Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Bioessays ; 42(2): e1900169, 2020 02.
Article in English | MEDLINE | ID: mdl-31854021

ABSTRACT

How do common and rare genetic polymorphisms contribute to quantitative traits or disease risk and progression? Multiple human traits have been extensively characterized at the genomic level, revealing their complex genetic architecture. However, it is difficult to resolve the mechanisms by which specific variants contribute to a phenotype. Recently, analyses of variant effects on molecular traits have uncovered intermediate mechanisms that link sequence variation to phenotypic changes. Yet, these methods only capture a fraction of genetic contributions to phenotype. Here, in reviewing the field, it is proposed that complex traits can be understood by characterizing the dynamics of biochemical networks within living cells, and that the effects of genetic variation can be captured on these networks by using protein-protein interaction (PPI) methodologies. This synergy between PPI methodologies and the genetics of complex traits opens new avenues to investigate the molecular etiology of human diseases and to facilitate their prevention or treatment.


Subject(s)
Polymorphism, Single Nucleotide/genetics , Protein Interaction Maps/genetics , Proteome/genetics , Animals , Genome-Wide Association Study/methods , Genomics/methods , Humans , Models, Genetic , Phenotype , Quantitative Trait Loci/genetics
2.
Bioinformatics ; 35(20): 4053-4062, 2019 10 15.
Article in English | MEDLINE | ID: mdl-30873519

ABSTRACT

MOTIVATION: Protein evolution is determined by forces at multiple levels of biological organization. Random mutations have an immediate effect on the biophysical properties, structure and function of proteins. These same mutations also affect the fitness of the organism. However, the evolutionary fate of mutations, whether they succeed to fixation or are purged, also depends on population size and dynamics. There is an emerging interest, both theoretically and experimentally, to integrate these two factors in protein evolution. Although there are several tools available for simulating protein evolution, most of them focus on either the biophysical or the population-level determinants, but not both. Hence, there is a need for a publicly available computational tool to explore both the effects of protein biophysics and population dynamics on protein evolution. RESULTS: To address this need, we developed SodaPop, a computational suite to simulate protein evolution in the context of the population dynamics of asexual populations. SodaPop accepts as input several fitness landscapes based on protein biochemistry or other user-defined fitness functions. The user can also provide as input experimental fitness landscapes derived from deep mutational scanning approaches or theoretical landscapes derived from physical force field estimates. Here, we demonstrate the broad utility of SodaPop with different applications describing the interplay of selection for protein properties and population dynamics. SodaPop is designed such that population geneticists can explore the influence of protein biochemistry on patterns of genetic variation, and that biochemists and biophysicists can explore the role of population size and demography on protein evolution. AVAILABILITY AND IMPLEMENTATION: Source code and binaries are freely available at https://github.com/louisgt/SodaPop under the GNU GPLv3 license. The software is implemented in C++ and supported on Linux, Mac OS/X and Windows. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Software , Demography , Population Density
3.
Nat Ecol Evol ; 4(3): 437-452, 2020 03.
Article in English | MEDLINE | ID: mdl-32094541

ABSTRACT

Evolutionary dynamics in large asexual populations is strongly influenced by multiple competing beneficial lineages, most of which segregate at very low frequencies. However, technical barriers to tracking a large number of these rare lineages in bacterial populations have so far prevented a detailed elucidation of evolutionary dynamics. Here, we overcome this hurdle by developing a chromosomal-barcoding technique that allows simultaneous tracking of approximately 450,000 distinct lineages in Escherichia coli, which we use to test the effect of sub-inhibitory concentrations of common antibiotics on the evolutionary dynamics of low-frequency lineages. We find that populations lose lineage diversity at distinct rates that correspond to their antibiotic regimen. We also determine that some lineages have similar fates across independent experiments. By analysing the trajectory dynamics, we attribute the reproducible fates of these lineages to the presence of pre-existing beneficial mutations, and we demonstrate how the relative contribution of pre-existing and de novo mutations varies across drug regimens. Finally, we reproduce the observed lineage dynamics by simulations. Altogether, our results provide a valuable methodology for studying bacterial evolution as well as insights into evolution under sub-inhibitory antibiotic levels.


Subject(s)
Escherichia coli , Evolution, Molecular , Anti-Bacterial Agents , Mutation
4.
Phytochemistry ; 63(7): 777-82, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12877918

ABSTRACT

The objective of this study was to determine the relationship between light levels in the understory of a broadleaf forest and the content of six ginsenosides (Rg(1), Re, Rb(1), Rc, Rb(2,) and Rd) in 1- and 2-year-old American ginseng (Panax quinquefolius L.) roots. Our results revealed that ginsenoside contents in 1- and 2 year-old roots collected in September were significantly related to direct and total light levels, and duration of sunflecks. At this time, the effect of light levels accounted for up to 48 and 62% of the variation in ginsenoside contents of 1- and 2-year-old American ginseng roots. Also, red (R) and far red (FR) light, and the R:FR ratio significantly affected Rd, Rc, and Rg(1) contents in 2-year-old roots, accounting for up to 40% of the variation in ginsenoside contents.


Subject(s)
Ginsenosides/metabolism , Light , Panax/metabolism , Plant Roots/metabolism , Infrared Rays , Molecular Structure , Trees
SELECTION OF CITATIONS
SEARCH DETAIL