Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal
Affiliation country
Publication year range
1.
Foods ; 11(8)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35454686

ABSTRACT

Frozen yogurt is known as ice cream with some properties of yogurt. Frozen yogurts are a rich source of sucrose levels between 15% and 28% of total ingredients. Consumers suffering from lactose intolerance and metabolic syndrome are looking for sugar-free products. The current study investigates the sugar replacements by using sweeteners (stevia, sucralose and sorbitol) on physicochemical, microbiological, microstructural and sensory characteristics of probiotic-frozen yogurt. Four different treatments of probiotic-frozen yogurts were studied (control probiotic-frozen yogurt with sucrose (F1), probiotic-frozen yogurt with stevia (F2), probiotic-frozen yogurt with sucralose (F3) and probiotic-frozen yogurt with sorbitol (F4)). The chemical properties were not significantly present p > 0.05) during storage in all treatments. In the F1 treatment, sucrose value was higher (14.87%) and not detected in the F2, F3 and F4 treatments. The highest values of overrun, hardness and viscosity (p < 0.05) were detected in the F2, F3 and F3 samples, but the lowest value was detected in the F1 treatment. Total Str. thermophilus and Lb. delbrueckii ssp. bulgaricus counts were gradually decreased (p < 0.05) during storage periods. At 1 day, the Bifidobacteria counts ranged from 7.56 to 7.60 log10 CFU g−1 in all groups and gradually decreased during storage, but these bacterial counts remained viable (>6.00 log10 CFU g−1) during storage periods up to 60 d. During storage periods, the highest scores of total acceptability were detected in the F3, F4 and F2 treatments. Scanning electron microscopy (SEM) micrographs of all probiotic-frozen yogurt treatments illustrated that the microstructures showed a difference with a fine network, size pores and structure between the frozen yogurt with sweeteners (F2, F3 and F3) and control frozen yogurt (F1).

2.
Foods ; 10(10)2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34681542

ABSTRACT

The present study examines the impacts of supplementing yogurt with 1% whey protein concentrate (WPC), Ca-caseinate (Ca-CN) and Spirulina platensis on the physiological performance of V-line rabbits receiving diets containing yogurt (at a dose of 5 g/kg body weight/day) and the different meat quality aspects. The results show that fat content was highest (p < 0.05) in yogurt fortified with Spirulina powder, but protein (%) was highest in yogurt enriched with WPC. Yogurt containing Spirulina powder showed a significant (p < 0.05) increase in total antioxidant activity. The final live body weight for G1 was higher than the other groups. However, additives affected the saddle, hind legs, liver and neck percentages significantly (p < 0.05). There were not significant differences for all groups in the forelegs, lung and heart percentages. LDL-cholesterol, total protein, globulin, albumin, creatinine and immunoglobulin M values were lowest (p < 0.05) in the WPC group. Significant improvements appeared in the small intestinal wall, microbiology, growth performance, serum biochemistry, organ histology and meat quality of the group receiving enriched yogurt. Yogurts enriched with WPC, Ca-CN and Spirulina platensis can be used as functional foods.

SELECTION OF CITATIONS
SEARCH DETAIL