Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters

Publication year range
1.
Plant Cell ; 33(2): 179-199, 2021 04 17.
Article in English | MEDLINE | ID: mdl-33793864

ABSTRACT

A reduction in pod shattering is one of the main components of grain legume domestication. Despite this, many domesticated legumes suffer serious yield losses due to shattering, particularly under arid conditions. Mutations related to pod shattering modify the twisting force of pod walls or the structural strength of the dehiscence zone in pod sutures. At a molecular level, a growing body of evidence indicates that these changes are controlled by a relatively small number of key genes that have been selected in parallel across grain legume species, supporting partial molecular convergence. Legume homologs of Arabidopsis thaliana silique shattering genes play only minor roles in legume pod shattering. Most domesticated grain legume species contain multiple shattering-resistance genes, with mutants of each gene typically showing only partial shattering resistance. Hence, crosses between varieties with different genes lead to transgressive segregation of shattering alleles, producing plants with either enhanced shattering resistance or atavistic susceptibility to the trait. The frequency of these resistance pod-shattering alleles is often positively correlated with environmental aridity. The continued development of pod-shattering-related functional information will be vital for breeding crops that are suited to the increasingly arid conditions expected in the coming decades.


Subject(s)
Environment , Fabaceae/genetics , Seeds/genetics , Arabidopsis/genetics , Biological Evolution , Genes, Plant , Seasons
2.
Int J Mol Sci ; 24(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37894980

ABSTRACT

The common bean (Phaseolus vulgaris L.) is a globally cultivated leguminous crop. Fusarium wilt (FW), caused by Fusarium oxysporum f. sp. phaseoli (Fop), is a significant disease leading to substantial yield loss in common beans. Disease-resistant cultivars are recommended to counteract this. The objective of this investigation was to identify single nucleotide polymorphism (SNP) markers associated with FW resistance and to pinpoint potential resistant common bean accessions within a core collection, utilizing a panel of 157 accessions through the Genome-wide association study (GWAS) approach with TASSEL 5 and GAPIT 3. Phenotypes for Fop race 1 and race 4 were matched with genotypic data from 4740 SNPs of BARCBean6K_3 Infinium Bea Chips. After ranking the 157-accession panel and revealing 21 Fusarium wilt-resistant accessions, the GWAS pinpointed 16 SNPs on chromosomes Pv04, Pv05, Pv07, Pv8, and Pv09 linked to Fop race 1 resistance, 23 SNPs on chromosomes Pv03, Pv04, Pv05, Pv07, Pv09, Pv10, and Pv11 associated with Fop race 4 resistance, and 7 SNPs on chromosomes Pv04 and Pv09 correlated with both Fop race 1 and race 4 resistances. Furthermore, within a 30 kb flanking region of these associated SNPs, a total of 17 candidate genes were identified. Some of these genes were annotated as classical disease resistance protein/enzymes, including NB-ARC domain proteins, Leucine-rich repeat protein kinase family proteins, zinc finger family proteins, P-loopcontaining nucleoside triphosphate hydrolase superfamily, etc. Genomic prediction (GP) accuracy for Fop race resistances ranged from 0.26 to 0.55. This study advanced common bean genetic enhancement through marker-assisted selection (MAS) and genomic selection (GS) strategies, paving the way for improved Fop resistance.


Subject(s)
Fusarium , Phaseolus , Fusarium/genetics , Genome-Wide Association Study , Phaseolus/genetics , Genomics , Plant Diseases/genetics , Disease Resistance/genetics
3.
Plant J ; 105(6): 1521-1533, 2021 03.
Article in English | MEDLINE | ID: mdl-33300202

ABSTRACT

The common-bean (Phaseolus vulgaris), a widely consumed legume, originated in Mesoamerica and expanded to South America, resulting in the development of two geographically distinct gene pools. Poor soil condition, including metal toxicity, are often constraints to common-bean crop production. Several P. vulgaris miRNAs, including miR1511, respond to metal toxicity. The MIR1511 gene sequence from the two P. vulgaris model sequenced genotypes revealed that, as opposed to BAT93 (Mesoamerican), the G19833 (Andean) accession displays a 58-bp deletion, comprising the mature and star miR1511 sequences. Genotyping-By-Sequencing data analysis from 87 non-admixed Phaseolus genotypes, comprising different Phaseolus species and P. vulgaris populations, revealed that all the P. vulgaris Andean genotypes and part of the Mesoamerican (MW1) genotypes analyzed displayed a truncated MIR1511 gene. The geographic origin of genotypes with a complete versus truncated MIR1511 showed a distinct distribution. The P. vulgaris ALS3 (Aluminum Sensitive Protein 3) gene, known to be important for aluminum detoxification in several plants, was experimentally validated as the miR1511 target. Roots from BAT93 plants showed decreased miR1511 and increased ALS3 transcript levels at early stages under aluminum toxicity (AlT), while G19833 plants, lacking mature miR1511, showed higher and earlier ALS3 response. Root architecture analyses evidenced higher tolerance of G19833 plants to AlT. However, G19833 plants engineered for miR1511 overexpression showed lower ALS3 transcript level and increased sensitivity to AlT. Absence of miR1511 in Andean genotypes, resulting in a diminished ALS3 transcript degradation, appears to be an evolutionary advantage to high Al levels in soils with increased drought conditions.


Subject(s)
Aluminum/toxicity , MicroRNAs/genetics , Phaseolus/genetics , RNA, Plant/genetics , Gene Deletion , Genetic Variation , MicroRNAs/metabolism , Phaseolus/drug effects , Phaseolus/metabolism , Plant Roots/growth & development , RNA, Plant/metabolism , Stress, Physiological
4.
New Phytol ; 235(6): 2454-2465, 2022 09.
Article in English | MEDLINE | ID: mdl-35708662

ABSTRACT

Fruit development has been central in the evolution and domestication of flowering plants. In common bean (Phaseolus vulgaris), the principal global grain legume staple, two main production categories are distinguished by fibre deposition in pods: dry beans, with fibrous, stringy pods; and stringless snap/green beans, with reduced fibre deposition, which frequently revert to the ancestral stringy state. Here, we identify genetic and developmental patterns associated with pod fibre deposition. Transcriptional, anatomical, epigenetic and genetic regulation of pod strings were explored through RNA-seq, RT-qPCR, fluorescence microscopy, bisulfite sequencing and whole-genome sequencing. Overexpression of the INDEHISCENT ('PvIND') orthologue was observed in stringless types compared with isogenic stringy lines, associated with overspecification of weak dehiscence-zone cells throughout the pod vascular sheath. No differences in DNA methylation were correlated with this phenotype. Nonstringy varieties showed a tandemly direct duplicated PvIND and a Ty1-copia retrotransposon inserted between the two repeats. These sequence features are lost during pod reversion and are predictive of pod phenotype in diverse materials, supporting their role in PvIND overexpression and reversible string phenotype. Our results give insight into reversible gain-of-function mutations and possible genetic solutions to the reversion problem, of considerable economic value for green bean production.


Subject(s)
Phaseolus , Domestication , Gene Duplication , Phaseolus/genetics , Phenotype , Retroelements/genetics
5.
J Exp Bot ; 72(18): 6219-6229, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34106233

ABSTRACT

Pod shattering, which causes the explosive release of seeds from the pod, is one of the main sources of yield losses in cowpea in arid and semi-arid areas. Reduction of shattering has therefore been a primary target for selection during domestication and improvement of cowpea, among other species. Using a mini-core diversity panel of 368 cowpea accessions, four regions with a statistically significant association with pod shattering were identified. Two genes (Vigun03g321100 and Vigun11g100600), involved in cell wall biosynthesis, were identified as strong candidates for pod shattering. Microscopic analysis was conducted on a subset of accessions representing the full spectrum of shattering phenotypes. This analysis indicated that the extent of wall fiber deposition was highly correlated with shattering. The results from this study also demonstrate that pod shattering in cowpea is exacerbated by arid environmental conditions. Finally, using a subset of West African landraces, patterns of historical selection for shattering resistance related to precipitation in the environment of origin were identified. Together, these results shed light on sources of resistance to pod shattering, which will, in turn, improve climate resilience of a major global nutritional staple.


Subject(s)
Vigna , Domestication , Phenotype , Seeds/genetics , Vigna/genetics
6.
Theor Appl Genet ; 134(1): 313-325, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33130953

ABSTRACT

KEY MESSAGE: A common bean shattering-resistance allele of PvPdh1 reduces pod twists during dehiscence, shows dominance that varies by phenotyping method, is part of a selective sweep, and can be introgressed using CAPS markers. Some varieties of common bean (Phaseolus vulgaris L.) suffer from pod shattering, which can severely reduce yields, especially in arid conditions. The PvPdh1 locus on chromosome Pv03 has recently been described as a major locus controlling pod shattering in common bean and could be used to mitigate pod shattering in the future. Despite this, the role of a possible second locus on chromosome Pv08 remains unclear and patterns of dominance and epistasis between alleles of these genes have not been resolved. This information will be vital for efficient selection to decrease pod shattering. Further, the genetic diversity around the PvPdh1 gene has not yet been thoroughly explored, and there are not yet genetic screens that can be used to evaluate pod shattering in segregating populations. Here, we have developed a recombinant inbred population to determine the roles of genes implicated in pod shattering and evaluate the patterns of dominance among the relevant alleles. Our results suggest that a PvPdh1 allele reduces pod valve twisting, and its dominance varies by phenotyping method. This allele is the only genetic variant that provides environmentally stable and widespread resistance to pod shattering in Middle American common beans grown for grain. Further analyses identified a selective sweep around PvPdh1 with greater nucleotide diversity in individuals with the ancestral, shattering-susceptible allele. Finally, we developed simple, effective CAPS markers to facilitate the introgression of PvPdh1 into new varieties of common bean. These genetic resources will be critical for improving the aridity resilience of a major global staple.


Subject(s)
Genes, Plant , Genetic Introgression , Phaseolus/genetics , Alleles , Genes, Dominant , Genetic Markers , Genotype , Phaseolus/growth & development , Phenotype , Plant Breeding
7.
Theor Appl Genet ; 134(9): 2795-2811, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34027567

ABSTRACT

KEY MESSAGE: QTNs significantly associated to nine mineral content in grains of common bean were identified. The accumulation of favorable alleles was associated with a gradually increasing nutrient content in the grain. Biofortification is one of the strategies developed to address malnutrition in developing countries, the aim of which is to improve the nutritional content of crops. The common bean (Phaseolus vulgaris L.), a staple food in several African and Latin American countries, has excellent nutritional attributes and is considered a strong candidate for biofortification. The objective of this study was to identify genomic regions associated with nutritional content in common bean grains using 178 Mesoamerican accessions belonging to a Brazilian Diversity Panel (BDP) and 25,011 good-quality single nucleotide polymorphisms. The BDP was phenotyped in three environments for nine nutrients (phosphorus, potassium, calcium, magnesium, copper, manganese, sulfur, zinc, and iron) using four genome-wide association multi-locus methods. To obtain more accurate results, only quantitative trait nucleotides (QTNs) that showed repeatability (i.e., those detected at least twice using different methods or environments) were considered. Forty-eight QTNs detected for the nine minerals showed repeatability and were considered reliable. Pleiotropic QTNs and overlapping genomic regions surrounding the QTNs were identified, demonstrating the possible association between the deposition mechanisms of different nutrients in grains. The accumulation of favorable alleles in the same accession was associated with a gradually increasing nutrient content in the grain. The BDP proved to be a valuable source for association studies. The investigation of different methods and environments showed the reliability of markers associated with minerals. The loci identified in this study will potentially contribute to the improvement of Mesoamerican common beans, particularly carioca and black beans, the main groups consumed in Brazil.


Subject(s)
Chromosomes, Plant/genetics , Genome, Plant , Minerals/metabolism , Phaseolus/metabolism , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Brazil , Chromosome Mapping/methods , Genome-Wide Association Study , Minerals/analysis , Phaseolus/genetics , Phaseolus/growth & development
8.
Plant Dis ; 105(12): 3939-3945, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33988467

ABSTRACT

Colletotrichum lindemuthianum, the causal pathogen of common bean (Phaseolus vulgaris) anthracnose, is highly variable. Therefore, understanding its race structure and identification of new sources of resistance is necessary for the development of varieties with durable resistance. The objectives of this study were (i) to characterize isolates of C. lindemuthianum collected from three major bean-growing regions in Zambia and (ii) evaluate the International Center for Tropical Agriculture (CIAT) Phaseolus core collection for resistance to C. lindemuthianum races 37, 73, and 566 and a blend of 20 races. Isolates collected from three major bean-growing districts in Zambia, namely Mporokoso, Mpika, and Mbala, were characterized as races 37, 73, and 566, respectively. A subset of the CIAT core collection comprising 885 accessions of common bean, 13 accessions of scarlet runner bean (Phaseolus coccineus), and 11 accessions of year bean (Phaseolus dumosus) was evaluated for resistance to races 37, 73, and 566 and a blend of 20 races in a greenhouse at the University of Zambia, Lusaka, Zambia. Totals of 72, 66, 48, and 9% of P. vulgaris accessions evaluated were highly resistant to races 37, 73, and 566 and a blend of 20 races, respectively. Also, accessions of P. coccineus and P. dumosus highly resistant to races 37, 73, and 566 were identified. Only eight of the 331 P. vulgaris accessions were highly resistant to all three individual races (37, 73, and 566) and to a blend of 20 races. These eight accessions constitute a valuable breeding resource for developing varieties with durable resistance to C. lindemuthianum.


Subject(s)
Phaseolus , Agriculture , Colletotrichum , Plant Diseases , Zambia
9.
New Phytol ; 225(1): 558-570, 2020 01.
Article in English | MEDLINE | ID: mdl-31486530

ABSTRACT

Plant domestication has strongly modified crop morphology and development. Nevertheless, many crops continue to display atavistic characteristics that were advantageous to their wild ancestors but are deleterious under cultivation, such as pod dehiscence (PD). Here, we provide the first comprehensive assessment of the inheritance of PD in the common bean (Phaseolus vulgaris), a major domesticated grain legume. Using three methods to evaluate the PD phenotype, we identified multiple, unlinked genetic regions controlling PD in a biparental population and two diversity panels. Subsequently, we assessed patterns of orthology among these loci and those controlling the trait in other species. Our results show that different genes were selected in each domestication and ecogeographic race. A chromosome Pv03 dirigent-like gene, involved in lignin biosynthesis, showed a base-pair substitution that is associated with decreased PD. This haplotype may underlie the expansion of Mesoamerican domesticates into northern Mexico, where arid conditions promote PD. The rise in frequency of the decreased-PD haplotype may be a consequence of the markedly different fitness landscape imposed by domestication. Environmental dependency and genetic redundancy can explain the maintenance of atavistic traits under domestication.


Subject(s)
Desert Climate , Domestication , Phaseolus/physiology , Quantitative Trait, Heritable , Seeds/physiology , Adaptation, Physiological/genetics , Alleles , Crosses, Genetic , Genome-Wide Association Study , Geography , Phaseolus/genetics , Physical Chromosome Mapping , Quantitative Trait Loci/genetics , Reproducibility of Results
10.
Mol Biol Evol ; 35(1): 119-131, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29069389

ABSTRACT

The wild progenitor of common-bean has an exceptionally large distribution from northern Mexico to northwestern Argentina, unusual among crop wild progenitors. This research sought to document major events of range expansion that led to this distribution and associated environmental changes. Through the use of genotyping-by-sequencing (∼20,000 SNPs) and geographic information systems applied to a sample of 246 accessions of wild Phaseolus vulgaris, including 157 genotypes of the Mesoamerican, 77 of the southern Andean, and 12 of the Northern Peru-Ecuador gene pools, we identified five geographically distinct subpopulations. Three of these subpopulations belong to the Mesoamerican gene pool (Northern and Central Mexico, Oaxaca, and Southern Mexico, Central America and northern South America) and one each to the Northern Peru-Ecuador (PhI) and the southern Andean gene pools. The five subpopulations were distributed in different floristic provinces of the Neotropical seasonally dry forest and showed distinct distributions for temperature and rainfall resulting in decreased local potential evapotranspiration (PhI and southern Andes groups) compared with the two Mexican groups. Three of these subpopulations represent long-distance dispersal events from Mesoamerica into Northern Peru-Ecuador, southern Andes, and Central America and Colombia, in chronological order. Of particular note is that the dispersal to Northern Peru-Ecuador markedly predates the dispersal to the southern Andes (∼400 vs. ∼100 ky), consistent with the ancestral nature of the phaseolin seed protein and chloroplast sequences observed in the PhI group. Seed dispersal in common bean can be, therefore, described at different spatial and temporal scales, from localized, annual seed shattering to long-distance, evolutionarily rare migration.


Subject(s)
Phaseolus/genetics , Phylogeography/methods , Biological Evolution , Central America , DNA, Plant/genetics , Evolution, Molecular , Gene Pool , Genetic Variation/genetics , Genetics, Population/methods , Genotype , Phylogeny , Polymorphism, Single Nucleotide/genetics , South America
11.
BMC Plant Biol ; 19(1): 171, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31039735

ABSTRACT

BACKGROUND: Common bean is the most important staple grain legume for direct human consumption and nutrition. It complements major sources of carbohydrates, including cereals, root crop, or plantain, as a source of dietary proteins. It is also a significant source of vitamins and minerals like iron and zinc. To fully play its nutritional role, however, its robustness against stresses needs to be strengthened. Foremost among these is drought, which commonly affects its productivity and seed quality. Previous studies have shown that photosynthate remobilization and partitioning is one of the main mechanisms of drought tolerance and overall productivity in common bean. RESULTS: In this study, we sought to determine the inheritance of pod harvest index (PHI), a measure of the partitioning of pod biomass to seed biomass, relative to that of grain yield. We evaluated a recombinant inbred population of the cross of ICA Bunsi and SXB405, both from the Mesoamerican gene pool, to determine the effects of intermittent and terminal drought stresses on the genetic architecture of photosynthate allocation and remobilization in pods of common bean. The population was grown for two seasons, under well-watered conditions and terminal and intermittent drought stress in one year, and well-watered conditions and terminal drought stress in the second year. There was a significant effect of the water regime and year on all the traits, at both the phenotypic and QTL levels. We found nine QTLs for pod harvest index, including a major (17% of variation explained), stable QTL on linkage group Pv07. We also found eight QTLs for yield, three of which clustered with PHI QTLs, underscoring the importance of photosynthate remobilization in productivity. We also found evidence for substantial epistasis, explaining a considerable part of the variation for yield and PHI. CONCLUSION: Our results highlight the genetic relationship between PHI and yield and confirm the role of PHI in selection of both additive and epistatic effects controlling drought tolerance. These results are a key component to strengthen the robustness of common bean against drought stresses.


Subject(s)
Droughts , Phaseolus/genetics , Photosynthesis , Biomass , Epistasis, Genetic , Food Supply , Genetic Pleiotropy , Phaseolus/growth & development , Phaseolus/metabolism , Photosynthesis/genetics , Quantitative Trait, Heritable , Seeds/genetics , Seeds/growth & development , Stress, Physiological
12.
Afr J Biotechnol ; 18(29)2019.
Article in English | MEDLINE | ID: mdl-33281892

ABSTRACT

Anthracnose (Colletotrichum lindemuthianum), Angular leaf spot (Pseudocercospora griseola) and Pythium root rot are important pathogens affecting common bean production in the tropics. A promising strategy to manage these diseases consists of combining several resistance (R) genes into one cultivar. The aim of the study was to determine genetic linkage between gene pairs, Co-42 /Phg-2, on bean-chromosome Pv08 and Co-5/"P.ult" on-chromosome Pv07, to increase the efficiency of dual selection of resistance genes for major bean diseases, with molecular markers. The level of recombination was determined by tracking molecular markers for both BC3F6 and F2 generations. Recombination fraction r, among gene pairs, the likelihood of linkage, L(r), and logarithm of odds (LOD) scores were computed using the statistical relationship of likelihood which assumes a binomial distribution. The SCAR marker pair SAB3/PYAA19 for the gene pair Co-5/"P.ult" exhibited moderate linkage (r = 32 cM with a high LOD score of 9.2) for BC3F6 population, but relatively stronger linkage for the F2 population (r = 21 cM with a high LOD score of 18.7). However, the linkage among SCAR marker pair SH18/SN02, for the gene pair Co-42 /Phg-2 was incomplete for BC3F6 population (r = 47 cM with a low LOD score of 0.16) as well as F2 population (r = 44 cM with a low LOD score of 0.7). Generally, the weak or incomplete genetic linkage between marker pairs studied showed that all the four genes mentioned earlier have to be tagged with a corresponding linked marker during selection. The approaches used in this study will contribute to two loci linkage mapping techniques in segregating plant populations.

13.
Proc Natl Acad Sci U S A ; 111(17): 6165-70, 2014 Apr 29.
Article in English | MEDLINE | ID: mdl-24753581

ABSTRACT

The study of crop origins has traditionally involved identifying geographic areas of high morphological diversity, sampling populations of wild progenitor species, and the archaeological retrieval of macroremains. Recent investigations have added identification of plant microremains (phytoliths, pollen, and starch grains), biochemical and molecular genetic approaches, and dating through (14)C accelerator mass spectrometry. We investigate the origin of domesticated chili pepper, Capsicum annuum, by combining two approaches, species distribution modeling and paleobiolinguistics, with microsatellite genetic data and archaeobotanical data. The combination of these four lines of evidence yields consensus models indicating that domestication of C. annuum could have occurred in one or both of two areas of Mexico: northeastern Mexico and central-east Mexico. Genetic evidence shows more support for the more northern location, but jointly all four lines of evidence support central-east Mexico, where preceramic macroremains of chili pepper have been recovered in the Valley of Tehuacán. Located just to the east of this valley is the center of phylogenetic diversity of Proto-Otomanguean, a language spoken in mid-Holocene times and the oldest protolanguage for which a word for chili pepper reconstructs based on historical linguistics. For many crops, especially those that do not have a strong archaeobotanical record or phylogeographic pattern, it is difficult to precisely identify the time and place of their origin. Our results for chili pepper show that expressing all data in similar distance terms allows for combining contrasting lines of evidence and locating the region(s) where cultivation and domestication of a crop began.


Subject(s)
Capsicum/growth & development , Crops, Agricultural/growth & development , Phylogeny , Archaeology , Capsicum/genetics , Crops, Agricultural/genetics , Ecosystem , Geography , Language , Mexico , Models, Biological , Paleontology
14.
Proc Natl Acad Sci U S A ; 111(17): 6139-46, 2014 Apr 29.
Article in English | MEDLINE | ID: mdl-24757054

ABSTRACT

It is difficult to overstate the cultural and biological impacts that the domestication of plants and animals has had on our species. Fundamental questions regarding where, when, and how many times domestication took place have been of primary interest within a wide range of academic disciplines. Within the last two decades, the advent of new archaeological and genetic techniques has revolutionized our understanding of the pattern and process of domestication and agricultural origins that led to our modern way of life. In the spring of 2011, 25 scholars with a central interest in domestication representing the fields of genetics, archaeobotany, zooarchaeology, geoarchaeology, and archaeology met at the National Evolutionary Synthesis Center to discuss recent domestication research progress and identify challenges for the future. In this introduction to the resulting Special Feature, we present the state of the art in the field by discussing what is known about the spatial and temporal patterns of domestication, and controversies surrounding the speed, intentionality, and evolutionary aspects of the domestication process. We then highlight three key challenges for future research. We conclude by arguing that although recent progress has been impressive, the next decade will yield even more substantial insights not only into how domestication took place, but also when and where it did, and where and why it did not.


Subject(s)
Animals, Domestic/genetics , Crops, Agricultural/genetics , Animals , Biological Evolution , Environment , Geography , Spatio-Temporal Analysis
15.
Plant Biotechnol J ; 14(4): 1095-8, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26360509

ABSTRACT

Agriculture is now facing the 'perfect storm' of climate change, increasing costs of fertilizer and rising food demands from a larger and wealthier human population. These factors point to a global food deficit unless the efficiency and resilience of crop production is increased. The intensification of agriculture has focused on improving production under optimized conditions, with significant agronomic inputs. Furthermore, the intensive cultivation of a limited number of crops has drastically narrowed the number of plant species humans rely on. A new agricultural paradigm is required, reducing dependence on high inputs and increasing crop diversity, yield stability and environmental resilience. Genomics offers unprecedented opportunities to increase crop yield, quality and stability of production through advanced breeding strategies, enhancing the resilience of major crops to climate variability, and increasing the productivity and range of minor crops to diversify the food supply. Here we review the state of the art of genomic-assisted breeding for the most important staples that feed the world, and how to use and adapt such genomic tools to accelerate development of both major and minor crops with desired traits that enhance adaptation to, or mitigate the effects of climate change.


Subject(s)
Crops, Agricultural/genetics , Food Supply/methods , Genomics/methods , Plant Breeding/methods , Climate Change , Genetic Variation
16.
New Phytol ; 209(4): 1781-94, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26526745

ABSTRACT

Here we studied the organization of genetic variation of the common bean (Phaseolus vulgaris) in its centres of domestication. We used 131 single nucleotide polymorphisms to investigate 417 wild common bean accessions and a representative sample of 160 domesticated genotypes, including Mesoamerican and Andean genotypes, for a total of 577 accessions. By analysing the genetic spatial patterns of the wild common bean, we documented the existence of several genetic groups and the occurrence of variable degrees of diversity in Mesoamerica and the Andes. Moreover, using a landscape genetics approach, we demonstrated that both demographic processes and selection for adaptation were responsible for the observed genetic structure. We showed that the study of correlations between markers and ecological variables at a continental scale can help in identifying local adaptation genes. We also located putative areas of common bean domestication in Mesoamerica, in the Oaxaca Valley, and the Andes, in southern Bolivia-northern Argentina. These observations are of paramount importance for the conservation and exploitation of the genetic diversity preserved within this species and other plant genetic resources.


Subject(s)
Adaptation, Physiological/genetics , Genetic Variation , Phaseolus/genetics , Phaseolus/physiology , Archaeology , Biomass , Cell Nucleus/genetics , Chloroplasts/genetics , Geography , Polymorphism, Single Nucleotide/genetics , Seeds/genetics
17.
Mol Genet Genomics ; 290(5): 1771-85, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25846963

ABSTRACT

Plant aquaporins are a large and diverse family of water channel proteins that are essential for several physiological processes in living organisms. Numerous studies have linked plant aquaporins with a plethora of processes, such as nutrient acquisition, CO2 transport, plant growth and development, and response to abiotic stresses. However, little is known about this protein family in common bean. Here, we present a genome-wide identification of the aquaporin gene family in common bean (Phaseolus vulgaris L.), a legume crop essential for human nutrition. We identified 41 full-length coding aquaporin sequences in the common bean genome, divided by phylogenetic analysis into five sub-families (PIPs, TIPs, NIPs, SIPs and XIPs). Residues determining substrate specificity of aquaporins (i.e., NPA motifs and ar/R selectivity filter) seem conserved between common bean and other plant species, allowing inference of substrate specificity for these proteins. Thanks to the availability of RNA-sequencing datasets, expression levels in different organs and in leaves of wild and domesticated bean accessions were evaluated. Three aquaporins (PvTIP1;1, PvPIP2;4 and PvPIP1;2) have the overall highest mean expressions, with PvTIP1;1 having the highest expression among all aquaporins. We performed an EST database mining to identify drought-responsive aquaporins in common bean. This analysis showed a significant increase in expression for PvTIP1;1 in drought stress conditions compared to well-watered environments. The pivotal role suggested for PvTIP1;1 in regulating water homeostasis and drought stress response in the common bean should be verified by further field experimentation under drought stress.


Subject(s)
Aquaporins/genetics , Genes, Plant , Genome-Wide Association Study , Multigene Family , Phaseolus/genetics , Amino Acid Sequence , Aquaporins/chemistry , Exons , Gene Expression Profiling , Introns , Molecular Sequence Data , Phaseolus/classification , Phylogeny , Polymorphism, Single Nucleotide , Sequence Homology, Amino Acid
19.
J Hered ; 104(2): 273-86, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23235700

ABSTRACT

Reduction in pod shattering represents a key component of the domestication syndrome in common bean (Phaseolus vulgaris) and makes this domesticate dependent upon the farmer for seed dispersal. Attempts to elucidate the genetic control of this process have led to the identification of a major gene (St) linked to the presence/absence of pod suture fibers affecting pod shattering. Although St has been placed on the common bean genetic map, the sequence and the specific functions of this gene remain unknown. The purpose of this study was to identify a candidate gene for St. In Arabidopsis thaliana, INDEHISCENT gene (IND) is the primary factory required for silique shattering. A sequence homologous to IND was successfully amplified in P. vulgaris and placed on the common bean map using two recombinant inbred populations (BAT93 × Jalo EEP558; Midas × G12873). Although PvIND maps near the St locus, the lack of complete cosegregation between PvIND and St and the lack of polymorphisms at the PvIND locus correlated with the dehiscent/indehiscent phenotype suggests that PvIND may not be directly involved in pod shattering and may not be the gene underlying the St locus. However, PvIND may be closely linked to an as yet unidentified regulatory element at the St locus. Alternatively, a more precise phenotyping method taking into account quantitative trait variation needs to be developed to more accurately map the St locus.


Subject(s)
Fabaceae/genetics , Genes, Plant , Arabidopsis Proteins , Basic Helix-Loop-Helix Transcription Factors , Chromosome Mapping , Genetic Linkage , Genetics, Population , Molecular Sequence Data , Phylogeny , Polymorphism, Single Nucleotide
20.
Emerg Top Life Sci ; 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38084755

ABSTRACT

Biocultural diversity is the ever-evolving and irreplaceable sum total of all living organisms inhabiting the Earth. It plays a significant role in sustainable productivity and ecosystem services that benefit humanity and is closely allied with human cultural diversity. Despite its essentiality, biodiversity is seriously threatened by the insatiable and inequitable human exploitation of the Earth's resources. One of the benefits of biodiversity is its utilization in crop improvement, including cropping improvement (agronomic cultivation practices) and genetic improvement (plant breeding). Crop improvement has tended to decrease agricultural biodiversity since the origins of agriculture, but awareness of this situation can reverse this negative trend. Cropping improvement can strive to use more diverse cultivars and a broader complement of crops on farms and in landscapes. It can also focus on underutilized crops, including legumes. Genetic improvement can access a broader range of biodiversity sources and, with the assistance of modern breeding tools like genomics, can facilitate the introduction of additional characteristics that improve yield, mitigate environmental stresses, and restore, at least partially, lost crop biodiversity. The current legal framework covering biodiversity includes national intellectual property and international treaty instruments, which have tended to limit access and innovation to biodiversity. A global system of access and benefit sharing, encompassing digital sequence information, would benefit humanity but remains an elusive goal. The Kunming-Montréal Global Biodiversity Framework sets forth an ambitious set of targets and goals to be accomplished by 2030 and 2050, respectively, to protect and restore biocultural diversity, including agrobiodiversity.

SELECTION OF CITATIONS
SEARCH DETAIL