Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 200
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell Mol Life Sci ; 81(1): 120, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456906

ABSTRACT

Reputable evidence from multiple studies suggests that excessive and uncontrolled inflammation plays an indispensable role in mediating, amplifying, and protracting acute lung injury (ALI). Traditionally, immunity and energy metabolism are regarded as separate functions regulated by distinct mechanisms, but recently, more and more evidence show that immunity and energy metabolism exhibit a strong interaction which has given rise to an emerging field of immunometabolism. Mammalian lungs are organs with active fatty acid metabolism, however, during ALI, inflammation and oxidative stress lead to a series metabolic reprogramming such as impaired fatty acid oxidation, increased expression of proteins involved in fatty acid uptake and transport, enhanced synthesis of fatty acids, and accumulation of lipid droplets. In addition, obesity represents a significant risk factor for ALI/ARDS. Thus, we have further elucidated the mechanisms of obesity exacerbating ALI from the perspective of fatty acid metabolism. To sum up, this paper presents a systematical review of the relationship between extensive fatty acid metabolic pathways and acute lung injury and summarizes recent advances in understanding the involvement of fatty acid metabolism-related pathways in ALI. We hold an optimistic believe that targeting fatty acid metabolism pathway is a promising lung protection strategy, but the specific regulatory mechanisms are way too complex, necessitating further extensive and in-depth investigations in future studies.


Subject(s)
Acute Lung Injury , Fatty Acids , Animals , Fatty Acids/metabolism , Inflammation , Lipopolysaccharides , Lung/metabolism , Obesity/metabolism , Humans
2.
Apoptosis ; 29(3-4): 536-555, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38066393

ABSTRACT

CCDC58, a member of the CCDC protein family, has been primarily associated with the malignant progression of hepatocellular carcinoma (HCC) and breast cancer, with limited research conducted on its involvement in other tumor types. We aimed to assess the significance of CCDC58 in pan-cancer. We utilized the TCGA, GTEx, and UALCAN databases to perform the differential expression of CCDC58 at both mRNA and protein levels. Prognostic value was evaluated through univariate Cox regression and Kaplan-Meier methods. Mutation and methylation analyses were conducted using the cBioPortal and SMART databases. We identified genes interacting with and correlated to CCDC58 through STRING and GEPIA2, respectively. Subsequently, we performed GO and KEGG enrichment analyses. To gain insights into the functional status of CCDC58 at the single-cell level, we utilized CancerSEA. We explored the correlation between CCDC58 and immune infiltration as well as immunotherapy using the ESTIMATE package, TIMER2.0, TISIDB, TIDE, TIMSO, and TCIA. We examined the relationship between CCDC58 and tumor heterogeneity, stemness, DNA methyltransferases, and MMR genes. Lastly, we constructed a nomogram based on CCDC58 in HCC and investigated its association with drug sensitivity. CCDC58 expression was significantly upregulated and correlated with poor prognosis across various tumor types. The mutation frequency of CCDC58 was found to be increased in 25 tumors. We observed a negative correlation between CCDC58 expression and the methylation sites in the majority of tumors. CCDC58 showed negative correlations with immune and stromal scores, as well as with NK T cells, Tregs, CAFs, endothelial cells, and immunomodulators. Its value in immunotherapy was comparable to that of tumor mutational burden. CCDC58 exhibited positive correlations with tumor heterogeneity, stemness, DNA methyltransferase genes, and MMR genes. In HCC, CCDC58 was identified as an independent risk factor and demonstrated potential associations with multiple drugs. CCDC58 demonstrates significant clinical value as a prognostic marker and indicator of immune response across various tumor types. Its comprehensive analysis provides insights into its potential implications in pan-cancer research.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinogens , Carcinoma, Hepatocellular/genetics , Endothelial Cells , Liver Neoplasms/genetics , Apoptosis , Carcinogenesis , DNA
3.
Mol Med ; 30(1): 14, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38254010

ABSTRACT

BACKGROUND: N6-Methyladenosine (m6A) methylation is the most prevalent post-transcriptional modification in mRNA, and plays significant roles in various diseases. Nevertheless, the precise functions of m6A modification in the formation of ALI remain unclear. In this study we explore the transcriptome distribution of m6A methylation and its probable roles of in ALI. METHODS: Lipopolysaccharide (LPS) was utilized to establish an ALI mouse model. Real-time qPCR, Western blotting and m6A dot blot were utilized to assess m6A methylation level and the expression of m6A methylation enzymes. MeRIP-Seq and RNA-seq were utilized to explore differential m6A modifications and differentially expressed genes in ALI mice. The hub genes and enriched pathways were assessed by Real-time qPCR and Western blotting. RESULTS: Our findings showed that overall m6A methylation level was increased in ALI mice lung tissues, accompanied by lower levels of METTL3 and FTO. Notably, the protein expression of these methylases were different in various cells. There were 772 differently expressed m6A peaks in ALI as compared to the control group, with 316 being hypermethylated and 456 being hypomethylated. GO and KEGG analyses demonstrated these differentially methylated genes were associated with the calcium signaling pathway and cAMP signaling pathway. Furthermore, we identified 50 genes with distinct m6A peaks and mRNA expressions by combined analysis of MeRIP-Seq and RNA-Seq. KEGG analysis also demonstrated that these overlapped genes were closely associated with the calcium signaling pathway, cGMP-PKG signaling pathway, etc. Besides, Western blotting results demonstrated that the protein expression of Fibronectin leucine-rich transmembrane protein 3 (Flrt3) as well as the calcium signaling pathway and cGMP-PKG signaling pathway, increased significantly after ALI. CONCLUSIONS: m6A modification was paramount in the pathogenesis of ALI, and provided a foundation for the further investigation in the prevention and treatment of ALI.


Subject(s)
Acute Lung Injury , Adenine/analogs & derivatives , Lipopolysaccharides , Animals , Mice , Acute Lung Injury/chemically induced , Acute Lung Injury/genetics , Gene Expression , Cyclic GMP , RNA, Messenger
4.
Respir Res ; 25(1): 147, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555425

ABSTRACT

Inflammation and immune processes underlie pulmonary hypertension progression. Two main different activated phenotypes of macrophages, classically activated M1 macrophages and alternatively activated M2 macrophages, are both involved in inflammatory processes related to pulmonary hypertension. Recent advances suggest that macrophages coordinate interactions among different proinflammatory and anti-inflammatory mediators, and other cellular components such as smooth muscle cells and fibroblasts. In this review, we summarize the current literature on the role of macrophages in the pathogenesis of pulmonary hypertension, including the origin of pulmonary macrophages and their response to triggers of pulmonary hypertension. We then discuss the interactions among macrophages, cytokines, and vascular adventitial fibroblasts in pulmonary hypertension, as well as the potential therapeutic benefits of macrophages in this disease. Identifying the critical role of macrophages in pulmonary hypertension will contribute to a comprehensive understanding of this pathophysiological abnormality, and may provide new perspectives for pulmonary hypertension management.


Subject(s)
Hypertension, Pulmonary , Humans , Hypertension, Pulmonary/etiology , Macrophages , Macrophages, Alveolar/pathology , Inflammation/complications , Cytokines
5.
Mol Biol Rep ; 51(1): 670, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787485

ABSTRACT

BACKGROUND: Death Associated Protein Kinase 1 (DAPK1) is a calcium/calmodulin-dependent serine/threonine kinase, which has been reported to be a tumor suppressor with unbalanced expression in various tissues. However, its function in tumor immunotherapy is still unclear. METHODS: The online GEPIA2 database was used to support TCGA results. We explored the DAPK1 pan-cancer genomic alteration analysis using the cBioPortal web tool. The Human Protein Atlas (HPA) was employed to mine DAPK1 protein information. We verified the expression of DAPK1 in lung adenocarcinoma samples using RT-qPCR. Subsequently, the relationship between the expression of DAPK1 and the clinical stage was analyzed. We used TIMER2.0 as the primary platform for studying DAPK1-related immune cell infiltration. Associations between DAPK1 and immunotherapy biomarkers were analyzed using Spearman correlation analysis. TMB and MSI expression was also examined. Finally, we used Kaplan-Meier Plots to evaluate the relationship between DAPK1 expression and the efficacy of immunotherapy. RESULTS: DAPK1 is aberrantly expressed in most cancer types and has prognostic power in various cancers. Gene mutation was the most common DAPK1 alteration across pan-cancers. The DAPK1 protein was mainly localized to tumor cell centrosomes. DAPK1 was also significantly associated with immune-activated hallmarks, immune cell infiltration, and the expression of immunomodulators. Notably, DAPK1 can also significantly predict responses to anti-PD1 and anti-CTLA-4 therapy in cancer patients. CONCLUSIONS: Our findings suggest that DAPK1 may not only be an effective prognostic factor in cancer patients but may also function as a promising predictive immunotherapy biomarker for cancer patients treated with immune checkpoint inhibitors.


Subject(s)
Biomarkers, Tumor , Death-Associated Protein Kinases , Immunotherapy , Neoplasms , Humans , Death-Associated Protein Kinases/genetics , Death-Associated Protein Kinases/metabolism , Immunotherapy/methods , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/therapy , Gene Expression Regulation, Neoplastic , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Mutation/genetics , Female , Male , Kaplan-Meier Estimate
6.
Acta Pharmacol Sin ; 45(5): 1002-1018, 2024 May.
Article in English | MEDLINE | ID: mdl-38225395

ABSTRACT

Diabetes mellitus results in numerous complications. Diabetic pulmonary fibrosis (DPF), a late pulmonary complication of diabetes, has not attracted as much attention as diabetic nephropathy and cardiomyopathy. Mangiferin (MF) is a natural small molecular compound that exhibits a variety of pharmacological effects including anti-inflammatory, anti-cancer, anti-diabetes, and anti-fibrosis effects. In this study, we investigated whether long-term diabetes shock induces DPF, and explored whether MF had a protective effect against DPF. We first examined the lung tissues and sections of 20 diabetic patients obtained from discarded lung surgical resection specimens and found that pulmonary fibrosis mainly accumulated around the pulmonary vessels, accompanied by significantly enhanced endothelial-mesenchymal transition (EndMT). We established a mouse model of DPF by STZ injections. Ten days after the final STZ injection, the mice were administered MF (20, 60 mg/kg, i.g.) every 3 days for 4 weeks, and kept feeding until 16 weeks and euthanized. We showed that pulmonary fibrotic lesions were developed in the diabetic mice, which began around the pulmonary vessels, while MF administration did not affect long-term blood glucose levels, but dose-dependently alleviated diabetes-induced pulmonary fibrosis. In human umbilical vein endothelial cells (HUVECs), exposure to high glucose (33.3 mM) induced EndMT, which was dose-dependently inhibited by treatment with MF (10, 50 µM). Furthermore, MF treatment promoted SIRT3 expression in high glucose-exposed HUVECs by directly binding to AMPK to enhance the activity of FoxO3, which finally reversed diabetes-induced EndMT. We conclude that MF attenuates DPF by inhibiting EndMT through the AMPK/FoxO3/SIRT3 axis. MF could be a potential candidate for the early prevention and treatment of DPF.


Subject(s)
AMP-Activated Protein Kinases , Diabetes Mellitus, Experimental , Forkhead Box Protein O3 , Mice, Inbred C57BL , Pulmonary Fibrosis , Sirtuin 3 , Xanthones , Animals , Xanthones/pharmacology , Xanthones/therapeutic use , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Sirtuin 3/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Forkhead Box Protein O3/metabolism , Male , Humans , Mice , AMP-Activated Protein Kinases/metabolism , Epithelial-Mesenchymal Transition/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Streptozocin , Signal Transduction/drug effects , Endothelial-Mesenchymal Transition
7.
Drug Resist Updat ; 67: 100926, 2023 03.
Article in English | MEDLINE | ID: mdl-36682222

ABSTRACT

AIMS: Nucleotide de novo synthesis is essential to cell growth and survival, and its dysregulation leads to cancers and drug resistance. However, how this pathway is dysregulated in cancer has not been well clarified. This study aimed to identify the regulatory mechanisms of nucleotide de novo synthesis and drug resistance. METHODS: By combining the ChIP-Seq data from the Cistrome Data Browser, RNA sequencing (RNA-Seq) and a luciferase-based promoter assay, we identified transcription factor FOXK2 as a regulator of nucleotide de novo synthesis. To explore the biological functions and mechanisms of FOXK2 in cancers, we conducted biochemical and cell biology assays in vitro and in vivo. Finally, we assessed the clinical significance of FOXK2 in hepatocellular carcinoma. RESULTS: FOXK2 directly regulates the expression of nucleotide synthetic genes, promoting tumor growth and cancer cell resistance to chemotherapy. FOXK2 is SUMOylated by PIAS4, which elicits FOXK2 nuclear translocation, binding to the promoter regions and transcription of nucleotide synthetic genes. FOXK2 SUMOylation is repressed by DNA damage, and elevated FOXK2 SUMOylation promotes nucleotide de novo synthesis which causes resistance to 5-FU in hepatocellular carcinoma. Clinically, elevated expression of FOXK2 in hepatocellular carcinoma patients was associated with increased nucleotide synthetic gene expression and correlated with poor prognoses for patients. CONCLUSION: Our findings establish FOXK2 as a novel regulator of nucleotide de novo synthesis, with potentially important implications for cancer etiology and drug resistance.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Cell Proliferation , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics
8.
Environ Toxicol ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888371

ABSTRACT

Non-small cell lung cancer (NSCLC) is the primary inducer of cancer-related death worldwide. Asiaticoside (ATS) is a triterpenoid saponin that has been indicated to possess an antitumor activity in several malignancies. Nonetheless, its detailed functions in NSCLC remain unclarified. In this study, NSCLC cells were exposed to various doses of ATS. Functional experiments were employed to estimate the ATS effect on NSCLC cell behaviors. Western blotting was implemented for protein expression evaluation. A xenograft mouse model was established to assess the ATS effect on NSCLC in vivo. The results showed that ATS restrained NSCLC cell proliferation, cell cycle progression, migration, and invasiveness. ATS reversed TGF-ß-induced promotion in epithelial-mesenchymal transition (EMT). Mechanistically, ATS inhibited Wnt/ß-catenin signaling in NSCLC. Upregulating ß-catenin restored ATS-mediated suppression of NSCLC cell aggressiveness. Moreover, ATS administration repressed tumorigenesis in tumor-bearing mice. In conclusion, ATS represses growth and metastasis in NSCLC by blocking EMT via the inhibition of Wnt/ß-catenin signaling.

9.
Curr Issues Mol Biol ; 45(12): 9868-9886, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38132462

ABSTRACT

Lung ischemia-reperfusion injury (LIRI) is a prevalent occurrence in various pulmonary diseases and surgical procedures, including lung resections and transplantation. LIRI can result in systemic hypoxemia and multi-organ failure. Hydroxycitric acid (HCA), the primary acid present in the peel of Garcinia cambogia, exhibits anti-inflammatory, antioxidant, and anticancer properties. However, the effects of HCA on LIRI remain unknown. To investigate the impact of HCA on LIRI in mice, the mice were randomly divided into four groups: the control group, the I/R model group, and the I/R + low- or high-dose HCA groups. Human umbilical vein endothelial cells (HUVECs) were subjected to hypoxia for 12 h followed by reoxygenation for 6 h to simulate in vitro LIRI. The results demonstrated that administration of HCA effectively attenuated lung injury, inflammation, and edema induced by ischemia reperfusion. Moreover, HCA treatment significantly reduced malondialdehyde (MDA) and reactive oxygen species (ROS) levels while decreasing iron content and increasing superoxide dismutase (SOD) levels after ischemia-reperfusion insult. Mechanistically, HCA administration significantly inhibited Hif-1α and HO-1 upregulation both in vivo and in vitro. We found that HCA could also alleviate endothelial barrier damage in H/R-induced HUVECs in a concentration-dependent manner. In addition, overexpression of Hif-1α counteracted HCA-mediated inhibition of H/R-induced endothelial cell ferroptosis. In summary, these results indicate that HCA alleviated LIRI by inhibiting oxidative stress and ferroptosis through the Hif-1α pathway.

10.
BMC Cancer ; 23(1): 733, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37553641

ABSTRACT

BACKGROUND: Histone acetylation (HA) is an important and common epigenetic pathway, which could be hijacked by tumor cells during carcinogenesis and cancer progression. However, the important role of HA across human cancers remains elusive. METHODS: In this study, we performed a comprehensive analysis at multiple levels, aiming to systematically describe the molecular characteristics and clinical relevance of HA regulators in more than 10000 tumor samples representing 33 cancer types. RESULTS: We found a highly heterogeneous genetic alteration landscape of HA regulators across different human cancer types. CNV alteration may be one of the major mechanisms leading to the expression perturbations in HA regulators. Furthermore, expression perturbations of HA regulators correlated with the activity of multiple hallmark oncogenic pathways. HA regulators were found to be potentially useful for the prognostic stratification of kidney renal clear cell carcinoma (KIRC). Additionally, we identified HDAC3 as a potential oncogene in lung adenocarcinoma (LUAD). CONCLUSION: Overall, our results highlights the importance of HA regulators in cancer development, which may contribute to the development of clinical strategies for cancer treatment.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Lung Neoplasms , Humans , Histones/metabolism , Acetylation , Carcinoma, Renal Cell/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Lung Neoplasms/genetics
11.
Anticancer Drugs ; 34(2): 238-247, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36730375

ABSTRACT

Lung adenocarcinoma (LUAD) is one of the most aggressive, lethal cancers, comprising around 40% of lung cancer cases. Metastases are the primary cause of LUAD deaths. The mechanism underlying metastatic LUAD and tumor microenvironment remain largely unknown. To explore the effect of M2 macrophage-derived exosomes on LUAD progression. Quantitative-PCR (q-PCR) and western blot were used to measure the expression of RNAs and proteins separately. Co-culture experiments wound healing and Transwell invasion assays were performed to evaluate the effect of M2 macrophage-derived exosomes on LUAD cell migration and invasion. RNA pulldown and luciferase reporter, RNA-binding immunoprecipitation (RIP), and mRNA stability assays were conducted to explore the downstream mechanism of exosomal microRNA-1911-5p (miR-1911-5p). M2 macrophage-derived exosomes accelerated the migration and invasion of LUAD cells. M2 macrophages-secreted exosomal miR-1911-5p enhanced cell migration and invasion in LUAD. Mechanically, miR-1911-5p targeted CUGBP- and ETR-3-like family 2 (CELF2) to downregulate zinc finger and BTB domain containing 4 (ZBTB4) in LUAD. Additionally, miR-1911-5p promoted LUAD progression via ZBTB4. The present study demonstrated that M2 macrophage-derived exosomal miR-1911-5p facilitates the migration and invasion of LUAD cells by inhibiting CELF2-activated ZBTB4, which might offer insight into LUAD treatment.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , MicroRNAs , Humans , Cell Movement , Macrophages , Cell Proliferation , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Tumor Microenvironment , CELF Proteins , Nerve Tissue Proteins , Repressor Proteins
12.
Acta Haematol ; 146(3): 173-184, 2023.
Article in English | MEDLINE | ID: mdl-36572014

ABSTRACT

INTRODUCTION: The aim of the study was to conduct a network meta-analysis to assess the efficacy and incidence of treatment-related adverse events (TRAEs) of eltrombopag, romiplostim, avatrombopag, recombinant human thrombopoietin (rhTPO), and hetrombopag for adult immune thrombocytopenia (ITP). METHODS: Randomized controlled trials (RCTs) of the five therapies from inception to June 1, 2022, were included. The efficacy outcome was the rate of platelet response, defined as the achievement of platelet counts above 50 × 109/L. Pairwise odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. The surface under the cumulative ranking (SUCRA) was used to rank the included therapies for each outcome. RESULTS: In total, 1,360 participants were analyzed in 14 eligible RCTs. All of the therapies showed a significantly better platelet response than the placebo, and avatrombopag (OR, 7.42; 95% CI: 1.74-31.69) and rhTPO (OR, 3.86; 95% CI: 1.62-9.18) were better than eltrombopag. Regarding TRAEs, no significant differences were found between patients receiving eltrombopag, romiplostim, and avatrombopag. Avatrombopag carried the highest platelet response rate with SUCRA value of 87.5, and carried the least TRAEs risk with SUCRA value of 37.0. CONCLUSIONS: These findings indicated that avatrombopag appeared to be the optimal choice as the second-line therapy for adult ITP.


Subject(s)
Purpura, Thrombocytopenic, Idiopathic , Thrombocytopenia , Humans , Adult , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Purpura, Thrombocytopenic, Idiopathic/chemically induced , Receptors, Thrombopoietin/agonists , Incidence , Network Meta-Analysis , Thrombocytopenia/drug therapy , Hydrazines/adverse effects , Benzoates/adverse effects , Recombinant Fusion Proteins/adverse effects , Receptors, Fc/therapeutic use , Thrombopoietin/adverse effects , Randomized Controlled Trials as Topic
13.
Genomics ; 114(3): 110355, 2022 05.
Article in English | MEDLINE | ID: mdl-35364268

ABSTRACT

Pyroptosis plays an important role in tumor immunity. However, the biological behavior and prognostic significance of pyroptosis remain unclear. We identified 41 pyroptosis regulators differently expressed in lung adenocarcinoma (LUAD). All cases of LUAD can be classified into two molecular subtypes using unsupervised clustering algorithm. Using multiple analyses, a four-pyroptosis-gene signature was constructed, and all LUAD patients were categorized as low-risk or high-risk with a longer overall survival (OS) time in the low-risk group(P < 0.001). This signature had power prognosis and stratification which was validated by six independent datasets and clinical subtypes. Besides, this signature showed distinct clinical outcomes, immune landscapes in different risk groups. Moreover, the low-risk group had a higher response against immunotherapy with a lower TIDE score. Importantly, this signature surpassed other biomarkers (TIDE, TMB, PD-L1) in predicting prognosis. Overall, the current study might help with precise prognostic prediction and crucial treatment strategies, eventually promoting tailored therapy for LUAD patients.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Pyroptosis , Prognosis , Adenocarcinoma of Lung/genetics , Algorithms , Lung Neoplasms/genetics , Lung Neoplasms/therapy
14.
Int J Mol Sci ; 24(9)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37175583

ABSTRACT

Acute lung injury (ALI), caused by intrapulmonary or extrapulmonary factors such as pneumonia, shock, and sepsis, eventually disrupts the alveolar-capillary barrier, resulting in diffuse pulmonary oedema and microatasis, manifested by refractory hypoxemia, and respiratory distress. Not only is ALI highly lethal, but even if a patient survives, there are also multiple sequelae. Currently, there is no better treatment than supportive care, and we urgently need to find new targets to improve ALI. Histone deacetylases (HDACs) are epigenetically important enzymes that, together with histone acetylases (HATs), regulate the acetylation levels of histones and non-histones. While HDAC inhibitors (HDACis) play a therapeutic role in cancer, inflammatory, and neurodegenerative diseases, there is also a large body of evidence suggesting the potential of HDACs as therapeutic targets in ALI. This review explores the unique mechanisms of HDACs in different cell types of ALI, including macrophages, pulmonary vascular endothelial cells (VECs), alveolar epithelial cells (AECs), and neutrophils.


Subject(s)
Acute Lung Injury , Endothelial Cells , Humans , Endothelial Cells/metabolism , Histone Deacetylases/metabolism , Lung/metabolism , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Alveolar Epithelial Cells/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylase Inhibitors/metabolism
15.
Int J Mol Sci ; 24(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36982166

ABSTRACT

Uridine metabolism is extensively reported to be involved in combating oxidative stress. Redox-imbalance-mediated ferroptosis plays a pivotal role in sepsis-induced acute lung injury (ALI). This study aims to explore the role of uridine metabolism in sepsis-induced ALI and the regulatory mechanism of uridine in ferroptosis. The Gene Expression Omnibus (GEO) datasets including lung tissues in lipopolysaccharides (LPS) -induced ALI model or human blood sample of sepsis were collected. In vivo and vitro, LPS was injected into mice or administered to THP-1 cells to generate sepsis or inflammatory models. We identified that uridine phosphorylase 1 (UPP1) was upregulated in lung tissues and septic blood samples and uridine significantly alleviated lung injury, inflammation, tissue iron level and lipid peroxidation. Nonetheless, the expression of ferroptosis biomarkers, including SLC7A11, GPX4 and HO-1, were upregulated, while lipid synthesis gene (ACSL4) expression was greatly restricted by uridine supplementation. Moreover, pretreatment of ferroptosis inducer (Erastin or Era) weakened while inhibitor (Ferrostatin-1 or Fer-1) strengthened the protective effects of uridine. Mechanistically, uridine inhibited macrophage ferroptosis by activating Nrf2 signaling pathway. In conclusion, uridine metabolism dysregulation is a novel accelerator for sepsis-induced ALI and uridine supplementation may offer a potential avenue for ameliorating sepsis-induced ALI by suppressing ferroptosis.


Subject(s)
Acute Lung Injury , Ferroptosis , Sepsis , Humans , Animals , Mice , Lipopolysaccharides/toxicity , Acute Lung Injury/drug therapy , Acute Lung Injury/etiology , Sepsis/complications , Sepsis/drug therapy , Macrophages , NF-E2-Related Factor 2
16.
Yi Chuan ; 45(9): 801-812, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37731234

ABSTRACT

Nitrogen is critical for peanut growth and development, and symbiotic nodulation and nitrogen fixation is one of the main ways for peanut to obtain nitrogen. The influence of exogenous nitrogen on nodule nitrogen fixation involves complex regulatory mechanisms, revealing the regulatory mechanisms of nitrogen on nodule nitrogen fixation is of great significance for realizing the potential of biological nitrogen fixation. In this review, we summarize the mechanism of "Crack entry" in the formation of peanut root nodule, the mechanism of symbiotic nodulation and quantitative regulation of peanut, and the regulatory mechanism of nitrogen affecting peanut nodulation. At present, the molecular mechanism by which nitrogen affects the interaction between Bradyrhizobium and peanut, thereby regulating nodulation, is still unclear. Therefore, future research should focus on the signal exchange, nodule number regulation, and nutrient exchange mechanism of nitrogen effects on Bradyrhizobium and peanut, which would provide a theoretical basis for improving nodule nitrogen fixation efficiency and peanut yield, and reduce chemical nitrogen fertilizer application.


Subject(s)
Arachis , Nitrogen
17.
Clin Sci (Lond) ; 136(4): 273-289, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35132999

ABSTRACT

BACKGROUND: NOD-like receptor family pyrin domain containing 3 (NLRP3)-mediated macrophage pyroptosis plays an important role in sepsis-induced acute lung injury (ALI). Inhibition of pyroptosis may be a way to alleviate inflammation as well as tissue damage triggered after lipopolysaccharide (LPS) stimulation. The aim of the present study was to explore whether buformin (BF), a hypoglycemic agent, could alleviate sepsis-induced ALI by inhibiting pyroptosis. METHODS: Wildtype C57BL/6 mice were randomly divided into control group, BF group, LPS group and LPS+BF group. BF group and LPS+BF group were pretreated with BF at a dose of 25 mg/kg, and the changes were observed. In addition, BF was used to interfere with THP-1 cells. The therapeutic effect of BF has been verified by intraperitoneal injection of BF in vivo after LPS stimulation. RESULTS: Inflammation and injury was significantly reduced in BF pretreated mice, and the indexes related to pyroptosis were suppressed. The phosphorylation of AMP-activated protein kinase (AMPK) in lung tissues of mice in the BF and LPS+BF groups was significantly higher. In THP-1 cells, the AMPK inhibitor, Compound C was added to demonstrate that BF worked via AMPK to inhibit NLRP3 inflammasome. It was further demonstrated that BF up-regulated autophagy, which in turn promoted NLRP3 inflammasome degradation. On the other hand, BF decreased NLRP3 mRNA level by increasing nuclear factor-erythroid 2 related factor 2 (Nrf2). And BF showed a therapeutic effect after LPS challenge. CONCLUSION: Our study confirmed that BF inhibited NLRP3-mediated pyroptosis in sepsis-induced ALI by up-regulating autophagy and Nrf2 protein level through an AMPK-dependent pathway. This provides a new strategy for clinical mitigation of sepsis-induced ALI.


Subject(s)
Acute Lung Injury/drug therapy , Buformin/therapeutic use , Hypoglycemic Agents/therapeutic use , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/drug effects , AMP-Activated Protein Kinases/metabolism , Acute Lung Injury/etiology , Acute Lung Injury/metabolism , Animals , Autophagy/drug effects , Buformin/pharmacology , Cell Line , Drug Evaluation, Preclinical , Humans , Hypoglycemic Agents/pharmacology , Macrophages/drug effects , Macrophages/enzymology , Male , Mice, Inbred C57BL , Mice, Knockout , NF-E2-Related Factor 2/metabolism , Sepsis/complications
18.
Cancer Control ; 29: 10732748221111296, 2022.
Article in English | MEDLINE | ID: mdl-35926155

ABSTRACT

Tislelizumab is an anti-programmed death receptor 1 (PD-1) monoclonal immunoglobulin G 4 antibody developed by BeiGene. The structure of tislelizumab has been modified to maximally inhibit the binding of PD-1 to programmed death ligand 1 (PD-L1) and minimize the binding of tislelizumab to Fcγ receptors. In clinical studies, tislelizumab has shown preliminary anti-tumor effects in various solid tumors, such as Hodgkin's lymphoma, urothelial carcinoma, lung cancer, gastric and esophageal cancer, liver cancer, nasopharyngeal carcinoma, colorectal cancer, and microsatellite instability-high/mismatch repair-deficient tumors. In addition, it also showed new promise in solid tumor treatment in combination with ociperlimab. Due to its satisfactory anti-tumor effects, tislelizumab has received approvals in China for the treatment of classical Hodgkin's lymphoma, urothelial carcinoma, squamous non-small cell lung cancer, non-squamous non-small cell lung cancer, and hepatocellular carcinoma, and it is now under investigation for a new indication in microsatellite instability-high/mismatch repair-deficient tumors. Moreover, it has been granted orphan designations in hepatocellular carcinoma, esophageal cancer, and gastric cancer, including cancer of the gastroesophageal junction, by the US Food and Drug Administration. Tislelizumab has an acceptable safety profile; the most common adverse effects include fatigue, anemia, and decreased neutrophil count, while the most fatal events have been related to respiratory infection or failure, and hepatic injury. Tislelizumab has an economic advantage compared with other well-studied PD-1/PD-L1 inhibitors; thus, the introduction of it could provide clinical oncologists with an effective weapon against tumors and may alleviate the burden of cancer patients.


Subject(s)
Carcinoma, Hepatocellular , Carcinoma, Non-Small-Cell Lung , Carcinoma, Transitional Cell , Esophageal Neoplasms , Hodgkin Disease , Lung Neoplasms , Stomach Neoplasms , Urinary Bladder Neoplasms , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , B7-H1 Antigen , Esophageal Neoplasms/drug therapy , Hodgkin Disease/therapy , Humans , Microsatellite Instability , Programmed Cell Death 1 Receptor , Receptors, Death Domain , Stomach Neoplasms/drug therapy
19.
Cell Commun Signal ; 19(1): 109, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34749750

ABSTRACT

BACKGROUND: Heart failure, which is characterized by cardiac remodelling, is one of the most common chronic diseases in the aged. Stimulator of interferon genes (STING) acts as an indispensable molecule modulating immune response and inflammation in many diseases. However, the effects of STING on cardiomyopathy, especially cardiac remodelling are still largely unknown. This study was designed to investigate whether STING could affect cardiac remodelling and to explore the potential mechanisms. METHODS: In vivo, aortic binding (AB) surgery was performed to construct the mice model of cardiac remodelling. A DNA microinjection system was used to trigger STING overexpression in mice. The STING mRNA and protein expression levels in mice heart were measured, and the cardiac hypertrophy, fibrosis, inflammation and cardiac function were also evaluated. In vitro, cardiomyocytes stimulated by Ang II and cardiac fibroblasts stimulated by TGF-ß to performed to further study effects of STING on cardiac hypertrophy and fibroblast. In terms of mechanisms, the level of autophagy was detected in mice challenged with AB. Rapamycin, a canonical autophagy inducer, intraperitoneal injected into mice to study possible potential pathway. RESULTS: In vivo, the STING mRNA and protein expression levels in mice heart challenged with AB for 6 weeks were significantly increased. STING overexpression significantly mitigated cardiac hypertrophy, fibrosis and inflammation, apart from improving cardiac function. In vitro, experiments further disclosed that STING overexpression in cardiomyocytes induced by Ang II significantly inhibited the level of cardiomyocyte cross-section area and the ANP mRNA. Meanwhile, TGF-ß-induced the increase of α-SMA content and collagen synthesis in cardiac fibroblasts could be also blocked by STING overexpression. In terms of mechanisms, mice challenged with AB showed higher level of autophagy compared with the normal mice. However, STING overexpression could reverse the activation of autophagy triggered by AB. Rapamycin, a canonical autophagy inducer, offset the cardioprotective effects of STING in mice challenged with AB. Finally, further experiments unveiled that STING may inhibit autophagy by phosphorylating ULK1 on serine757. CONCLUSIONS: STING may prevent cardiac remodelling induced by pressure overload by inhibiting autophagy, which could be a promising therapeutic target in heart failure. Video Abstract.


Subject(s)
Autophagy-Related Protein-1 Homolog/genetics , Autophagy/genetics , Cardiomegaly/genetics , Heart Failure/genetics , Membrane Proteins/genetics , Angiotensin II/pharmacology , Animals , Apoptosis/drug effects , Apoptosis/genetics , Autophagy/drug effects , Cardiomegaly/pathology , Disease Models, Animal , Gene Expression Regulation/drug effects , Heart Failure/pathology , Humans , Membrane Proteins/antagonists & inhibitors , Mice , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Protective Agents/pharmacology , Signal Transduction/genetics , Sirolimus/pharmacology
20.
Pharmacol Res ; 166: 105466, 2021 04.
Article in English | MEDLINE | ID: mdl-33548489

ABSTRACT

Ferroptosis is a new form of regulated cell death (RCD) driven by iron-dependent lipid peroxidation, which is morphologically and mechanistically distinct from other forms of RCD including apoptosis, autophagic cell death, pyroptosis and necroptosis. Recently, ferroptosis has been found to participate in the development of various cardiovascular diseases (CVDs) including doxorubicin-induced cardiotoxicity, ischemia/reperfusion-induced cardiomyopathy, heart failure, aortic dissection and stroke. Cardiovascular homeostasis is indulged in delicate equilibrium of assorted cell types composing the heart or vessels, and how ferroptosis contributes to the pathophysiological responses in CVD progression is unclear. Herein, we reviewed recent discoveries on the basis of ferroptosis and its involvement in CVD pathogenesis, together with related therapeutic potentials, aiming to provide insights on fundamental mechanisms of ferroptosis and implications in CVDs and associated disorders.


Subject(s)
Cardiovascular Diseases/pathology , Ferroptosis , Animals , Cardiotonic Agents/pharmacology , Cardiotonic Agents/therapeutic use , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/metabolism , Drug Discovery , Ferroptosis/drug effects , Humans , Iron/metabolism , Iron Chelating Agents/pharmacology , Iron Chelating Agents/therapeutic use , Lipid Peroxidation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL