Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Proc Natl Acad Sci U S A ; 120(2): e2122467120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36598943

ABSTRACT

Forkhead box G1 (FOXG1) has important functions in neuronal differentiation and balances excitatory/inhibitory network activity. Thus far, molecular processes underlying FOXG1 function are largely unexplored. Here, we present a multiomics data set exploring how FOXG1 impacts neuronal maturation at the chromatin level in the mouse hippocampus. At a genome-wide level, FOXG1 i) both represses and activates transcription, ii) binds mainly to enhancer regions, iii) reconfigures the epigenetic landscape through bidirectional alteration of H3K27ac, H3K4me3, and chromatin accessibility, and iv) operates synergistically with NEUROD1. Interestingly, we could not detect a clear hierarchy of FOXG1 and NEUROD1, but instead, provide the evidence that they act in a highly cooperative manner to control neuronal maturation. Genes affected by the chromatin alterations impact synaptogenesis and axonogenesis. Inhibition of histone deacetylases partially rescues transcriptional alterations upon FOXG1 reduction. This integrated multiomics view of changes upon FOXG1 reduction reveals an unprecedented multimodality of FOXG1 functions converging on neuronal maturation. It fuels therapeutic options based on epigenetic drugs to alleviate, at least in part, neuronal dysfunction.


Subject(s)
Forkhead Transcription Factors , Rett Syndrome , Mice , Animals , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Rett Syndrome/genetics , Epigenesis, Genetic , Chromatin/genetics , Chromatin/metabolism , Hippocampus/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism
2.
Cell Commun Signal ; 20(1): 47, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35392923

ABSTRACT

BACKGROUND: NOS2 expression is mostly found in bacteria-exposed or cytokine-treated tissues and is mostly connected to innate immune reactions. There are three isoforms of NOS2 (NOS2-1 to -3). In RNA-seq data sets, analyzing inflammatory gene expression, only expression of the NOS2-1 mRNA isoform is detected. However, the expression of NOS2 in differentiating human pluripotent stems (hPSCs) has not been analyzed yet. METHODS: Public available RNA-seq databases were screened for data of hPSCs during differentiation to different target cells. An isoform specific algorithm was used to analyze NOS2 mRNA isoform expression. In addition, we differentiated four different human iPSC cell lines toward cortical neurons and analyzed NOS2 mRNA expression by qRT-PCR and 5'-RACE. The functionality of the NOS2-2 protein was analyzed by transient transfection of expression clones in human DLD1 cells and nitrate measurement in the supernatant of these cells. RESULTS: In RNA-seq databases we detected a transient expression of the NOS2 mRNA during the differentiation of hPSCs to cardiomyocytes, chondrocytes, mesenchymal stromal cells, neurons, syncytiotrophoblast cells, and trophoblasts. NOS2 mRNA isoform specific analyses showed, that the transiently expressed NOS2 mRNA in differentiating hPSC (NOS2-2; "diff-iNOS") differ remarkably from the already described NOS2 transcript found in colon or induced islets (NOS2-1; "immuno-iNOS"). Also, analysis of the NOS2 mRNA- and protein expression during the differentiation of four different hiPSC lines towards cortical neurons showed a transient expression of the NOS2 mRNA and NOS2 protein on day 18 of the differentiation course. 5'-RACE experiments and isoform specific qRT-PCR analyses revealed that only the NOS2-2 mRNA isoform was expressed in these experiments. To analyze the functionality of the NOS2-2 protein, we transfected human DLD-1 cells with tetracycline inducible expression clones encoding the NOS2-1- or -2 coding sequence. After induction of the NOS2-1 or -2 mRNA expression by tetracycline a similar nitrate production was measured proofing the functionality of the NOS2-2 protein isoform. CONCLUSIONS: Our data show that a differentiation specific NOS2 isoform (NOS2-2) is transiently expressed during differentiation of hPSC. Video Abstract.


Subject(s)
Pluripotent Stem Cells , RNA Isoforms , Tetracycline , Cell Differentiation , Humans , Isoenzymes/genetics , Nitrates/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Pluripotent Stem Cells/cytology , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Int J Mol Sci ; 23(2)2022 Jan 16.
Article in English | MEDLINE | ID: mdl-35055139

ABSTRACT

Development of the central nervous system (CNS) depends on accurate spatiotemporal control of signaling pathways and transcriptional programs. Forkhead Box G1 (FOXG1) is one of the master regulators that play fundamental roles in forebrain development; from the timing of neurogenesis, to the patterning of the cerebral cortex. Mutations in the FOXG1 gene cause a rare neurodevelopmental disorder called FOXG1 syndrome, also known as congenital form of Rett syndrome. Patients presenting with FOXG1 syndrome manifest a spectrum of phenotypes, ranging from severe cognitive dysfunction and microcephaly to social withdrawal and communication deficits, with varying severities. To develop and improve therapeutic interventions, there has been considerable progress towards unravelling the multi-faceted functions of FOXG1 in the neurodevelopment and pathogenesis of FOXG1 syndrome. Moreover, recent advances in genome editing and stem cell technologies, as well as the increased yield of information from high throughput omics, have opened promising and important new avenues in FOXG1 research. In this review, we provide a summary of the clinical features and emerging molecular mechanisms underlying FOXG1 syndrome, and explore disease-modelling approaches in animals and human-based systems, to highlight the prospects of research and possible clinical interventions.


Subject(s)
Forkhead Transcription Factors/genetics , Nerve Tissue Proteins/genetics , Neurodevelopmental Disorders/genetics , Rett Syndrome/genetics , Animals , Disease Models, Animal , Humans , Mutation , Phenotype
4.
Biochem J ; 476(2): 333-352, 2019 01 31.
Article in English | MEDLINE | ID: mdl-30578289

ABSTRACT

Type III interferons (IFNs) are the latest members of the IFN family. They play an important role in immune defense mechanisms, especially in antiviral responses at mucosal sites. Moreover, they control inflammatory reactions by modulating neutrophil and dendritic cell functions. Therefore, it is important to identify cellular mechanisms involved in the control of type III IFN expression. All IFN family members contain AU-rich elements (AREs) in the 3'-untranslated regions (3'-UTR) of their mRNAs that determine mRNA half-life and consequently the expressional level of these cytokines. mRNA stability is controlled by different proteins binding to these AREs leading to either stabilization or destabilization of the respective target mRNA. The KH-type splicing regulatory protein KSRP (also named KHSRP) is an important negative regulator of ARE-containing mRNAs. Here, we identify the interferon lambda 3 (IFNL3) mRNA as a new KSRP target by pull-down and immunoprecipitation experiments, as well as luciferase reporter gene assays. We characterize the KSRP-binding site in the IFNL3 3'-UTR and demonstrate that KSRP regulates the mRNA half-life of the IFNL3 transcript. In addition, we detect enhanced expression of IFNL3 mRNA in KSRP-/- mice, establishing a negative regulatory function of KSRP in type III IFN expression also in vivo Besides KSRP the RNA-binding protein AUF1 (AU-rich element RNA-binding protein 1) also seems to be involved in the regulation of type III IFN mRNA expression.


Subject(s)
3' Untranslated Regions , Interferons/biosynthesis , RNA Splicing , RNA-Binding Proteins/metabolism , Trans-Activators/metabolism , Animals , Binding Sites , Cell Line, Tumor , Heterogeneous Nuclear Ribonucleoprotein D0 , Heterogeneous-Nuclear Ribonucleoprotein D/genetics , Heterogeneous-Nuclear Ribonucleoprotein D/metabolism , Humans , Interferons/genetics , Mice , Mice, Knockout , RNA-Binding Proteins/genetics , Trans-Activators/genetics
5.
Nitric Oxide ; 88: 50-60, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31004763

ABSTRACT

The human inducible nitric oxide synthase (iNOS) gene contains an upstream open reading frame (uORF) in its 5'-untranslated region (5'-UTR) implying a translational regulation of iNOS expression. Transfection experiments in human DLD-1 cells revealed that the uORF although translatable seems not to inhibit the translation start at the bona fide ATG. Our data clearly show that human iNOS translation is cap-dependent and that the 5'-UTR of the iNOS mRNA contains no internal ribosome entry site. Translation of the bona fide coding sequence is most likely mediated by a leaky scanning mechanism. The 5'-UTR is encoded by exon 1 and exon 2 of the iNOS gene with the uORF stop codon located in front of the first intron indicating an involvement of the nonsense mediated RNA decay (NMD) in iNOS regulation. SiRNA-mediated down-regulation of Upf1 resulted in enhanced endogenous cytokine iNOS expression in human DLD-1 cells. Transfection of constructs containing iNOS exon 1, intron 1 and exon 2 in front of a luciferase gene showed a clear effect of the mutation of the uORF-ATG on luciferase reportergene expression. Our data indicate that the uORF in the 5'-UTR sequence of human iNOS gene reduces its expression via the NMD mechanism.


Subject(s)
Gene Expression Regulation/physiology , Nitric Oxide Synthase Type II/metabolism , Open Reading Frames/physiology , Amino Acid Sequence , Base Sequence , Cell Line, Tumor , Down-Regulation , Exons , Humans , Introns , Mutation , Nitric Oxide Synthase Type II/genetics , Nonsense Mediated mRNA Decay/physiology , RNA Helicases/genetics , RNA Helicases/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism
6.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119686, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342310

ABSTRACT

BACKGROUND: Understanding the genetic underpinnings of protein networks conferring stemness is of broad interest for basic and translational research. METHODS: We used multi-omics analyses to identify and characterize stemness genes, and focused on the zinc finger protein 982 (Zfp982) that regulates stemness through the expression of Nanog, Zfp42, and Dppa3 in mouse embryonic stem cells (mESC). RESULTS: Zfp982 was expressed in stem cells, and bound to chromatin through a GCAGAGKC motif, for example near the stemness genes Nanog, Zfp42, and Dppa3. Nanog and Zfp42 were direct targets of ZFP982 that decreased in expression upon knockdown and increased upon overexpression of Zfp982. We show that ZFP982 expression strongly correlated with stem cell characteristics, both on the transcriptional and morphological levels. Zfp982 expression decreased with progressive differentiation into ecto-, endo- and mesodermal cell lineages, and knockdown of Zfp982 correlated with morphological and transcriptional features of differentiated cells. Zfp982 showed transcriptional overlap with members of the Hippo signaling pathway, one of which was Yap1, the major co-activator of Hippo signaling. Despite the observation that ZFP982 and YAP1 interacted and localized predominantly to the cytoplasm upon differentiation, the localization of YAP1 was not influenced by ZFP982 localization. CONCLUSIONS: Together, our study identified ZFP982 as a transcriptional regulator of early stemness genes, and since ZFP982 is under the control of the Hippo pathway, underscored the importance of the context-dependent Hippo signals for stem cell characteristics.


Subject(s)
Mouse Embryonic Stem Cells , Transcription Factors , Animals , Mice , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cell Differentiation/genetics , Chromosomal Proteins, Non-Histone/metabolism , Mouse Embryonic Stem Cells/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism
7.
Cells ; 10(11)2021 11 14.
Article in English | MEDLINE | ID: mdl-34831390

ABSTRACT

KH-type splicing regulatory protein (KSRP) is an RNA-binding protein that promotes mRNA decay and thereby negatively regulates cytokine expression at the post-transcriptional level. Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by dysregulated cytokine expression causing multiple organ manifestations; MRL-Faslpr mice are an established mouse model to study lupus disease pathogenesis. To investigate the impact of KSRP on lupus disease progression, we generated KSRP-deficient MRL-Faslpr mice (MRL-Faslpr/KSRP-/- mice). In line with the predicted role of KSRP as a negative regulator of cytokine expression, lupus nephritis was augmented in MRL-Faslpr/KSRP-/- mice. Increased infiltration of immune cells, especially of IFN-γ producing T cells and macrophages, driven by enhanced expression of T cell-attracting chemokines and adhesion molecules, seems to be responsible for worsened kidney morphology. Reduced expression of the anti-inflammatory interleukin-1 receptor antagonist may be another reason for severe inflammation. The increase of FoxP3+ T cells detected in the kidney seems unable to dampen the massive kidney inflammation. Interestingly, lymphadenopathy was reduced in MRL-Faslpr/KSRP-/- mice. Altogether, KSRP appears to have a complex role in immune regulation; however, it is clearly able to ameliorate lupus nephritis.


Subject(s)
Glomerulonephritis/pathology , RNA-Binding Proteins/metabolism , Trans-Activators/metabolism , Animals , Biomarkers/metabolism , CD11a Antigen/metabolism , Chemokines/metabolism , Female , Kidney/pathology , Lymph Nodes/pathology , Male , Mice, Inbred C57BL , Mice, Inbred MRL lpr , Mice, Knockout , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL