Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Environ Res ; 210: 112927, 2022 07.
Article in English | MEDLINE | ID: mdl-35182594

ABSTRACT

Fluoride (F-) contamination in groundwater of Unnao district, Uttar Pradesh was reported for the first time in 1994, however comprehensive monitoring of F- in different environmental matrices remains to be undertaken. The presented study reports spatio-temporal monitoring of F- content in groundwater, crops and soil from F- affected district Unnao, in pre-monsoon (PRM), monsoon (MO) and post-monsoon (PMO), to establish F- groundwater-soil-plant continuum. More than 80% of groundwater samples were contaminated with F-> 1.0 mg L-1 with highest level (mg L-1), at Patiyara (3.6 ± 0.64), during PRM > Pathakpur (2.73 ± 0.57) during PMO > Sarukheda (2.40 ± 0.43) during PRM. High Cr in groundwater was observed in Jajmau (7.08 ± 1.42). The level of F- (mg Kg-1) in agricultural soils followed 3.4 ± 0.71 at Patiyara (MO) > 2.9 ± 0.14 at Badlikheda (PRM) 1.89 ± 0.28 at Jagatkhera (PRM). Among the different edible parts of crops in selected sites, highest F- content (mg Kg-1), F- level in grains of Oryza sativa ranged between 0.23 ± 0.02 to 2.01 ± 0.24. Whereas in the edible fruit of Trichosanthes diocia contained 1.47 ± 0.32 and Momordica charantia 1.47 ± 0.02. Leaf of spinach (1.03 ± 0.22) and seed of Brassica juncea (0.73 ± 0.08). Overall, comparing across all the three seasons, level of F- was highest in all the plants during MO, as compared to PRM and PMO. The regression analysis of physiochemical properties of groundwater show negative relationship between Na+ and F- whereas soil alkalinity exhibited strong influence in soil F-. The high F- content in soil and groundwater at Patiyara and Shekhpur also coincided with presence of several brick kilns, possibly contributing to the high F-.


Subject(s)
Groundwater , Water Pollutants, Chemical , Agriculture , Crops, Agricultural , Environmental Monitoring , Fluorides/analysis , Groundwater/chemistry , India , Soil , Water Pollutants, Chemical/analysis
2.
Ecotoxicol Environ Saf ; 208: 111418, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33045435

ABSTRACT

The present study investigates the role of Chlorella sp. in the mitigation of arsenic (iAs) induced toxicity in Oryza sativa L. The study shows, co-culture of rice seedlings with Chlorella sp. reduced the iAs accumulation, simultaneously improving the growth of seedlings under iAs treatments. While treatment with As(III) and As(V) (60 µM) alone, inflicted toxicity in rice seedlings, manifested as significant enhancement in stress markers levels (TBRAS and H2O2), this coincided with the shifting of cellular reduced state to oxidized state (reduced GSH/GSSG ratio). Contrarily, co-culturing rice seedlings with Chlorella sp. under iAs toxicity, reduced these stress markers and recovered the GSH/GSSG ratio. The GSH dependent antioxidant enzymes i.e. GR and GPX activities also exhibited significant enhancement upon co-culturing rice seedlings with Chlorella sp. against iAs stress. Simultaneously, the expression of four thiol dependent GRX genes, i.e. GRX13950, GRX35340, GRX12190 and GRX07950 were enhanced against As(III) and As(V) (60 µM), which reduced upon co-culturing with Chlorella sp. A similar trend was also observed with the expression of GST genes, where the co-culture with Chlorella sp. significantly reduced the genes expression of two isoforms (GST 38600 and GST 38610). On the contrary, the expression of S-adenosylmethionine dependent methyltransferases (SAMT) gene in rice seedlings was enhanced upon co-culturing with the Chlorella sp. against iAs stress. Overall, the results demonstrate that the rice seedlings when co-culture with Chlorella sp. ameliorates iAs toxicity through GSH dependent detoxification pathway, evident from the enhanced expression of GRX, GST, SAMT genes and activity of GSH dependent antioxidant enzymes (GR and GPX) in the rice seedlings.


Subject(s)
Arsenic/toxicity , Glutathione/metabolism , Oryza/physiology , S-Adenosylmethionine/metabolism , Soil Pollutants/toxicity , Antioxidants/metabolism , Arsenic/metabolism , Chlorella/metabolism , Hydrogen Peroxide/metabolism , Methyltransferases/metabolism , Oryza/metabolism , Oxidative Stress/drug effects , Seedlings/metabolism , Soil Pollutants/metabolism
3.
J Environ Manage ; 295: 113144, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34214789

ABSTRACT

A comparative assessment of the phytoremediation efficiency of two tolerant grass species viz. vetiver and lemongrass were performed in pots against simulated Ni-Cd battery electrolyte waste (EW) contaminated soil (EW1%, EW2% and EW4% w/w). Ni (µg g-1) accumulation was higher in shoots (36.8) and roots (252.9) of vetiver than in lemongrass (12.5 and 79.7, respectively). While the same trend was true for Cd (µg g-1) accumulation in vetiver and lemon grass roots (232.2 and 147.2, respectively), however, the accumulation in vetiver shoot (43.4) was less than in lemongrass (99.9). The bioaccumulation factor of metals in both grasses increased with EW contamination. Vetiver was tolerant towards EW toxicity than lemongrass, as it exhibited lesser decline in morphological parameters, lesser rise in TBARS against the doses of EW. The activities of SOD, APX, POD enzymes were higher in vetiver whereas, only GR in lemongrass. Multiple linear regression model show, pH had strong and positive influence over the Ni and Cd uptake by the plants whereas, phosphate, OM and bioavailable metals influenced negatively. The higher R2 (>0.9) and Chi-square values ≤ 1 in sigmoid non-linear model demonstrates robustness of the model for predicting the Ni and Cd accumulation (MHM) in both the grasses. Ni accumulation was higher than Cd, roots had greater accumulation of heavy metal and vetiver was a greater accumulator of Ni and Cd from EW the contaminated soil than lemongrass.


Subject(s)
Cymbopogon , Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , Cadmium/analysis , Metals, Heavy/analysis , Nickel , Nonlinear Dynamics , Soil , Soil Pollutants/analysis
4.
Physiol Mol Biol Plants ; 27(12): 2665-2678, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35035129

ABSTRACT

Heavy metals are ubiquitously present in nature, including soil, water, and thus in plants, thereby causing a potential health risk. This study has investigated the role and efficiency of the chickpea metallothionein 1 (MT1) gene against the major toxic heavy metals, i.e., As [As(III) and As(V)], Cr(VI), and Cd toxicity. MT1 over-expressing transgenic lines had reduced As(V) and Cr(VI) accumulation, whereas Cd accumulation was enhanced in the L3 line. The physiological responses (WUE, A, Gs, E, ETR, and qP) were noted to be enhanced in transgenic plants, whereas qN was decreased. Similarly, the antioxidant molecules and enzymatic activities (GSH/GSSG, Asc/DHA, APX, GPX, and GRX) were higher in the transgenic plants. The activity of antioxidant enzymes, i.e., SOD, APX, GPX, and POD, were highest in the Cd-treated lines, whereas higher CAT activity was observed in As(V)-L1 and GRX in Cr-L3 line. The stress markers TBARS, H2O2, and electrolyte leakage were lower in transgenic lines in comparison to WT, while RWC was enhanced in the transgenic lines, and the transcript of MT1 gene was accumulated in the transgenic lines. Similarly, the level of stress-responsive amino acid cysteine was higher in transgenic plants as compared to WT plants. Among all the heavy metals, MT1 over-expressing lines showed a highly increased accumulation of Cd, whereas a non-significant effect was observed with As(III) treatment. Overall, the results demonstrate that Arabidopsis thaliana transformed with the MT1 gene mitigates heavy metal stress by regulating the defense mechanisms in plants. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01103-1.

5.
Ecotoxicol Environ Saf ; 173: 15-27, 2019 May 30.
Article in English | MEDLINE | ID: mdl-30743076

ABSTRACT

γ-aminobutyric acid (GABA) is a free amino acid, which helps to counteract biotic and abiotic stresses in plants. In the present study, two concentrations of GABA, i.e., 0.5 mM and 1 mM were applied to examine the tolerance of rice seedlings against As(III) (25 µM) toxicity, through the modulations of fatty acids (FAs), stress responsive amino acids (AAs) and polyamines (PAs) biosynthesis. Exogenous GABA (0.5 mM) application significantly reduced the H2O2 and TBARS levels and recovered the growth parameters against As(III) stressed rice seedlings. Simultaneously, co-application of GABA (0.5 and 1 mM) and As(III), consistently enhanced the level of unsaturated fatty acids (USFA) (cis-10-pentadecanoic acid, oleic acid, α-linolenic acid and γ-linolenic acid), which was higher than saturated fatty acid (SFA). Among the USFAs, level of linolenic acid was found to be always higher with GABA application. Similarly, elevated level of AAs (proline, methionine, glutamic acid and cysteine) was also observed with the application of GABA (0.5 and 1 mM) in As(III) stressed seedlings. GABA also enhanced the expression of genes involved in the polyamine synthesis pathway namely arginine decarboxylase (AD), spermine (SPM) and spermidine (SPD) synthase against As(III) treatments, which was higher in roots than in shoots, resulting in enhanced root PAs level. Contrarily, the expression of S-adenosylmethionine decarboxylase (S-AMD) was significantly higher in shoots. Among all the PAs, level of putrescine (PUT) was found to be highest with GABA application. Overall, the study demonstrates that GABA (0.5 mM) at lower concentration plays a vital role in As(III) tolerance by enhancing the biosynthesis of USFA, AA and PA, reducing the level of TBARS and H2O2 in rice seedlings.


Subject(s)
Amino Acids/metabolism , Arsenites/toxicity , Fatty Acids/metabolism , GABA Agents/pharmacology , Oryza/drug effects , Polyamines/metabolism , Biosynthetic Pathways/genetics , Gene Expression Regulation, Plant/drug effects , Oryza/growth & development , Oryza/metabolism , Seedlings/drug effects , Seedlings/growth & development , Seedlings/metabolism , gamma-Aminobutyric Acid/pharmacology
6.
Ecotoxicol Environ Saf ; 171: 54-65, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-30597317

ABSTRACT

Drought is one of the major abiotic stresses which negatively affect plant growth and crop yield. Metallothionein (MTs) is a low molecular weight protein, mainly involved in metal homeostasis, while, its role in drought stress is still to be largely explored. The present study was aimed to investigate the role of MT gene against drought stress. The chickpea MT based on its up-regulation under drought stress was overexpressed in Arabidopsis thaliana to explore its role in mitigation of drought stress. The total transcript of MT gene was up to 30 fold higher in transgenic lines. Arabidopsis plants transformed with MT gene showed longer roots, better efficiency of survival and germination, larger siliques and higher biomass compared to WT. The physiological variables (A, WUE, G, E, qP and ETR) of WT plants were reduced during drought stress which recovered in transgenic Arabidopsis lines. The enzymatic and non-enzymatic antioxidant (APX, GPX, POD, GR, GRX, GST, CAT, MDHAR, ASc and GSH) levels were also enhanced in transgenic lines to provide tolerance. Simultaneously, drought responsive amino acids, i.e. proline and cysteine contents were higher in transgenic lines. Overall, the results suggest that MT gene is actively involved in the mitigation of drought stress and could be the choice for genetic engineering strategy to overcome drought stress.


Subject(s)
Adaptation, Physiological/genetics , Antioxidants/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Metallothionein/genetics , Metallothionein/metabolism , Stress, Physiological , Adaptation, Physiological/physiology , Cicer/genetics , Cysteine/metabolism , Droughts , Gene Expression Regulation, Plant , Germination , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Proline/metabolism
7.
Ecotoxicol Environ Saf ; 151: 109-117, 2018 Apr 30.
Article in English | MEDLINE | ID: mdl-29331724

ABSTRACT

The present study was intended to investigate the role of algae, Anabaena sp. in the amelioration of As toxicity, when co-cultured with rice seedlings. The reduction of growth in rice seedlings against As(III) and As(V) was recovered with Anabaena sp. The Anabaena sp. also reduced the accumulation of As, where it was more efficient against 60µM As(III) (49%) than As(V) (23%) in rice shoot. Similarly, with reduction of As accumulation, lower silicon transporters (Lsi-1 and Lsi-2) was found to be suppressed against As treatments. However, the expression of two nitrogen dependent genes i.e., NR and SAMT were found to be enhanced with the Anabaena sp. Likewise, the activity of antioxidant enzyme, GST, was enhanced, whereas, the activity of other enzymes such as SOD, APX, GPX, GR and DHAR were decreased with As+Algae combinations. Overall, the result suggested that the Anabaena sp. reduces As accumulation, modulates gene expressions and antioxidants to ameliorate the As toxicity in Oryza sativa L.


Subject(s)
Anabaena/physiology , Arsenic/metabolism , Arsenic/toxicity , Oryza/drug effects , Oryza/metabolism , Antioxidants/metabolism , Gene Expression Regulation, Plant , Membrane Transport Proteins/metabolism , Nitrogen/metabolism , Oryza/genetics , Oryza/growth & development , Seedlings/drug effects , Seedlings/metabolism , Silicon/metabolism
8.
Ecotoxicol Environ Saf ; 148: 410-417, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29101885

ABSTRACT

The present study was intended to investigate the role of amino acid glycine in detoxification of As in Oryza sativa L. The growth parameters such as, shoot length and fresh weight were decreased during As(III) and As(V) toxicity. However, the application of glycine recovered the growth parameters against As stress. The application of glycine reduced the As accumulation in all the treatments, and it was more effective against As(III) treatment and reduced the accumulation by 68% in root and 71% in shoot. Similarly, the translocation of As from root to shoot, was higher against As(III) and As(V) treatments, whereas, reduced upon glycine application. The translocation of Fe and Na was also affected by As, which was lower under As(III) and As(V) treatments. However, the application of glycine significantly enhanced the translocation of Fe and Na in the shoot. Besides, the expression of lower silicon transporters i.e. Lsi-1 and Lsi-2 was observed to be significantly suppressed in the root with the application of glycine against As treatment. Similarly, the expression of three GRX and two GST gene isoforms were found to be significantly increased with glycine application. Simultaneously, the activities of antioxidant enzymes i.e. l-arginine dependent NOS, SOD, NTR and GRX were found to be significantly enhanced in the presence of glycine. Increased activities of antioxidant enzymes coincided with the decreased level of TBARS and H2O2 in rice seedlings. Overall, the results suggested that the application of glycine reduces As accumulation through suppressing the gene expression of lower silicon transporters and ameliorates As toxicity by enhancing antioxidants defense mechanism in rice seedlings.


Subject(s)
Arsenic/toxicity , Glycine/pharmacology , Membrane Transport Proteins/genetics , Oryza/drug effects , Silicon/metabolism , Antioxidants/metabolism , Arsenic/pharmacokinetics , Gene Expression Regulation , Membrane Transport Proteins/metabolism , Oryza/genetics , Oryza/metabolism , Plant Roots/metabolism , Seedlings/metabolism
9.
Sci Rep ; 7(1): 8786, 2017 08 18.
Article in English | MEDLINE | ID: mdl-28821860

ABSTRACT

GABA counteracts wide range of stresses through regulation of GABA shunt pathway in plants. Although, GABA assisted tolerance against As toxicity in plants is still unexplored. We have examined GABA induced tolerance in rice seedlings with two exposure periods of GABA i.e., short term and long term. Results showed that accumulation of GABA reduced the expressions of Lsi-1 and Lsi-2 transporter genes, which ultimately decreased the accumulation of As in rice seedlings. The accumulation of GABA also modulated the gene expression of GABA shunt pathway and activity of antioxidant enzymes, which strongly induced the tolerance in plants. Antioxidant enzymes such as CAT, POD, GPX and SOD showed maximum alteration in activity with GABA accretion. In both exposure periods, long term accumulation of GABA was highly efficient to provide tolerance to plants against As(III), while higher level of GABA at short term was toxic. Tolerance responses of GABA towards As(III) was reflected by minimal changes in various physiological (WUE, A, gs, PhiPS2, qp, NPQ, ETR and Trmmol) and growth parameters with concomitant accumulation. Oxidative stress marker such as TBARS and H2O2 contents were reduced with GABA accumulation. These results suggested that GABA sturdily inhibits As accumulation and provides tolerance towards As(III).


Subject(s)
Adaptation, Biological , Arsenic/metabolism , Gene Expression Regulation, Plant , Oryza/physiology , Plant Proteins/genetics , gamma-Aminobutyric Acid/metabolism , Antioxidants/metabolism , Arsenic/pharmacology , Gene Expression Regulation, Plant/drug effects , Lipid Metabolism , Lipid Peroxidation , Oryza/drug effects , Plant Roots/genetics , Plant Roots/metabolism , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL