ABSTRACT
In this study, the crude polysaccharides was extracted from Shengfupian and purified by Sevag deproteinization. Then, the purified neutral polysaccharide fragment was obtained by the DEAE-52 cellulose chromatography column and Sephadex G-100 co-lumn. The structure of polysaccharides was characterized by ultraviolet spectroscopy, infrared spectroscopy, ion chromatography, and gel permeation chromatography. To investigate the anti-inflammatory activity of Shengfupian polysaccharides, LPS was used to induce inflammation in RAW264.7 cells. The expression of the CD86 antibody on surface of M1 cells, the function of macrophages, and the content of NO and IL-6 in the supernatant were examined. An immunodepression model of H22 tumor-bearing mice was established, and the immunomodulatory activity of Shengfupian polysaccharides was evaluated based on the tumor inhibition rate, immune organ index and function, and serum cytokine levels. Research indicated that Shengfupian polysaccharides(80 251 Da) was composed of arabinose, galactose, glucose, and fructose with molar ratio of 0.004â¶0.018â¶0.913â¶0.065. It was smooth and lumpy under the scanning electron microscope. In the concentration range of 25-200 µg·mL~(-1), Shengfupian polysaccharides exhibited little or no toxicity to RAW264.7 cells and could inhibit the polarization of cells to the M1 type and reduce the content of NO and IL-6 in the cell supernatant. It could suppress the phagocytosis of cells at the concentration of 25 µg·mL~(-1), while enhancing the phagocytosis of RAW264.7 cells within the concentration range of 100-200 µg·mL~(-1). The 200 mg·kg~(-1) Shengfupian polysaccharides could alleviate the spleen injury caused by cyclophosphamide, increase the levels of IL-1ß and IL-6, and decrease the level of TNF-α in the serum of mice. In conclusion, Shengfupian polysaccharides has anti-inflammatory effect and weak immunomodulatory effect, which may the material basis of Aconm Lateralis Radix Praeparaia for dispelling cold and relieving pain.
Subject(s)
Cytokines , Interleukin-6 , Animals , Mice , Interleukin-6/genetics , Cytokines/metabolism , Polysaccharides/pharmacology , Polysaccharides/chemistry , RAW 264.7 Cells , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Spectrophotometry, InfraredABSTRACT
Three new compounds, periplanamides A (1) and B (2), periplanpyrazine A (3), a new naturally occurring compound salicyluric acid methyl ester (6), and seventeen known compounds were isolated from the medicinal insect Periplaneta americana. The structures of the new compounds were elucidated on the basis of spectroscopic methods. The absolute configurations of 2 were assigned by computational methods. Biological activities of these isolates except 1, 9, 11, and 13 toward nitric oxide (NO) production, cell proliferation in HDFs, cell migration and angiogenesis in HUVECs were evaluated.
Subject(s)
Amides/pharmacology , Periplaneta/chemistry , Pyrazines/pharmacology , Wound Healing/drug effects , Amides/chemistry , Amides/isolation & purification , Animals , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Fibroblasts/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Hydrocarbons, Cyclic , Molecular Structure , Pyrazines/chemistry , Pyrazines/isolation & purificationABSTRACT
Nowadays,the advantages of traditional Chinese medicine(TCM) for treatment of tumors are increasingly prominent.Triptolide shows wide-spectrum and highly effective anti-tumor activity. Moreover,nano-carrier-based triptolide drug delivery system is more powerful in improving water solubility and pharmacokinetic behavior of the drug,but it is easy to cause toxic and side effects that should not be neglected on human body. Because of tumor vascular heterogeneity and PEGylation dilemma,nanoparticulate drug delivery systems need to overcome multiple physiological and pathological barriers from drug administration to functioning. It is difficult for traditional triptolide nanoparticulate drug delivery systems to achieve active accumulation of nano-drug in tumor tissues and specific drug release in tumor target site solely relying on enhanced permeability and retention effect of solid tumor,limiting their application and clinical transformation in treatment of tumors. Based on the traditional nano-preparation system,the new functionalized nano-drug delivery system further enhances the nano-drug enrichment,penetration and controlled release at the tumor sites,which is of great significance in improving bioavailability,anti-tumor efficacy and reducing the side effects of drugs. In this paper,we summarized and analyzed the researches on new triptolide functionalized nano-drug delivery system from four perspectives,including tumor active targeting,tumor microenvironment response,polymer-drug conjugates,and multidrug co-delivery for tumor treatment,expecting to provide ideas for in-depth research and clinical application of triptolide and some other active anti-tumor TCM ingredients.
Subject(s)
Diterpenes/chemistry , Drug Delivery Systems , Nanoparticles , Phenanthrenes/chemistry , Epoxy Compounds/chemistry , HumansABSTRACT
BACKGROUND: Kangfuxin (KFX) is the ethanol extract of Periplaneta americana L, which has been widely used in the Traditional Chinese Medicine for the repair and regeneration of injured organ and tissues with long history. This study is to investigate the influence of KFX in the various cellular activities and evaluate the anti-osteoporosis potential of KFX. METHODS: The influence of the KFX in the cellular activities, including: 1) migration, osteocalcin secretion of osteoblasts; 2) apoptosis of osteoclasts; 3) migration and tube formation of human umbilical vein endothelial cell (HUVEC); and 4) proliferation, cell cycle regulation and migration of bone marrow mesenchymal stem cells (BMSCs), were investigated systematically. RESULTS: KFX was shown to significantly 1) Promote of the migration of osteoblasts, HUVEC, and BMSCs; 2) Increase the secretion of osteocalcin and mineralization of osteoblasts; 3) Accelerate the apoptosis of osteoclasts; 4) Stimulate the proliferation and regulate the cell cycle of BMSCs. CONCLUSION: Taken together, these results provide the evidence for the osteogenesis, anti-osteoporosis and angiogenesis effects of KFX, with the mechanism of activating the bone formation through stimulating the osteoblasts and HUVECs, as well as inhibiting the bone absorption by inhibiting the osteoclasts activities. The KFX was definitely shown a promising bone turnover agent with great potential for anti-osteoporosis treatment.
Subject(s)
Endothelium, Vascular/drug effects , Mesenchymal Stem Cells/drug effects , Osteoblasts/drug effects , Osteoclasts/drug effects , Osteoporosis , Periplaneta , Plant Extracts/pharmacology , Animals , Apoptosis , Bone Density Conservation Agents/pharmacology , Bone Density Conservation Agents/therapeutic use , Bone Marrow/drug effects , Bone Marrow Cells/drug effects , Bone Resorption/prevention & control , Cell Cycle , Cell Movement , Cell Proliferation , Endothelial Cells/drug effects , Endothelium, Vascular/cytology , Human Umbilical Vein Endothelial Cells , Humans , Mice , Neovascularization, Physiologic/drug effects , Osteoblasts/metabolism , Osteocalcin/metabolism , Osteogenesis/drug effects , Osteoporosis/metabolism , Osteoporosis/prevention & control , Phytotherapy , Plant Extracts/therapeutic useABSTRACT
Aberrant mitophagy has been identified as a driver for energy metabolism disorder in most cardiac pathological processes. However, finding effective targeted agents and uncovering their precise modulatory mechanisms remain unconquered. Fuzi, the lateral roots of Aconitum carmichaelii, shows unique efficacy in reviving Yang for resuscitation, which has been widely used in clinics. As a main cardiotonic component of Fuzi, mesaconine has been proven effective in various cardiomyopathy models. Here, we aimed to define a previously unrevealed cardioprotective mechanism of mesaconine-mediated restoration of obstructive mitophagy. The functional implications of mesaconine were evaluated in doxorubicin (DOX)-induced heart failure models. DOX-treated mice showed characteristic cardiac dysfunction, ectopic myocardial energy disorder, and impaired mitophagy in cardiomyocytes, which could be remarkably reversed by mesaconine. The cardioprotective effect of mesaconine was primarily attributed to its ability to promote the restoration of mitophagy in cardiomyocytes, as evidenced by elevated expression of PINK1, a key mediator of mitophagy induction. Silencing PINK1 or deactivating mitophagy could completely abolish the protective effects of mesaconine. Together, our findings suggest that the cardioprotective effects of mesaconine appear to be dependent on the activation of PINK1-induced mitophagy and that mesaconine may constitute a promising therapeutic agent for the treatment of heart failure.
ABSTRACT
Periplaneta americana L. (PA), a type of animal medicine, has been widely used for wound healing in clinical settings. In order to further investigate the bioactive wound healing substances in PA, crude PA protein-polysaccharide complexes were further purified by cellulose DE-52 and Sephadex G100 chromatography in succession. Among these isolated fractions, two fractions eluted by 0.3 M and 0.5 M NaCl with the higher yield, respectively named PaPPc2 and PaPPc3 respectively, were chosen for the wound healing experiments. Mediated by HPGPC, amino acid and monosaccharide composition analysis, circular dichroism spectrum, glycosylation type, FT-IR, and 1H NMR analysis, the characterization of PaPPc2 and PaPPc3 was implemented. And then, the benefits of PaPPcs to promote cell proliferation, migration, and tube formation of HUVECs were determined in vitro, indicated these fractions would facilitate angiogenesis. Finally, as proof of concept, PaPPc2 and PaPPc3 were employed to accelerate the acute wounds of diabetic mice, involving in increase blood vessels and the amounts of angiogenesis-related cytokines (α-SMA, VEGF, and CD31). In short, this study provides an experimental basis to demonstrate the protein-polysaccharide complexes of Periplaneta americana L. as its wound healing bioactive substances.
Subject(s)
Biocompatible Materials , Insect Proteins/chemistry , Macromolecular Substances/chemistry , Macromolecular Substances/pharmacology , Periplaneta/chemistry , Polysaccharides/chemistry , Wound Healing , Amino Acids/chemistry , Animals , Cell Line , Chemical Phenomena , Diabetes Mellitus, Experimental , Humans , Macromolecular Substances/isolation & purification , Medicine, Traditional , Mice , Monosaccharides/chemistry , Spectrum AnalysisABSTRACT
In this research, a very practical QuEChERS-GC-MS/MS analytical approach for 74 pesticide residues in herb based on retention index was established. This novel analytical approach has two important technical advantages. One advantage is to quickly screen pesticide compounds in herbs without having to use a large number of pesticide standard substances at the beginning of the experiment. The other advantage is to assist in identifying the target pesticide compound accurately. A total of 74 kinds of pesticides were quickly prescreened in all chuanxiong rhizoma samples. The results showed that three kinds of pesticides were screened out in all the samples, including chlorpyrifos, fipronil, and procymidone, and the three pesticides were qualitatively and quantitatively determined. The RSD values for interday and intraday variation were acquired to evaluate the precision of the analytical approach, and the overall interday and intraday variations are not more than 1.97% and 3.82%, respectively. The variations of concentrations of the analyzed three pesticide compounds in sample CX16 are 0.74%-4.15%, indicating that the three pesticides in the sample solutions were stable in 48 h. The spiked recoveries of the three pesticides are 95.22%, 93.03%, and 94.31%, and the RSDs are less than ± 6.0%. The methodological verification results indicated the good reliability and accuracy of the new analytical method. This research work is a new application of retention index, and it will be a valuable tool to assist quickly and accurately in the qualitative and quantitative analysis of multipesticide residues in herbs.
ABSTRACT
Ethosomes are widely used to promote transdermal permeation of both lipophilic and hydrophilic drugs, but the mechanism of interaction between the ethosomes and the skin remains unclear. In this work, it was exploded with several technologies and facilities. Firstly, physical techniques such as attenuated total reflectance fourier-transform infrared and laser confocal Raman were used and the results indicated that the phospholipids configuration of stratum corneum changes from steady state to unstable state with the treatment of ethosomes. Differential scanning calorimetry reflected the thermodynamics change in stratum corneum after treatment with ethosomes. The results revealed that the skin of Bama mini-pigs, which is similar to human skin, treated by ethosomes had a relatively low Tm and enthalpy. Scanning electron microscopy and transmission electron microscopy showed that the microstructure and ultrastructure of stratum corneum was not damaged by ethosomes treatment. Furthermore, confocal laser scanning microscopy revealed that lipid labeled ethosomes could penetrate the skin via stratum corneum mainly through intercellular route, while during the process of penetration, phospholipids were retained in the upper epidermis. Cell experiments confirmed that ethosomes were distributed mainly on the cell membrane. Further study showed that only the drug-loaded ethosomes increased the amount of permeated drug. The current study, for the first time, elucidated the mechanistic behavior of ethosomes in transdermal application from molecular configuration, thermodynamic properties, ultrastructure, fluorescent labeling and cellular study. It is anticipated that the approaches and results described in the present study will benefit for better design of drug-loaded ethosomes.
ABSTRACT
According to folk usage of Aconitum carmichaelii Debx., the present study was designed to determine the feasibility of the stems and leaves of Aconitum carmichaelii Debx. as a new medicinal resource. Fourteen alkaloids in mother roots, fibrous roots, stems, and leaves of Aconitum carmichaelii Debx. were measured by HPLC-MS/MS. And multivariate analysis methods, such as clustering analysis and principal component analysis, were applied to analyze the difference among various parts. In addition, the acute toxicity, analgesia, and anti-inflammatory tests were carried out. The results suggested that the contents of alkaloids in mother roots and fibrous roots were approximate, but those of leaves and stems were different from mother roots and fibrous roots. The results of the acute toxicity testing demonstrated the toxicity of fibrous root was strongest, and mother roots were slightly less toxic than fibrous roots. The stems and leaves were far less toxic than mother and fibrous roots. In addition, the analgesia and inflammatory tests showed the effects of the various tissues had no difference each other. These results provided a basis for developing new complementary and alternative treatments for rheumatoid arthritis patients. Simultaneously, the approach may also turn wastes into treasure and promote the development of circular economy.
Subject(s)
Aconitum/chemistry , Arthritis, Rheumatoid/drug therapy , Drugs, Chinese Herbal/administration & dosage , Alkaloids/administration & dosage , Alkaloids/chemistry , Alkaloids/toxicity , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/toxicity , Chromatography, High Pressure Liquid , Drug Evaluation, Preclinical , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/toxicity , Female , Humans , Male , Mice , Plant Leaves/chemistry , Plant Roots/chemistry , Plant Stems/chemistry , Tandem Mass SpectrometryABSTRACT
Gastric cancer is a leading cause of cancerassociated mortality worldwide. In studies on the mechanisms of antigastric cancer drugs, autophagy and endoplasmic reticulum (ER) stress have been demonstrated to serve an active role in gastric cancer. The organic extract of Periplaneta americana (also termed American Cockroach), which is named Kangfuxin (KFX) in China, has been used clinically as a traditional Chinese medicine against disorders, including stomach bleeding, gastric ulcers, tuberculosis, burns and trauma. However, the role of KFX and its mechanism in gastric cancer remains to be elucidated. The present study aimed to determine the effects of KFX in vitro against cultured the human carcinoma SGC7901 cell line, and to explore the potential mechanism of the anticancer effects of KFX in gastric cancer. SGC7901 cells were treated with different concentrations of KFX for varying amounts of time. As a result, KFX treatment decreased the ratio of apoptosis regulators Bcl2/Bax, activated ER stress and induced significant apoptosis in SGC7901 cells. Furthermore, KFX was able to restore the ER stress activation blocked by 4phenylbutyrate. In addition, KFX activated autophagy in SGC7901 cells. These results demonstrated that ER stress, autophagy and the apoptosisinducing effects of KFX in SGC7901 cells may achieve promising anticancer effects in numerous other types of cancer. In particular, ER stress may serve an essential role in KFXinduced anticancer effects on gastric carcinoma and a secondary role in autophagy.