Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Proc Natl Acad Sci U S A ; 116(11): 5055-5060, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30808808

ABSTRACT

MHC-I epitope presentation to CD8+ T cells is directly dependent on peptide loading and selection during antigen processing. However, the exact molecular bases underlying peptide selection and binding by MHC-I remain largely unknown. Within the peptide-loading complex, the peptide editor tapasin is key to the selection of MHC-I-bound peptides. Here, we have determined an ensemble of crystal structures of MHC-I in complex with the peptide exchange-associated dipeptide GL, as well as the tapasin-associated scoop loop, alone or in combination with candidate epitopes. These results combined with mutation analyses allow us to propose a molecular model underlying MHC-I peptide selection by tapasin. The N termini of bound peptides most probably bind first in the N-terminal and middle region of the MHC-I peptide binding cleft, upon which the peptide C termini are tested for their capacity to dislodge the tapasin scoop loop from the F pocket of the MHC-I cleft. Our results also indicate important differences in peptide selection between different MHC-I alleles.


Subject(s)
Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/metabolism , Membrane Transport Proteins/metabolism , Animals , Crystallography, X-Ray , HEK293 Cells , Humans , Leucine/genetics , Membrane Transport Proteins/chemistry , Mice, Knockout , Models, Molecular , Mutation/genetics , Protein Binding , Protein Structure, Secondary
2.
Eur J Immunol ; 49(8): 1278-1290, 2019 08.
Article in English | MEDLINE | ID: mdl-31054264

ABSTRACT

Introduction of Chimeric Antigen Receptors to NK cells has so far been the main practical method for targeting NK cells to specific surface antigens. In contrast, T cell receptor (TCR) gene delivery can supply large populations of cytotoxic T-lymphocytes (CTL) targeted against intracellular antigens. However, a major barrier in the development of safe CTL-TCR therapies exists, wherein the mispairing of endogenous and genetically transferred TCR subunits leads to formation of TCRs with off-target specificity. To overcome this and enable specific intracellular antigen targeting, we have tested the use of NK cells for TCR gene transfer to human cells. Our results show that ectopic expression of TCR α/ß chains, along with CD3 subunits, enables the functional expression of an antigen-specific TCR complex on NK cell lines NK-92 and YTS, demonstrated by using a TCR against the HLA-A2-restricted tyrosinase-derived melanoma epitope, Tyr368-377 . Most importantly, the introduction of a TCR complex to NK cell lines enables MHC-restricted, antigen-specific killing of tumor cells both in vitro and in vivo. Targeting of NK cells via TCR gene delivery stands out as a novel tool in the field of adoptive immunotherapy which can also overcome the major hurdle of "mispairing" in TCR gene therapy.


Subject(s)
Immunotherapy, Adoptive/methods , Killer Cells, Natural/physiology , Melanoma/therapy , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Chimeric Antigen/genetics , Antigens, Neoplasm/immunology , Cell Line , Cytotoxicity, Immunologic , HLA-A2 Antigen/metabolism , Humans , Killer Cells, Natural/transplantation , Melanoma/immunology , Monophenol Monooxygenase/immunology , Peptides/immunology , Protein Engineering
3.
Adv Exp Med Biol ; 1296: 319-348, 2020.
Article in English | MEDLINE | ID: mdl-34185302

ABSTRACT

Components of the tumor microenvironment (TME) are known to play an essential role during malignant progression, but often in a context-dependent manner. In bone and soft tissue sarcomas, disease-regulatory activities in the TME remain largely uncharacterized. This chapter introduces the cellular, structural, and chemical composition of the sarcoma TME from a pathobiological and therapeutic perspective.Sarcomas are malignant tumors with diverse features when it comes to primary tumor appearance, metastatic potential, and response to treatment. Many of the classic subtypes are mainly composed of malignant cells and are therefore assumed to be committed to autocrine signaling. Some of the tumors are infiltrated by immune cells and contain necrotic areas or excessive amounts of extracellular matrix (ECM) that regulates tissue stiffness and interstitial fluid pressure. Vascular invasion and blood vessel characteristics can in some instances be considered in the prognostic setting.Further insights into the disease-regulatory activities of the sarcoma TME will provide essential knowledge on how to develop successful combination treatments targeting not only malignant cells, but also their routes of nutrition and ability to shield themselves toward existing therapy.


Subject(s)
Sarcoma , Soft Tissue Neoplasms , Extracellular Matrix , Humans , Sarcoma/therapy , Tumor Microenvironment
4.
J Immunol ; 197(6): 2063-8, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27527595

ABSTRACT

Marginal zone macrophages (MZM) are strategically located in the spleen, lining the marginal sinus where they sense inflammation and capture Ag from the circulation. One of the receptors expressed by MZM is scavenger receptor macrophage receptor with collagenous structure (MARCO), which has affinity for modified self-antigens. In this article, we show that engagement of MARCO on murine macrophages induces extracellular ATP and loss of CD21 and CD62L on marginal zone B cells. Engagement of MARCO also leads to reduction of Ag transport by marginal zone B cells and affects the subsequent immune response. This study highlights a novel function for MZM in regulating Ag transport and activation, and we suggest that MARCO-dependent ATP release regulates this through shedding of CD21 and CD62L. Because systemic lupus erythematosus patients were shown to acquire autoantibodies against MARCO, this highlights a mechanism that could affect a patient's ability to combat infections.


Subject(s)
Antigens/metabolism , B-Lymphocytes/immunology , Macrophages/physiology , Receptors, Complement 3d/physiology , Spleen/immunology , Adaptive Immunity , Adenosine Triphosphate/metabolism , Animals , L-Selectin/physiology , Mice , Receptors, Immunologic/physiology
5.
Immunol Cell Biol ; 93(6): 581-90, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25643613

ABSTRACT

Signaling lymphocytic activation molecule (SLAM) receptors have an important role in the development of immune responses because of their roles, for exampe, in NK cell cytotoxicity and cytokine production by NK, T cells and myeloid cells. The SLAM receptor CD244 (2B4, SLAMf4) is expressed on a variety of immune cell types but most of its functions have been examined on NK and T cells. In the present study, we investigated expression and function of CD244 in murine subsets of dendritic cells (DCs). We report that all subsets of murine DCs examined expressed CD244, although the expression levels of CD244 varied between subsets. Splenic and resident mesenteric lymph node (MLN) DCs from CD244(-/-) mice expressed lower levels of CD86 and MHC class II compared with wild-type mice. Upon Toll-like receptor (TLR) stimulation, no differences in surface expression of these molecules were observed between DCs from CD244(-/-) and wild-type mice. However, splenic DCs from CD244(-/-) mice upon stimulation with TLR binding ligands lipopolysaccharide (LPS) and CpG produced significantly higher levels of pro-inflammatory cytokines. In addition, DCs from CD244(-/-) mice elicited increased NK cell activation in vitro. These data add CD244 to a growing list of immuno-modulatory receptors found on DCs.


Subject(s)
Antigens, CD/genetics , Dendritic Cells/immunology , Dendritic Cells/metabolism , Gene Expression , Receptors, Immunologic/genetics , Animals , Antigens, Surface/genetics , Antigens, Surface/metabolism , Immunophenotyping , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lymphocyte Activation , Mice , Mice, Knockout , Phenotype , Signaling Lymphocytic Activation Molecule Family , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
6.
J Autoimmun ; 42: 62-70, 2013 May.
Article in English | MEDLINE | ID: mdl-23265639

ABSTRACT

Autoimmune polyendocrine syndrome Type I (APS I) results in multiple endocrine organ destruction and is caused by mutations in the Autoimmune regulator gene (AIRE). In the thymic stroma, cells expressing the AIRE gene dictate T cell education and central tolerance. Although this function is the most studied, AIRE is also expressed in the periphery in DCs and stromal cells. Still, how AIRE regulated transcription modifies cell behaviour in the periphery is largely unknown. Here we show that AIRE is specifically expressed by 33D1(+) DCs and dictates the fate of antibody secreting cell movement within the spleen. We also found that AIRE expressing 33D1(+) DCs expresses self-antigens as exemplified by the hallmark gene insulin. Also, as evidence for a regulatory function, absence of Aire in 33D1(+) DCs led to reduced levels of the chemokine CXCL12 and increased co-stimulatory properties. This resulted in altered activation and recruitment of T-follicular helper cells and germinal centre B cells. The altered balance leads to a change of the early response to a T cell-dependent antigen in Aire(-/-) mice. These findings add to the understanding of how specific DC subtypes regulate the early responses during T cell-dependent antibody responses within the spleen and further define the role of AIRE in the periphery as regulator of self-antigen expression and lymphocyte migration.


Subject(s)
B-Lymphocytes/immunology , Dendritic Cells, Follicular/immunology , Polyendocrinopathies, Autoimmune/immunology , T-Lymphocytes, Helper-Inducer/immunology , Transcription Factors/metabolism , Adaptive Immunity/genetics , Animals , Antibody Formation/genetics , Cell Movement/genetics , Cells, Cultured , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Immune Tolerance/genetics , Insulin/immunology , Lymphocyte Activation/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation/genetics , Polyendocrinopathies, Autoimmune/genetics , Transcription Factors/genetics , AIRE Protein
7.
iScience ; 26(7): 107078, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37426355

ABSTRACT

Umbilical cord blood (UCB) CD34+ progenitor cell-derived natural killer (NK) cells exert efficient cytotoxicity against various melanoma cell lines. Of interest, the relative cytotoxic performance of individual UCB donors was consistent throughout the melanoma panel and correlated with IFNγ, TNF, perforin and granzyme B levels. Importantly, intrinsic perforin and Granzyme B load predicts NK cell cytotoxic capacity. Exploring the mode of action revealed involvement of the activating receptors NKG2D, DNAM-1, NKp30, NKp44, NKp46 and most importantly of TRAIL. Strikingly, combinatorial receptor blocking led to more pronounced inhibition of cytotoxicity (up to 95%) than individual receptor blocking, especially in combination with TRAIL-blocking, suggesting synergistic cytotoxic NK cell activity via engagement of multiple receptors which was also confirmed in a spheroid model. Importantly, lack of NK cell-related gene signature in metastatic melanomas correlates with poor survival highlighting the clinical significance of NK cell therapies as a promising treatment for high-risk melanoma patients.

8.
Nat Commun ; 14(1): 3375, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37291203

ABSTRACT

Osteosarcoma (OS) remains a dismal malignancy in children and young adults, with poor outcome for metastatic and recurrent disease. Immunotherapies in OS are not as promising as in some other cancer types due to intra-tumor heterogeneity and considerable off-target expression of the potentially targetable proteins. Here we show that chimeric antigen receptor (CAR) T cells could successfully target an isoform of alkaline phosphatase, ALPL-1, which is highly and specifically expressed in primary and metastatic OS. The target recognition element of the second-generation CAR construct is based on two antibodies, previously shown to react against OS. T cells transduced with these CAR constructs mediate efficient and effective cytotoxicity against ALPL-positive cells in in vitro settings and in state-of-the-art in vivo orthotopic models of primary and metastatic OS, without unexpected toxicities against hematopoietic stem cells or healthy tissues. In summary, CAR-T cells targeting ALPL-1 show efficiency and specificity in treating OS in preclinical models, paving the path for clinical translation.


Subject(s)
Bone Neoplasms , Osteosarcoma , Child , Humans , Immunotherapy, Adoptive , T-Lymphocytes , Immunotherapy , Osteosarcoma/therapy , Bone Neoplasms/therapy , Cell Line, Tumor , Alkaline Phosphatase
9.
J Hematol Oncol ; 15(1): 164, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36348457

ABSTRACT

Natural killer (NK) cells are unique immune effectors able to kill cancer cells by direct recognition of surface ligands, without prior sensitization. Allogeneic NK transfer is a highly valuable treatment option for cancer and has recently emerged with hundreds of clinical trials paving the way to finally achieve market authorization. Advantages of NK cell therapies include the use of allogenic cell sources, off-the-shelf availability, and no risk of graft-versus-host disease (GvHD). Allogeneic NK cell therapies have reached the clinical stage as ex vivo expanded and differentiated non-engineered cells, as chimeric antigen receptor (CAR)-engineered or CD16-engineered products, or as combination therapies with antibodies, priming agents, and other drugs. This review summarizes the recent clinical status of allogeneic NK cell-based therapies for the treatment of hematological and solid tumors, discussing the main characteristics of the different cell sources used for NK product development, their use in cell manufacturing processes, the engineering methods and strategies adopted for genetically modified products, and the chosen approaches for combination therapies. A comparative analysis between NK-based non-engineered, engineered, and combination therapies is presented, examining the choices made by product developers regarding the NK cell source and the targeted tumor indications, for both solid and hematological cancers. Clinical trial outcomes are discussed and, when available, assessed in comparison with preclinical data. Regulatory challenges for product approval are reviewed, highlighting the lack of specificity of requirements and standardization between products. Additionally, the competitive landscape and business field is presented. This review offers a comprehensive overview of the effort driven by biotech and pharmaceutical companies and by academic centers to bring NK cell therapies to pivotal clinical trial stages and to market authorization.


Subject(s)
Hematologic Neoplasms , Neoplasms , Receptors, Chimeric Antigen , Humans , Killer Cells, Natural , Immunotherapy, Adoptive/methods
10.
Cancers (Basel) ; 13(18)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34572949

ABSTRACT

Adoptive cell therapy (ACT) represents a promising alternative approach for patients with treatment-resistant metastatic melanoma. Lately, tumor infiltrating lymphocyte (TIL) therapy and chimeric antigen receptor (CAR)-T cell therapy have shown improved clinical outcome, compared to conventional chemotherapy or immunotherapy. Nevertheless, they are limited by immune escape of the tumor, cytokine release syndrome, and manufacturing challenges of autologous therapies. Conversely, the clinical use of Natural Killer (NK) cells has demonstrated a favorable clinical safety profile with minimal toxicities, providing an encouraging treatment alternative. Unlike T cells, NK cells are activated, amongst other mechanisms, by the downregulation of HLA class I molecules, thereby overcoming the hurdle of tumor immune escape. However, impairment of NK cell function has been observed in melanoma patients, resulting in deteriorated natural defense. To overcome this limitation, "activated" autologous or allogeneic NK cells have been infused into melanoma patients in early clinical trials, showing encouraging clinical benefit. Furthermore, as several NK cell-based therapeutics are being developed for different cancers, an emerging variety of approaches to increase migration and infiltration of adoptively transferred NK cells towards solid tumors is under preclinical investigation. These developments point to adoptive NK cell therapy as a highly promising treatment for metastatic melanoma in the future.

11.
Front Mol Biosci ; 8: 754443, 2021.
Article in English | MEDLINE | ID: mdl-34926577

ABSTRACT

Allogeneic natural killer (aNK) cell adoptive therapy has the potential to dramatically impact clinical outcomes of glioblastoma multiforme (GBM). However, in order to exert therapeutic activity, NK cells require tumor expression of ligands for activating receptors, such as MHC Class I peptide A/B (MICA/B) and ULBPs. Here, we describe the use of a blood-brain barrier (BBB) permissive supramolecular cationic drug vehicle comprising an inhibitor of the chaperone heat shock protein 90 (Hsp90), which sustains a cytotoxic effect on GBM cells, boosts the expression of MICA/B and ULBPs on the residual population, and augments the activity of clinical-grade aNK cells (GTA002). First, we identify Hsp90 mRNA transcription and gain of function as significantly upregulated in GBM compared to other central nervous system tumors. Through a rational chemical design, we optimize a radicicol supramolecular prodrug containing cationic excipients, SCI-101, which displays >2-fold increase in relative BBB penetration compared to less cationic formulations in organoids, in vitro. Using 2D and 3D biological models, we confirm SCI-101 sustains GBM cytotoxicity 72 h after drug removal and induces cell surface MICA/B protein and ULBP mRNA up to 200% in residual tumor cells compared to the naked drug alone without augmenting the shedding of MICA/B, in vitro. Finally, we generate and test the sequential administration of SCI-101 with a clinical aNK cell therapy, GTA002, differentiated and expanded from healthy umbilical cord blood CD34+ hematopoietic stem cells. Using a longitudinal in vitro model, we demonstrate >350% relative cell killing is achieved in SCI-101-treated cell lines compared to vehicle controls. In summary, these data provide a first-of-its-kind BBB-penetrating, long-acting inhibitor of Hsp90 with monotherapy efficacy, which improves response to aNK cells and thus may rapidly alter the treatment paradigm for patients with GBM.

12.
Front Immunol ; 11: 40, 2020.
Article in English | MEDLINE | ID: mdl-32082316

ABSTRACT

Sarcomas are malignancies of mesenchymal origin that occur in bone and soft tissues. Many are chemo- and radiotherapy resistant, thus conventional treatments fail to increase overall survival. Natural Killer (NK) cells exert anti-tumor activity upon detection of a complex array of tumor ligands, but this has not been thoroughly explored in the context of sarcoma immunotherapy. In this study, we investigated the NK cell receptor/ligand immune profile of primary human sarcoma explants. Analysis of tumors from 32 sarcoma patients identified the proliferative marker PCNA and DNAM-1 ligands CD112 and/or CD155 as commonly expressed antigens that could be efficiently targeted by genetically modified (GM) NK cells. Despite the strong expression of CD112 and CD155 on sarcoma cells, characterization of freshly dissociated sarcomas revealed a general decrease in tumor-infiltrating NK cells compared to the periphery, suggesting a defect in the endogenous NK cell response. We also applied a functional screening approach to identify relevant NK cell receptor/ligand interactions that induce efficient anti-tumor responses using a panel NK-92 cell lines GM to over-express 12 different activating receptors. Using GM NK-92 cells against primary sarcoma explants (n = 12) revealed that DNAM-1 over-expression on NK-92 cells led to efficient degranulation against all tested explants (n = 12). Additionally, NKG2D over-expression showed enhanced responses against 10 out of 12 explants. These results show that DNAM-1+ or NKG2D+ GM NK-92 cells may be an efficient approach in targeting sarcomas. The degranulation capacity of GM NK-92 cell lines was also tested against various established tumor cell lines, including neuroblastoma, Schwannoma, melanoma, myeloma, leukemia, prostate, pancreatic, colon, and lung cancer. Enhanced degranulation of DNAM-1+ or NKG2D+ GM NK-92 cells was observed against the majority of tumor cell lines tested. In conclusion, DNAM-1 or NKG2D over-expression elicited a dynamic increase in NK cell degranulation against all sarcoma explants and cancer cell lines tested, including those that failed to induce a notable response in WT NK-92 cells. These results support the broad therapeutic potential of DNAM-1+ or NKG2D+ GM NK-92 cells and GM human NK cells for the treatment of sarcomas and other malignancies.


Subject(s)
Antigens, Differentiation, T-Lymphocyte/genetics , Antigens, Differentiation, T-Lymphocyte/metabolism , Killer Cells, Natural/immunology , Lymphocyte Activation/genetics , NK Cell Lectin-Like Receptor Subfamily K/genetics , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Sarcoma/immunology , Transgenes , Adolescent , Adult , Aged , Aged, 80 and over , Cell Degranulation/genetics , Cell Degranulation/immunology , Cell Line, Tumor , Cell- and Tissue-Based Therapy/methods , Child , Child, Preschool , Cytotoxicity, Immunologic , Genetic Vectors , Humans , Immunotherapy, Adoptive/methods , Infant , Infant, Newborn , Ligands , Lymphocytes, Tumor-Infiltrating/immunology , Middle Aged , Receptors, Cell Surface/metabolism , Receptors, Virus/metabolism , Sarcoma/pathology , Young Adult
13.
J Exp Med ; 213(8): 1537-53, 2016 07 25.
Article in English | MEDLINE | ID: mdl-27432941

ABSTRACT

Prolonged infections or adjuvant usage can trigger emergency granulopoiesis (EG), leading to dysregulation in neutrophil blood counts. However, the impact of EG on T and B cell function remains largely unknown. In this study, to address this question, we used a mouse model of neutropenia and studied immune activation after adjuvant administration. The initial neutropenic state fostered an environment of increased dendritic cell activation and T cell-derived IL-17 production. Interestingly, neutropenic lysozyme 2-diphtheria toxin A mice exhibited striking EG and amplified neutrophil recruitment to the lymph nodes (LNs) that was dependent on IL-17-induced prostaglandin activity. The recruited neutrophils secreted a B cell-activating factor that highly accelerated plasma cell generation and antigen-specific antibody production. Reduction of neutrophil functions via granulocyte colony-stimulating factor neutralization significantly diminished plasma cell formation, directly linking EG with the humoral immune response. We conclude that neutrophils are capable of directly regulating T cell-dependent B cell responses in the LN.


Subject(s)
Antibody Formation/physiology , B-Cell Activating Factor/metabolism , Immunity, Humoral/physiology , Myelopoiesis/physiology , Neutrophils/metabolism , Plasma Cells/metabolism , Animals , B-Cell Activating Factor/genetics , B-Cell Activating Factor/immunology , Interleukin-17/genetics , Interleukin-17/immunology , Interleukin-17/metabolism , Mice , Mice, Knockout , Neutropenia/genetics , Neutropenia/immunology , Neutropenia/metabolism , Neutrophils/cytology , Neutrophils/immunology , Plasma Cells/immunology
14.
J Leukoc Biol ; 100(4): 781-789, 2016 10.
Article in English | MEDLINE | ID: mdl-27034402

ABSTRACT

Previous studies have suggested that NK cells may limit T cell responses by their ability to eradicate dendritic cells, as demonstrated by NK cell-mediated killing of dendritic cells generated from mouse bone marrow cells or human monocytes with GM-CSF. In the present study, we demonstrated that conventional dendritic cells, generated in vitro with Flt3 ligand or from spleens, were resistant to NK cell-mediated lysis. However, upon stimulation with GM-CSF, NK cells could mediate lysis of these dendritic cells. GM-CSF-stimulated Flt3 ligand dendritic cells or splenic dendritic cells increased surface expression of costimulatory molecules and known NK cell ligands. Likewise, NK cells could target dendritic cells in vivo, which could be inhibited, in part, by anti-GM-CSF antibodies. The blocking of CD54 or CD226 inhibited NK cell-mediated cytotoxicity of the GM-CSF-stimulated Flt3 ligand conventional dendritic cells. Furthermore, the CD226+NKG2A- subset of NK cells was selectively better at targeting GM-CSF-stimulated Flt3 ligand conventional dendritic cells. However, CD155, a known ligand for CD226, could also act as an inhibitor of NK cell-mediated lysis, as dendritic cells lacking CD155 were more sensitive to NK cell-mediated lysis than wild-type dendritic cells. We hypothesize that by only permitting a subset of NK cells to target activated dendritic cells during inflammation, this would allow the immune system to balance between dendritic cells able to drive adaptive immune responses and dendritic cells targeted for elimination by NK cells to hinder, e.g., spread of infection.


Subject(s)
Antigens, Differentiation, T-Lymphocyte/immunology , Cytotoxicity, Immunologic/immunology , Dendritic Cells/immunology , Intercellular Adhesion Molecule-1/immunology , Killer Cells, Natural/immunology , Animals , Cells, Cultured , Dendritic Cells/transplantation , Genes, RAG-1 , Graft Rejection/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Inflammation , Interleukin-18/pharmacology , Membrane Proteins/pharmacology , Mice , Mice, Knockout , Programmed Cell Death 1 Receptor/deficiency , Receptors, Virus/deficiency , Recombinant Proteins/pharmacology , Spleen/immunology
15.
Cell Rep ; 15(9): 2000-11, 2016 05 31.
Article in English | MEDLINE | ID: mdl-27210762

ABSTRACT

Tumors are composed of multiple cell types besides the tumor cells themselves, including innate immune cells such as macrophages. Tumor-associated macrophages (TAMs) are a heterogeneous population of myeloid cells present in the tumor microenvironment (TME). Here, they contribute to immunosuppression, enabling the establishment and persistence of solid tumors as well as metastatic dissemination. We have found that the pattern recognition scavenger receptor MARCO defines a subtype of suppressive TAMs and is linked to clinical outcome. An anti-MARCO monoclonal antibody was developed, which induces anti-tumor activity in breast and colon carcinoma, as well as in melanoma models through reprogramming TAM populations to a pro-inflammatory phenotype and increasing tumor immunogenicity. This anti-tumor activity is dependent on the inhibitory Fc-receptor, FcγRIIB, and also enhances the efficacy of checkpoint therapy. These results demonstrate that immunotherapies using antibodies designed to modify myeloid cells of the TME represent a promising mode of cancer treatment.


Subject(s)
Antibodies, Neoplasm/pharmacology , Disease Progression , Macrophages/metabolism , Neoplasms/pathology , Animals , Biomarkers, Tumor/metabolism , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Cell Polarity/drug effects , Cell Proliferation/drug effects , Cytokines/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Female , Humans , Immunosuppression Therapy , Immunotherapy , Melanoma/immunology , Melanoma/pathology , Melanoma/therapy , Mice , Neoplasm Metastasis , Neoplasms/immunology , Neoplasms/therapy , Receptors, IgG/metabolism , Receptors, Immunologic/metabolism , Stromal Cells/pathology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
16.
Cancer Res ; 73(13): 3865-76, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23658368

ABSTRACT

Exosomes and the invariant NKT (iNKT) immune cell ligand α-galactosylceramide (αGC) may offer novel tools for cancer immunotherapy. In this study, we investigated whether exosomes loaded with αGC can activate iNKT cells and potentiate a cancer-specific adaptive immune response. αGC loaded exosomes readily activated iNKT cells both in vitro and in vivo. Exosomes loaded with αGC plus the model antigen ovalbumin (OVA) induced potent NK and γδ T-cell innate immune responses, and they also synergistically amplified T- and B-cell responses that were OVA specific. In contrast to soluble αGC, which anergizes iNKT cells, we found that αGC/OVA-loaded exosomes did not induce iNKT cell anergy but were more potent than soluble αGC + OVA in inducing adaptive immune responses. In an OVA-expressing mouse model of melanoma, treatment of tumor-bearing mice with αGC/OVA-loaded exosomes decreased tumor growth, increased antigen-specific CD8(+) T-cell tumor infiltration, and increased median survival, relative to control mice immunized with soluble αGC + OVA alone. Notably, an additional injection of αGC/OVA-loaded exosomes further augmented the treatment effects. Our findings show that exosomes loaded with protein antigen and αGC will activate adaptive immunity in the absence of triggering iNKT-cell anergy, supporting their application in the design of a broad variety of cancer immunotherapy trials.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Antigens, Neoplasm/immunology , Exosomes/immunology , Galactosylceramides/administration & dosage , Immunotherapy, Adoptive , Melanoma, Experimental/therapy , Adaptive Immunity , Amino Acid Sequence , Animals , Antigens, CD1d/metabolism , Antigens, Neoplasm/administration & dosage , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cells, Cultured , Clonal Anergy , Dendritic Cells/metabolism , Female , Lymphocyte Activation , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Natural Killer T-Cells/immunology , Neoplasm Transplantation , Ovalbumin/immunology , Peptide Fragments/immunology , Tumor Burden/immunology
17.
Immunotherapy ; 2(4): 521-37, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20636006

ABSTRACT

In allogeneic hematopoietic stem cell transplantation, donor-derived T cells are key players for early immune reconstitution and efficient engraftment, as well as the graft-versus-leukemia and graft-versus-infection effects. However, a severe and quite common life-threatening complication is the development of graft-versus-host disease, during which the alloreactive donor T cells attack the host. Controlling graft-versus-host disease while preserving the benefits of graft-versus-leukemia still constitutes a challenge. A promising approach for the control of graft-versus-host disease is suicide gene therapy, which involves the ex vivo genetic modification of donor T cells with a suicide gene that allows for the selective elimination of the cells in vivo if graft-versus-host disease occurs. This article presents an overview of such approaches with special reference to lessons learned from previous clinical experiences, as well as a discussion of critical factors in suicide gene therapy.


Subject(s)
Genes, Transgenic, Suicide , Genetic Therapy , Graft vs Host Disease/therapy , Graft vs Host Disease/genetics , Hematopoietic Stem Cell Transplantation , Humans , T-Lymphocytes/immunology
18.
J Leukoc Biol ; 86(1): 91-101, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19380711

ABSTRACT

The adhesion receptor CD226 (DNAM-1) is a member of the Ig superfamily possessing two extracellular V-like domains. In humans, CD226 was shown to be expressed by NK as well as T cells. During T cell priming, CD226-mediated costimulatory signals may skew the subsequent differentiation into the Th1 pathway. In addition, CD226 expressed on NK and cytotoxic T cells is engaged by its counter-receptor CD155, present on target cells, thereby triggering their elimination. We established mAb specifically recognizing mCD226, demonstrating that CD226 is expressed by precursor and mature but not developing T cells. In contrast, NK cells are distinguished by a rather heterogeneous CD226 expression profile. In addition, expression of CD226 appears coupled to that of other NK cell receptors, as high expression of CD226 was found to correlate with decreased proportions of Ly49D and H positive NK cells. Upon injection into mice, the anti-CD226 antibodies caused selective depletion of CD8(+) T cells. Moreover, these antibodies as well as a naturally occurring CD226 splice variant lacking the outermost V-like domain were instrumental in determining that CD226 adheres to CD155 via its first domain. In addition, antibodies were identified as capable of blocking the CD226/CD155 interaction and to prevent NK-driven killing of immature DC. CD226 is thus the first mNK receptor identified to be essential for the elimination of this particular cell type.


Subject(s)
Antigens, Differentiation, T-Lymphocyte/immunology , Dendritic Cells/cytology , Killer Cells, Natural/immunology , Receptors, Virus/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Antigens, Differentiation, T-Lymphocyte/analysis , Antigens, Differentiation, T-Lymphocyte/metabolism , Binding Sites , Cytotoxicity, Immunologic , Gene Expression Regulation/immunology , Mice , Protein Binding/immunology , Receptors, Virus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL