Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
PLoS One ; 14(9): e0223025, 2019.
Article in English | MEDLINE | ID: mdl-31560732

ABSTRACT

Clostridium difficile (Cd) infection (CDI) typically occurs after antibiotic usage perturbs the gut microbiota. Mucosa-associated invariant T cells (MAIT) are found in the gut and their development is dependent on Major histocompatibility complex-related protein 1 (MR1) and the host microbiome. Here we were interested in determining whether the absence of MR1 impacts resistance to CDI. To this end, wild-type (WT) and MR1-/- mice were treated with antibiotics and then infected with Cd spores. Surprisingly, MR1-/- mice exhibited resistance to Cd colonization. 16S rRNA gene sequencing of feces revealed inherent differences in microbial composition. This colonization resistance was transferred from MR1-/- to WT mice via fecal microbiota transplantation, suggesting that MR1-dependent factors influence the microbiota, leading to CDI susceptibility.


Subject(s)
Clostridium Infections/immunology , Disease Resistance/genetics , Gastrointestinal Microbiome/immunology , Histocompatibility Antigens Class I/genetics , Minor Histocompatibility Antigens/genetics , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/adverse effects , Cefoperazone/administration & dosage , Cefoperazone/adverse effects , Clostridium Infections/etiology , Clostridium Infections/microbiology , Clostridium Infections/therapy , Disease Models, Animal , Disease Resistance/immunology , Fecal Microbiota Transplantation , Feces/microbiology , Gastrointestinal Microbiome/drug effects , Histocompatibility Antigens Class I/immunology , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Mice , Mice, Knockout , Minor Histocompatibility Antigens/immunology , Mucosal-Associated Invariant T Cells/immunology , Specific Pathogen-Free Organisms
2.
PLoS One ; 14(9): e0206484, 2019.
Article in English | MEDLINE | ID: mdl-31509535

ABSTRACT

A comprehensive knowledge of the types and ratios of microbes that inhabit the healthy human gut is necessary before any kind of pre-clinical or clinical study can be performed that attempts to alter the microbiome to treat a condition or improve therapy outcome. To address this need we present an innovative scalable comprehensive analysis workflow, a healthy human reference microbiome list and abundance profile (GutFeelingKB), and a novel Fecal Biome Population Report (FecalBiome) with clinical applicability. GutFeelingKB provides a list of 157 organisms (8 phyla, 18 classes, 23 orders, 38 families, 59 genera and 109 species) that forms the baseline biome and therefore can be used as healthy controls for studies related to dysbiosis. This list can be expanded to 863 organisms if closely related proteomes are considered. The incorporation of microbiome science into routine clinical practice necessitates a standard report for comparison of an individual's microbiome to the growing knowledgebase of "normal" microbiome data. The FecalBiome and the underlying technology of GutFeelingKB address this need. The knowledgebase can be useful to regulatory agencies for the assessment of fecal transplant and other microbiome products, as it contains a list of organisms from healthy individuals. In addition to the list of organisms and their abundances, this study also generated a collection of assembled contiguous sequences (contigs) of metagenomics dark matter. In this study, metagenomic dark matter represents sequences that cannot be mapped to any known sequence but can be assembled into contigs of 10,000 nucleotides or higher. These sequences can be used to create primers to study potential novel organisms. All data is freely available from https://hive.biochemistry.gwu.edu/gfkb and NCBI's Short Read Archive.


Subject(s)
Gastrointestinal Microbiome , Metagenome , Metagenomics , Feces/microbiology , Humans , Metagenomics/methods
3.
Sci Rep ; 7(1): 4718, 2017 07 05.
Article in English | MEDLINE | ID: mdl-28680050

ABSTRACT

No licensed human vaccines are currently available against leishmaniasis. Several anti-leishmanial vaccines are currently undergoing testing, including genetically modified live-attenuated parasite vaccines. Studies with live attenuated Leishmania vaccines such as centrin deleted Leishmania donovani parasites (LdCen -/-) showed protective immunity in animal models. Such studies typically examined the biomarkers of protective immunity however the biomarkers of attenuation in the parasite preparations have not received adequate attention. As several candidate vaccines enter clinical trials, a more complete product characterization to enable maintenance of product quality will help meet regulatory requirements. Towards this goal, we have determined the complete genome sequence of LdCen -/- and its parent strain Ld1S-2D (LdWT) and characterized the LdCen -/- vaccine strain using bioinformatics tools. Results showed that the LdCen -/- parasites, in addition to loss of the centrin gene, have additional deletions ranging from 350 bp to 6900 bp in non-contiguous loci on several chromosomes, most commonly in untranslated regions. We have experimentally verified a subset of these adventitious deletions that had no impact on the attenuation of the LdCen -/- parasites. Our results identified hitherto unknown features of attenuation of virulence that could be used as markers of product quality in production lots and highlight the importance of product characterization in parasitic vaccines.


Subject(s)
Leishmania donovani/genetics , Vaccines, Attenuated/genetics , Whole Genome Sequencing/methods , Computational Biology/methods , Genetic Markers , Genome, Protozoan , Humans , Protozoan Vaccines/genetics , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL