ABSTRACT
In the coming decades, a crucial challenge for humanity will be meeting future food demands without undermining further the integrity of the Earth's environmental systems. Agricultural systems are already major forces of global environmental degradation, but population growth and increasing consumption of calorie- and meat-intensive diets are expected to roughly double human food demand by 2050 (ref. 3). Responding to these pressures, there is increasing focus on 'sustainable intensification' as a means to increase yields on underperforming landscapes while simultaneously decreasing the environmental impacts of agricultural systems. However, it is unclear what such efforts might entail for the future of global agricultural landscapes. Here we present a global-scale assessment of intensification prospects from closing 'yield gaps' (differences between observed yields and those attainable in a given region), the spatial patterns of agricultural management practices and yield limitation, and the management changes that may be necessary to achieve increased yields. We find that global yield variability is heavily controlled by fertilizer use, irrigation and climate. Large production increases (45% to 70% for most crops) are possible from closing yield gaps to 100% of attainable yields, and the changes to management practices that are needed to close yield gaps vary considerably by region and current intensity. Furthermore, we find that there are large opportunities to reduce the environmental impact of agriculture by eliminating nutrient overuse, while still allowing an approximately 30% increase in production of major cereals (maize, wheat and rice). Meeting the food security and sustainability challenges of the coming decades is possible, but will require considerable changes in nutrient and water management.
Subject(s)
Agriculture/standards , Agriculture/trends , Food Supply/standards , Food , Water , Animals , Edible Grain , Environment , Humans , Population GrowthABSTRACT
Increasing population and consumption are placing unprecedented demands on agriculture and natural resources. Today, approximately a billion people are chronically malnourished while our agricultural systems are concurrently degrading land, water, biodiversity and climate on a global scale. To meet the world's future food security and sustainability needs, food production must grow substantially while, at the same time, agriculture's environmental footprint must shrink dramatically. Here we analyse solutions to this dilemma, showing that tremendous progress could be made by halting agricultural expansion, closing 'yield gaps' on underperforming lands, increasing cropping efficiency, shifting diets and reducing waste. Together, these strategies could double food production while greatly reducing the environmental impacts of agriculture.
Subject(s)
Agriculture , Conservation of Natural Resources , Food Supply , Diet , Environment , Humans , Models, TheoreticalABSTRACT
With increasing nitrogen (N) application to croplands required to support growing food demand, mitigating N2 O emissions from agricultural soils is a global challenge. National greenhouse gas emissions accounting typically estimates N2 O emissions at the country scale by aggregating all crops, under the assumption that N2 O emissions are linearly related to N application. However, field studies and meta-analyses indicate a nonlinear relationship, in which N2 O emissions are relatively greater at higher N application rates. Here, we apply a super-linear emissions response model to crop-specific, spatially explicit synthetic N fertilizer and manure N inputs to provide subnational accounting of global N2 O emissions from croplands. We estimate 0.66 Tg of N2 O-N direct global emissions circa 2000, with 50% of emissions concentrated in 13% of harvested area. Compared to estimates from the IPCC Tier 1 linear model, our updated N2 O emissions range from 20% to 40% lower throughout sub-Saharan Africa and Eastern Europe, to >120% greater in some Western European countries. At low N application rates, the weak nonlinear response of N2 O emissions suggests that relatively large increases in N fertilizer application would generate relatively small increases in N2 O emissions. As aggregated fertilizer data generate underestimation bias in nonlinear models, high-resolution N application data are critical to support accurate N2 O emissions estimates.
Subject(s)
Climate , Crops, Agricultural , Africa South of the Sahara , Europe, Eastern , Fertilizers , Nitrogen Dioxide , Nitrous OxideABSTRACT
Yield gaps, here defined as the difference between actual and attainable yields, provide a framework for assessing opportunities to increase agricultural productivity. Previous global assessments, centred on a single year, were unable to identify temporal variation. Here we provide a spatially and temporally comprehensive analysis of yield gaps for ten major crops from 1975 to 2010. Yield gaps have widened steadily over most areas for the eight annual crops and remained static for sugar cane and oil palm. We developed a three-category typology to differentiate regions of 'steady growth' in actual and attainable yields, 'stalled floor' where yield is stagnated and 'ceiling pressure' where yield gaps are closing. Over 60% of maize area is experiencing 'steady growth', in contrast to â¼12% for rice. Rice and wheat have 84% and 56% of area, respectively, experiencing 'ceiling pressure'. We show that 'ceiling pressure' correlates with subsequent yield stagnation, signalling risks for multiple countries currently realizing gains from yield growth.
Subject(s)
Crops, Agricultural , Oryza , Edible Grain , Agriculture , Zea maysABSTRACT
Extreme events, such as those caused by climate change, economic or geopolitical shocks, and pest or disease epidemics, threaten global food security. The complexity of causation, as well as the myriad ways that an event, or a sequence of events, creates cascading and systemic impacts, poses significant challenges to food systems research and policy alike. To identify priority food security risks and research opportunities, we asked experts from a range of fields and geographies to describe key threats to global food security over the next two decades and to suggest key research questions and gaps on this topic. Here, we present a prioritization of threats to global food security from extreme events, as well as emerging research questions that highlight the conceptual and practical challenges that exist in designing, adopting, and governing resilient food systems. We hope that these findings help in directing research funding and resources toward food system transformations needed to help society tackle major food system risks and food insecurity under extreme events.
ABSTRACT
Many studies have estimated the adverse effects of climate change on crop yields, however, this literature almost universally assumes a constant geographic distribution of crops in the future. Movement of growing areas to limit exposure to adverse climate conditions has been discussed as a theoretical adaptive response but has not previously been quantified or demonstrated at a global scale. Here, we assess how changes in rainfed crop area have already mediated growing season temperature trends for rainfed maize, wheat, rice, and soybean using spatially-explicit climate and crop area data from 1973 to 2012. Our results suggest that the most damaging impacts of warming on rainfed maize, wheat, and rice have been substantially moderated by the migration of these crops over time and the expansion of irrigation. However, continued migration may incur substantial environmental costs and will depend on socio-economic and political factors in addition to land suitability and climate.
Subject(s)
Acclimatization , Climate Change , Crop Production/trends , Crops, Agricultural/physiology , Plant Dispersal , Agricultural Irrigation/statistics & numerical data , Agricultural Irrigation/trends , Crop Production/methods , Crop Production/statistics & numerical data , Oryza/physiology , Glycine max/physiology , Temperature , Triticum/physiology , Zea mays/physiologyABSTRACT
Plantation mapping is important for understanding deforestation and climate change. While most existing plantation products are created manually, in this paper we study an ensemble learning based framework for automatically mapping plantations in southern Kalimantan on a yearly scale using remote sensing data. We study the effectiveness of several components in this framework, including class aggregation, data sampling, learning model selection and post-processing, by comparing with multiple baselines. In addition, we analyze the quality of our plantation mapping product by visual examination of high resolution images. We also compare our method to existing manually labeled plantation datasets and show that our method can achieve a better balance of precision (i.e., user's accuracy) and recall (i.e., producer's accuracy).
ABSTRACT
Mapping suitable land for development is essential to land use planning efforts that aim to model, anticipate, and manage trade-offs between economic development and the environment. Previous land suitability assessments have generally focused on a few development sectors or lack consistent methodologies, thereby limiting our ability to plan for cumulative development pressures across geographic regions. Here, we generated 1-km spatially-explicit global land suitability maps, referred to as "development potential indices" (DPIs), for 13 sectors related to renewable energy (concentrated solar power, photovoltaic solar, wind, hydropower), fossil fuels (coal, conventional and unconventional oil and gas), mining (metallic, non-metallic), and agriculture (crop, biofuels expansion). To do so, we applied spatial multi-criteria decision analysis techniques that accounted for both resource potential and development feasibility. For each DPI, we examined both uncertainty and sensitivity, and spatially validated the map using locations of planned development. We illustrate how these DPIs can be used to elucidate potential individual sector expansion and cumulative development patterns.
ABSTRACT
Crop yields are projected to decrease under future climate conditions, and recent research suggests that yields have already been impacted. However, current impacts on a diversity of crops subnationally and implications for food security remains unclear. Here, we constructed linear regression relationships using weather and reported crop data to assess the potential impact of observed climate change on the yields of the top ten global crops-barley, cassava, maize, oil palm, rapeseed, rice, sorghum, soybean, sugarcane and wheat at ~20,000 political units. We find that the impact of global climate change on yields of different crops from climate trends ranged from -13.4% (oil palm) to 3.5% (soybean). Our results show that impacts are mostly negative in Europe, Southern Africa and Australia but generally positive in Latin America. Impacts in Asia and Northern and Central America are mixed. This has likely led to ~1% average reduction (-3.5 X 1013 kcal/year) in consumable food calories in these ten crops. In nearly half of food insecure countries, estimated caloric availability decreased. Our results suggest that climate change has already affected global food production.
Subject(s)
Agricultural Irrigation/trends , Climate Change , Crop Production/trends , Crops, Agricultural/growth & development , Food Supply , Global HealthABSTRACT
Global agriculture is under pressure to meet increasing demand for food and agricultural products. There are several global assessments of crop yields, but we know little about the uncertainties of their key findings, as the assessments are driven by the single best yield dataset available when each assessment was conducted. Recently, two different spatially explicit, global, historical yield datasets, one based on agricultural census and the other largely based on satellite remote sensing, became available. Using these datasets, we compare the similarities and differences in global yield gaps, trend patterns, growth rates and changes in year-to-year variability. We analyzed maize, rice, wheat and soybean for the period of 1981 to 2008 at four resolutions (0.083°, 0.5°, 1.0° and 2.0°). Although estimates varied by dataset and resolution, the global mean annual growth rates of 1.7-1.8%, 1.5-1.7%, 1.1-1.3% and 1.4-1.6% for maize, rice, wheat and soybean, respectively, are not on track to double crop production by 2050. Potential production increases that can be attributed to closing yield gaps estimated from the satellite-based dataset are almost twice those estimated from the census-based dataset. Detected yield variability changes in rice and wheat are sensitive to the choice of dataset and resolution, but they are relatively robust for maize and soybean. Estimates of yield gaps and variability changes are more uncertain than those of yield trend patterns and growth rates. These tendencies are consistent across crops. Efforts to reduce uncertainties are required to gain a better understanding of historical change and crop production potential to better inform agricultural policies and investments.
Subject(s)
Crop Production/statistics & numerical data , Crops, Agricultural/growth & development , Agriculture/statistics & numerical data , Agriculture/trends , Crop Production/trends , Databases, Factual , Food Supply/statistics & numerical data , Humans , Oryza/growth & development , Satellite Imagery/statistics & numerical data , Glycine max/growth & development , Triticum/growth & development , Uncertainty , Zea mays/growth & developmentABSTRACT
BACKGROUND: Information about the global structure of agriculture and nutrient production and its diversity is essential to improve present understanding of national food production patterns, agricultural livelihoods, and food chains, and their linkages to land use and their associated ecosystems services. Here we provide a plausible breakdown of global agricultural and nutrient production by farm size, and also study the associations between farm size, agricultural diversity, and nutrient production. This analysis is crucial to design interventions that might be appropriately targeted to promote healthy diets and ecosystems in the face of population growth, urbanisation, and climate change. METHODS: We used existing spatially-explicit global datasets to estimate the production levels of 41 major crops, seven livestock, and 14 aquaculture and fish products. From overall production estimates, we estimated the production of vitamin A, vitamin B12, folate, iron, zinc, calcium, calories, and protein. We also estimated the relative contribution of farms of different sizes to the production of different agricultural commodities and associated nutrients, as well as how the diversity of food production based on the number of different products grown per geographic pixel and distribution of products within this pixel (Shannon diversity index [H]) changes with different farm sizes. FINDINGS: Globally, small and medium farms (≤50 ha) produce 51-77% of nearly all commodities and nutrients examined here. However, important regional differences exist. Large farms (>50 ha) dominate production in North America, South America, and Australia and New Zealand. In these regions, large farms contribute between 75% and 100% of all cereal, livestock, and fruit production, and the pattern is similar for other commodity groups. By contrast, small farms (≤20 ha) produce more than 75% of most food commodities in sub-Saharan Africa, southeast Asia, south Asia, and China. In Europe, west Asia and north Africa, and central America, medium-size farms (20-50 ha) also contribute substantially to the production of most food commodities. Very small farms (≤2 ha) are important and have local significance in sub-Saharan Africa, southeast Asia, and south Asia, where they contribute to about 30% of most food commodities. The majority of vegetables (81%), roots and tubers (72%), pulses (67%), fruits (66%), fish and livestock products (60%), and cereals (56%) are produced in diverse landscapes (H>1·5). Similarly, the majority of global micronutrients (53-81%) and protein (57%) are also produced in more diverse agricultural landscapes (H>1·5). By contrast, the majority of sugar (73%) and oil crops (57%) are produced in less diverse ones (H≤1·5), which also account for the majority of global calorie production (56%). The diversity of agricultural and nutrient production diminishes as farm size increases. However, areas of the world with higher agricultural diversity produce more nutrients, irrespective of farm size. INTERPRETATION: Our results show that farm size and diversity of agricultural production vary substantially across regions and are key structural determinants of food and nutrient production that need to be considered in plans to meet social, economic, and environmental targets. At the global level, both small and large farms have key roles in food and nutrition security. Efforts to maintain production diversity as farm sizes increase seem to be necessary to maintain the production of diverse nutrients and viable, multifunctional, sustainable landscapes. FUNDING: Commonwealth Scientific and Industrial Research Organisation, Bill & Melinda Gates Foundation, CGIAR Research Programs on Climate Change, Agriculture and Food Security and on Agriculture for Nutrition and Health funded by the CGIAR Fund Council, Daniel and Nina Carasso Foundation, European Union, International Fund for Agricultural Development, Australian Research Council, National Science Foundation, Gordon and Betty Moore Foundation, and Joint Programming Initiative on Agriculture, Food Security and Climate Change-Belmont Forum.
ABSTRACT
Accurate predictions of crop yield are critical for developing effective agricultural and food policies at the regional and global scales. We evaluated a machine-learning method, Random Forests (RF), for its ability to predict crop yield responses to climate and biophysical variables at global and regional scales in wheat, maize, and potato in comparison with multiple linear regressions (MLR) serving as a benchmark. We used crop yield data from various sources and regions for model training and testing: 1) gridded global wheat grain yield, 2) maize grain yield from US counties over thirty years, and 3) potato tuber and maize silage yield from the northeastern seaboard region. RF was found highly capable of predicting crop yields and outperformed MLR benchmarks in all performance statistics that were compared. For example, the root mean square errors (RMSE) ranged between 6 and 14% of the average observed yield with RF models in all test cases whereas these values ranged from 14% to 49% for MLR models. Our results show that RF is an effective and versatile machine-learning method for crop yield predictions at regional and global scales for its high accuracy and precision, ease of use, and utility in data analysis. RF may result in a loss of accuracy when predicting the extreme ends or responses beyond the boundaries of the training data.
Subject(s)
Crops, Agricultural , Models, Theoretical , Machine LearningABSTRACT
Many studies have examined the role of mean climate change in agriculture, but an understanding of the influence of inter-annual climate variations on crop yields in different regions remains elusive. We use detailed crop statistics time series for ~13,500 political units to examine how recent climate variability led to variations in maize, rice, wheat and soybean crop yields worldwide. While some areas show no significant influence of climate variability, in substantial areas of the global breadbaskets, >60% of the yield variability can be explained by climate variability. Globally, climate variability accounts for roughly a third (~32-39%) of the observed yield variability. Our study uniquely illustrates spatial patterns in the relationship between climate variability and crop yield variability, highlighting where variations in temperature, precipitation or their interaction explain yield variability. We discuss key drivers for the observed variations to target further research and policy interventions geared towards buffering future crop production from climate variability.
Subject(s)
Agriculture/methods , Climate Change , Crops, Agricultural , Oryza , Triticum , Zea mays , Climate , Environmental Monitoring , Geography , Models, Statistical , TemperatureABSTRACT
A growing and more affluent human population is expected to increase the demand for resources and to accelerate habitat modification, but by how much and where remains unknown. Here we project and aggregate global spatial patterns of expected urban and agricultural expansion, conventional and unconventional oil and gas, coal, solar, wind, biofuels and mining development. Cumulatively, these threats place at risk 20% of the remaining global natural lands (19.68 million km2) and could result in half of the world's biomes becoming >50% converted while doubling and tripling the extent of land converted in South America and Africa, respectively. Regionally, substantial shifts in land conversion could occur in Southern and Western South America, Central and Eastern Africa, and the Central Rocky Mountains of North America. With only 5% of the Earth's at-risk natural lands under strict legal protection, estimating and proactively mitigating multi-sector development risk is critical for curtailing the further substantial loss of nature.
Subject(s)
Agriculture/trends , Conservation of Natural Resources/trends , Population Dynamics/trends , Africa , Americas , Conservation of Natural Resources/methods , Ecosystem , Forecasting/methods , HumansABSTRACT
Carbon stock estimates based on land cover type are critical for informing climate change assessment and landscape management, but field and theoretical evidence indicates that forest fragmentation reduces the amount of carbon stored at forest edges. Here, using remotely sensed pantropical biomass and land cover data sets, we estimate that biomass within the first 500 m of the forest edge is on average 25% lower than in forest interiors and that reductions of 10% extend to 1.5 km from the forest edge. These findings suggest that IPCC Tier 1 methods overestimate carbon stocks in tropical forests by nearly 10%. Proper accounting for degradation at forest edges will inform better landscape and forest management and policies, as well as the assessment of carbon stocks at landscape and national levels.
Subject(s)
Biomass , Carbon , Forests , Tropical Climate , Brazil , Climate Change , Conservation of Natural ResourcesABSTRACT
Achieving sustainable global food security is one of humanity's contemporary challenges. Here we present an analysis identifying key "global leverage points" that offer the best opportunities to improve both global food security and environmental sustainability. We find that a relatively small set of places and actions could provide enough new calories to meet the basic needs for more than 3 billion people, address many environmental impacts with global consequences, and focus food waste reduction on the commodities with the greatest impact on food security. These leverage points in the global food system can help guide how nongovernmental organizations, foundations, governments, citizens' groups, and businesses prioritize actions.