS-CoV). Building on preceding studies reporting the safety and immunogenicity of MVA-MERS-S, our study highlights the potential of a late boost, administered one year after prime, to enhance both neutralizing and Fc-mediated antibody functionality compared to the primary vaccination series. Distinct characteristics were observed for antibodies specific to the MERS-CoV spike protein S1 and S2 subunits, regarding subclass and glycan compositions as well as Fc functionality. These findings highlight the benefit of a late homologous booster vaccination with MVA-MERS-S and may be of interest for the design of future coronavirus vaccines.

12.
Dermatol Pract Concept ; 14(3)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39122530

ABSTRACT

INTRODUCTION: Acne keloidalis nuchae (AKN) is a primary cicatricial alopecia with mixed infiltrate. It is more common in Africans or persons of African descent. OBJECTIVES: Our objective was to describe the epidemiology and clinical and trichoscopic presentations of AKN in a large series of Hispanic patients. METHODS: This was a retrospective study from 10 different dermatological centers in Argentina, Colombia, Mexico, and Peru. Patients with a clinical diagnosis of AKN treated by 12 dermatologists experienced in trichology from 2018 to 2022 were included. The Umar classification system was used to determine severity. RESULTS: We identified 142 patients with AKN: 98% were male (n=140) with a mean age of 32 years; 108 patients had a previous history of trauma to the nuchal area (76%, P < 0.001); and 48 were positive for a history of acne (33.8%, P = 0.021). Patients with >50 months of evolution were mainly classified in classes III and IV compared to patients with an evolution of <50 months (30%, n=9 vs. 14%, n=15; P = 0.019; respectively). CONCLUSION: AKN should be considered in the differential diagnosis in the Hispanic population. Advanced stages of the disease are correlated with chronic evolution.

13.
Front Immunol ; 14: 1196395, 2023.
Article in English | MEDLINE | ID: mdl-37475853

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic imposed a risk of infection and disease in pregnant women and neonates. Successful pregnancy requires a fine-tuned regulation of the maternal immune system to accommodate the growing fetus and to protect the mother from infection. Galectins, a family of ß-galactoside-binding proteins, modulate immune and inflammatory processes and have been recognized as critical factors in reproductive orchestration, including maternal immune adaptation in pregnancy. Pregnancy-specific glycoprotein 1 (PSG1) is a recently identified gal-1 ligand at the maternal-fetal interface, which may facilitate a successful pregnancy. Several studies suggest that galectins are involved in the immune response in SARS-CoV-2-infected patients. However, the galectins and PSG1 signature upon SARS-CoV-2 infection and vaccination during pregnancy remain unclear. In the present study, we examined the maternal circulating levels of galectins (gal-1, gal-3, gal-7, and gal-9) and PSG1 in pregnant women infected with SARS-CoV-2 before vaccination or uninfected women who were vaccinated against SARS-CoV-2 and correlated their expression with different pregnancy parameters. SARS-CoV-2 infection or vaccination during pregnancy provoked an increase in maternal gal-1 circulating levels. On the other hand, levels of PSG1 were only augmented upon SARS-CoV-2 infection. A healthy pregnancy is associated with a positive correlation between gal-1 concentrations and gal-3 or gal-9; however, no correlation was observed between these lectins during SARS-CoV-2 infection. Transcriptome analysis of the placenta showed that gal-1, gal-3, and several PSG and glycoenzymes responsible for the synthesis of gal-1-binding glycotopes (such as linkage-specific N-acetyl-glucosaminyltransferases (MGATs)) are upregulated in pregnant women infected with SARS-CoV-2. Collectively, our findings identify a dynamically regulated "galectin-specific signature" that accompanies the SARS-CoV-2 infection and vaccination in pregnancy, and they highlight a potentially significant role for gal-1 as a key pregnancy protective alarmin during virus infection.


Subject(s)
COVID-19 , Placenta , Female , Humans , Infant, Newborn , Pregnancy , Alarmins/metabolism , COVID-19/metabolism , Galectin 1/metabolism , Galectins/metabolism , SARS-CoV-2/metabolism
14.
PNAS Nexus ; 2(8): pgad247, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37575671

ABSTRACT

Placental abnormalities cause impaired fetal growth and poor pregnancy outcome (e.g. preeclampsia [PE]) with long-lasting consequences for the mother and offspring. The molecular dialogue between the maternal niche and the developing placenta is critical for the function of this organ. Galectin-1 (gal-1), a highly expressed glycan-binding protein at the maternal-fetal interface, orchestrates the maternal adaptation to pregnancy and placenta development. Down-regulation or deficiency of gal-1 during pregnancy is associated with the development of PE; however, the maternal- and placental-derived gal-1 contributions to the disease onset are largely unknown. We demonstrate that lack of gal-1 imposes a risk for PE development in a niche-specific manner, and this is accompanied by a placental dysfunction highly influenced by the absence of maternal-derived gal-1. Notably, differential placental glycosylation through the Sda-capped N-glycans dominates the invasive trophoblast capacity triggered by maternal-derived gal-1. Our findings show that gal-1 derived from the maternal niche is essential for healthy placenta development and indicate that impairment of the gal-1 signaling pathway within the maternal niche could be a molecular cause for maternal cardiovascular maladaptation during pregnancy.

15.
Glycobiology ; 22(3): 400-10, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22038477

ABSTRACT

Liver cirrhosis is characterized by an excessive accumulation of extracellular matrix components, including hyaluronan (HA). In addition, cirrhosis is considered a pre-neoplastic disease for hepatocellular carcinoma (HCC). Altered HA biosynthesis is associated with cancer progression but its role in HCC is unknown. 4-Methylumbelliferone (4-MU), an orally available agent, is an HA synthesis inhibitor with anticancer properties. In this work, we used an orthotopic Hepa129 HCC model established in fibrotic livers induced by thioacetamide. We evaluated 4-MU effects on HCC cells and hepatic stellate cells (HSCs) in vitro by proliferation, apoptosis and cytotoxicity assays; tumor growth and fibrogenesis were also analyzed in vivo. Our results showed that treatment of HCC cells with 4-MU significantly reduced tumor cell proliferation and induced apoptosis, while primary cultured hepatocytes remained unaffected. 4-MU therapy reduced hepatic and systemic levels of HA. Tumors systemically treated with 4-MU showed the extensive areas of necrosis, inflammatory infiltrate and 2-3-fold reduced number of tumor satellites. No signs of toxicity were observed after 4-MU therapy. Animals treated with 4-MU developed a reduced fibrosis degree compared with controls (F1-2 vs F2-3, respectively). Importantly, 4-MU induced the apoptosis of HSCs in vitro and decreased the amount of activated HSCs in vivo. In conclusion, our results suggest a role for 4-MU as an anticancer agent for HCC associated with advanced fibrosis.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Glucuronosyltransferase/antagonists & inhibitors , Hymecromone/analogs & derivatives , Liver Neoplasms, Experimental/drug therapy , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/toxicity , Apoptosis/drug effects , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Fibroblasts/drug effects , Fibroblasts/physiology , Humans , Hyaluronan Receptors/metabolism , Hyaluronan Synthases , Hyaluronic Acid/biosynthesis , Hyaluronic Acid/metabolism , Hymecromone/pharmacology , Hymecromone/therapeutic use , Hymecromone/toxicity , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver Cirrhosis, Experimental/chemically induced , Liver Cirrhosis, Experimental/drug therapy , Liver Cirrhosis, Experimental/pathology , Liver Neoplasms, Experimental/pathology , Male , Mice , Mice, Inbred C3H , Neoplasm Transplantation , Thioacetamide , Tumor Burden/drug effects
16.
World J Oncol ; 13(2): 53-58, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35571342

ABSTRACT

Background: In Mexico, about 30% of renal cancer patients are diagnosed in a metastatic state. Despite the recent advances in the treatment of cancer, metastatic renal cancer is still an incurable illness. Thus, identifying prognostic factors helps improve prognosis accuracy and survival prediction for patients. Methods: In this study, we retrospectively analyzed 26 patients with histological diagnosis of renal cell carcinoma, including clear cell and other subtypes in stage IV (metastatic), recurrent or unresectable disease. We performed a multivariate analysis of overall survival regarding the congruity between prognostic scales. Results: Our results showed a significant difference in favor of patients with congruity between scales for progression-free survival (18.9 vs. 3.1 months; P = 0.048) and a tendency towards better overall survival in patients with the congruity of both scales compared to the discordant patients (112 vs. 32 months; P = 0.99). Conclusion: This study highlights the discordance between Memorial Sloan-Kettering Cancer Center and International Metastatic Renal Cell Carcinoma Database Consortium scales, which was associated with worse prognosis with a significant difference in progression-free survival but not in overall survival.

17.
World J Oncol ; 13(4): 185-189, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36128588

ABSTRACT

Background: Breast cancer is one of the most common malignant forms of neoplasia worldwide; programmed death protein 1 (PD-1), an inhibitory receptor of T lymphocytes, and its ligand programmed death ligand 1 (PD-L1), play an important role in the ability of tumor cells to evade the host's immune system. Methods: We conducted a descriptive, observational study using retrospective data and an open evaluation using immunohistochemistry to determine the general prevalence of PD-L1 expression in 63 women with breast cancer who underwent a modified radical mastectomy, or quadrantectomy, with axillary lymph node removal. Results: The prevalence of PD-L1 expression was 32% in patients with breast cancer treated with radical mastectomy. PD-L1 expression was higher in patients with large tumor size (19% for pT1, 37% for pT2, 50% for pT3, and 100% for pT4), metastasis in regional lymph nodes (25% for N0, 38% for N1, 75% for pN2, and 38% for pN3), and higher histological grade carcinoma (0% for grade 1, 23% for grade 2, and 50% for grade 3). Conclusions: These findings suggest that PD-L1 expression is heterogeneous in breast cancer tumors and that its expression varies highly in tumor regions over time. The evaluation of PD-L1 expression is significant, because of the therapeutical implications that could improve the outcomes and prognosis of these patients.

18.
Cancer Immunol Immunother ; 60(10): 1383-95, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21638126

ABSTRACT

We have recently shown that systemic administration of low molecular weight hyaluronan (LMW HA) significantly reduces colorectal carcinoma (CRC) growth in vivo. The elicited response is partially mediated by activated dendritic cells (DC). To potentiate the ability of DC loaded with whole tumor lysate (DC/TL) to induce immunity against CRC in mice, we aimed to study the effects of preconditioning DC with LMW HA for therapeutic vaccination. LMW HA improved maturation of ex vivo generated DC, increased IL-12, decreased IL-10 production, and enhanced a MLR activity in vitro. Although TNF-α showed a similar capacity to mature DC, preconditioning of DC/TL with LMW HA increased their ability to migrate in vitro toward CCL19 and CCL-21 in a CD44- and a TLR4-independent manner; this effect was superior to Poly(I:C), LPS, or TNF-α and partially associated with an increase in the expression of CCR7. Importantly, LMW HA dramatically enhanced the in vivo DC recruitment to tumor-regional lymph nodes. When these LMW HA-treated CRC tumor lysate-pulsed DC (DC/TL/LMW HA) were administered to tumor-bearing mice, a potent antitumor response was observed when compared to DC pulsed with tumor lysate alone and matured with TNF-α. Then, we showed that splenocytes isolated from animals treated with DC/TL/LMW HA presented a higher proliferative capacity, increased IFN-γ production, and secreted lower levels of the immunosuppressive IL-10. Besides, increased specific CTL response was observed in DC/TL/LMW HA-treated animals and induced long-term protection against tumor recurrence. Our data show that LMW HA is superior to other agents at inducing DC migration; therefore, LMW HA could be considered a new adjuvant candidate in the preparation of DC-based anticancer vaccines with potent immunostimulatory properties.


Subject(s)
Cancer Vaccines/immunology , Cell Movement/drug effects , Colorectal Neoplasms/immunology , Dendritic Cells/drug effects , Hyaluronic Acid/pharmacology , Adjuvants, Immunologic/pharmacology , Animals , Antigens, Neoplasm/immunology , Cell Separation , Colorectal Neoplasms/therapy , Cytokines/biosynthesis , Dendritic Cells/cytology , Dendritic Cells/transplantation , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Hyaluronic Acid/immunology , Immunotherapy , Lymphocyte Culture Test, Mixed , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
19.
Mol Pharm ; 8(5): 1538-48, 2011 Oct 03.
Article in English | MEDLINE | ID: mdl-21770423

ABSTRACT

Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third cause of cancer-related death. Fibrogenesis is an active process characterized by the production of several proinflammatory cytokines, chemokines and growth factors. It involves the activation of hepatic stellate cells (HSCs) which accumulate at the site of injury and are the main source of the extracellular matrix deposits. There are no curative treatments for advanced HCC, thus, new therapies are urgently needed. Mesenchymal stromal cells (MSCs) have the ability to migrate to sites of injury or to remodeling tissues after in vivo administration; however, in several cancer models they demonstrated limited efficacy to eradicate experimental tumors partially due to poor engraftment. Thus, the aim of this work was to analyze the capacity of human MSCs (hMSCs) to migrate and anchor to HCC tumors. We observed that HCC and HSCs, but not nontumoral stroma, produce factors that induce hMSC migration in vitro. Conditioned media (CM) generated from established HCC cell lines were found to induce higher levels of hMSC migration than CM derived from fresh patient tumor samples. In addition, after exposure to CM from HCC cells or HSCs, hMSCs demonstrated adhesion and invasion capability to endothelial cells, type IV collagen and fibrinogen. Consistently, these cells were found to increase metalloproteinase-2 activity. In vivo studies with subcutaneous and orthotopic HCC models indicated that intravenously infused hMSCs migrated to lungs, spleen and liver. Seven days post-hMSC infusion cells were located also in the tumor in both models, but the signal intensity was significantly higher in orthotopic than in subcutaneous model. Interestingly, when orthotopic HCC tumors where established in noncirrhotic or cirrhotic livers, the amount of hMSCs localized in the liver was higher in comparison with healthy animals. A very low signal was found in lungs and spleens, indicating that liver tumors are able to recruit them at high efficiency. Taken together our results indicate that HCC and HSC cells produce factors that efficiently induce hMSC migration toward tumor microenvironment in vitro and in vivo and make MSCs candidates for cell-based therapeutic strategies to hepatocellular carcinoma associated with fibrosis.


Subject(s)
Bone Marrow Cells/metabolism , Carcinoma, Hepatocellular/pathology , Cell Movement , Liver Cirrhosis/metabolism , Liver Neoplasms/pathology , Mesenchymal Stem Cells/pathology , Tumor Microenvironment , Animals , Bone Marrow Cells/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/physiopathology , Carcinoma, Hepatocellular/therapy , Cell Adhesion , Cell Line , Cell Line, Tumor , Culture Media, Conditioned , Endothelium, Vascular/metabolism , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Humans , Liver Cirrhosis/etiology , Liver Cirrhosis/pathology , Liver Cirrhosis/therapy , Liver Neoplasms/metabolism , Liver Neoplasms/physiopathology , Liver Neoplasms/therapy , Male , Matrix Metalloproteinase 2/metabolism , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Mice , Mice, Nude , Neoplasm Proteins/metabolism , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Tumor Cells, Cultured , Up-Regulation , Xenograft Model Antitumor Assays
20.
Mol Neurobiol ; 57(2): 600-615, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31399955

ABSTRACT

Sporadic Alzheimer's disease (sAD) is the most prevalent neurodegenerative pathology with no effective therapy until date. This disease promotes hippocampal degeneration, which in turn affects multiple cognitive domains and daily life activities. In this study, we hypothesized that long-lasting therapy with mesenchymal stem cells (MSC) would have a restorative effect on the behavioral alterations and cognitive decline typical of sAD, as they have shown neurogenic and immunomodulatory activities. To test this, we chronically injected intravenous human MSC in a sAD rat model induced by the intracerebroventricular injection of streptozotocin (STZ). During the last 2 weeks, we performed open field, Barnes maze, and marble burying tests. STZ-treated rats displayed a poor performance in all behavioral tests. Cell therapy increased exploratory behavior, decreased anxiety, and improved spatial memory and marble burying behavior, the latter being representative of daily life activities. On the hippocampus, we found that STZ promotes neuronal loss in the Cornus Ammoni (CA1) field and decreased neurogenesis in the dentate gyrus. Also, STZ induced a reduction in hippocampal volume and presynaptic protein levels and an exacerbated microgliosis, relevant AD features. The therapy rescued CA1 neurodegeneration but did not reverse the decrease of immature neurons, suggesting that the therapy effect varied among hippocampal neuronal populations. Importantly, cell therapy ameliorated microgliosis and restored hippocampal atrophy and some presynaptic protein levels in the sAD model. These findings, by showing that intravenous injection of human MSC restores behavioral and hippocampal alterations in experimental sAD, support the potential use of MSC therapy for the treatment of neurodegenerative diseases.


Subject(s)
Behavior, Animal , Hippocampus/pathology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Animals , Anxiety/complications , Anxiety/pathology , Anxiety/physiopathology , Exploratory Behavior , Glial Fibrillary Acidic Protein/metabolism , Gliosis/complications , Gliosis/pathology , Male , Maze Learning , Memory , Nerve Tissue Proteins/metabolism , Neurogenesis , Neurons/pathology , Organ Size , Rats, Sprague-Dawley , Spatial Learning , Streptozocin , Synapses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL