Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Eur J Immunol ; 52(7): 1171-1189, 2022 07.
Article in English | MEDLINE | ID: mdl-35562849

ABSTRACT

Common variable immunodeficiency (CVID) is the most frequent primary antibody deficiency whereby follicular helper T (Tfh) cells fail to establish productive responses with B cells in germinal centers. Here, we analyzed the frequency, phenotype, transcriptome, and function of circulating Tfh (cTfh) cells in CVID patients displaying autoimmunity as an additional phenotype. A group of patients showed a high frequency of cTfh1 cells and a prominent expression of PD-1 and ICOS as well as a cTfh mRNA signature consistent with highly activated, but exhausted, senescent, and apoptotic cells. Plasmatic CXCL13 levels were elevated in this group and positively correlated with cTfh1 cell frequency and PD-1 levels. Monoallelic variants in RTEL1, a telomere length- and DNA repair-related gene, were identified in four patients belonging to this group. Their blood lymphocytes showed shortened telomeres, while their cTfh were more prone to apoptosis. These data point toward a novel pathogenetic mechanism in CVID, whereby alterations in DNA repair and telomere elongation might predispose to antibody deficiency. A Th1, highly activated but exhausted and apoptotic cTfh phenotype was associated with this form of CVID.


Subject(s)
Common Variable Immunodeficiency , Apoptosis/genetics , Common Variable Immunodeficiency/genetics , Humans , Programmed Cell Death 1 Receptor/genetics , T Follicular Helper Cells , T-Lymphocytes, Helper-Inducer
2.
Clin Immunol ; 211: 108319, 2020 02.
Article in English | MEDLINE | ID: mdl-31794865

ABSTRACT

Autoantibodies (AAbs) are a hallmark of Type 1 diabetes (T1D). Alterations in the frequency and phenotype of follicular helper (Tfh) T cells have been previously documented in patients with type 1 diabetes (T1D), but the contribution of follicular regulatory T (Treg) cells, which are responsible for suppressing AAb development, is less clear. Here, we investigated the frequency and activation status of follicular (CXCR5+) and conventional (CXCR5-) Treg cells in the blood of children with new-onset T1D, and children with risk for developing T1D (AAb-positive) and compared them to AAb-negative controls. Blood follicular and conventional Treg cells were higher in frequency in children with new onset T1D, but expressed reduced amounts of PD-1 as compared to AAb-negative children. Interestingly, the proportion of circulating FOXP3+ Tregs expressing PD-1 was also reduced in AAb-positive at-risk children as compared to AAb-negative controls, suggesting its potential use as a biomarker of disease progression. Follicular Treg cells were reduced in frequency in the spleens of prediabetic NOD mice as they became older and turned diabetic. Interestingly, PD-1 expression declined also on circulating follicular and conventional Treg cells in prediabetic NOD mice as they aged. Together, these findings show that the frequency of circulating follicular and conventional Treg cells and their levels of PD-1 change with disease progression in children at-risk for developing T1D and in NOD mice.


Subject(s)
Diabetes Mellitus, Type 1/immunology , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes, Regulatory/immunology , Adolescent , Animals , Autoantibodies/immunology , Child , Child, Preschool , Disease Progression , Female , Forkhead Transcription Factors , Hair/immunology , Humans , Islets of Langerhans/immunology , Male , Mice, Inbred NOD , Receptors, CXCR5
3.
J Clin Immunol ; 40(3): 447-455, 2020 04.
Article in English | MEDLINE | ID: mdl-31993866

ABSTRACT

Patients with Down syndrome (DS) are characterized by increased susceptibility to autoimmunity and respiratory tract infections that are suggestive of humoral immunity impairment. Here, we sought to determine the follicular helper (Tfh) and follicular regulatory (Tfr) T cell profile in the blood of children with DS. Blood was collected from 24 children with DS, nine of which had autoimmune diseases. Children with DS showed skewed Tfh differentiation towards the CXCR3+ phenotype: Tfh1 and Tfh1/17 subsets were increased, while Tfh2 and Tfh17 subsets were reduced. While no differences in the percentage of Tfr cells were seen, the ratio of Tfh1 and CXCR3+PD-1+ subsets to Tfr cells was significantly increased in the affected children. The excessive polarization towards a CXCR3+ phenotype in children with DS suggests that re-calibration of Tfh subset skewing could potentially offer new therapeutic opportunities for these patients.


Subject(s)
Autoimmune Diseases/immunology , Down Syndrome/immunology , Germinal Center/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Helper-Inducer/immunology , Adolescent , Blood Circulation , Cell Differentiation , Cells, Cultured , Child , Female , Humans , Immunity, Humoral , Male , Phenotype , Receptors, CXCR3/metabolism , Th1-Th2 Balance
4.
New Microbiol ; 39(4): 269-273, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27727405

ABSTRACT

Linezolid is the main representative of the oxazolidinones, introduced in 2000 in clinical practice to treat severe Gram-positive infections. This compound inhibits protein synthesis by binding to the peptidyl transferase centre of the 50S bacterial ribosomal subunit. The aim of this study was to characterize 12 clinical strains of linezolid-resistant Staphylococcus spp. isolated in Northern Italy. All isolates of Staphylococcus spp. studied showed a multi-antibiotic resistance phenotype. In particular, all isolates showed the presence of the mecA gene associated with SSCmec types IVa, V or I. Mutations in domain V of 23S rRNA were shown to be the most prevalent mechanism of linezolid resistance: among these a new C2551T mutation was found in S. aureus, whilst the G2576T mutation was shown to be the most prevalent overall. Moreover, three S. epidermidis isolates were shown to have linezolid resistance associated only with alterations in both L3 and L4 ribosomal proteins. No strain was shown to harbor the previously described cfr gene. These results have shown how the clinical use of linezolid in Northern Italy has resulted in the selection of multiple antibiotic-resistant clinical isolates of Staphylococcus spp., with linezolid resistance in these strains being associated with mutations in 23S rRNA or ribosomal proteins L3 and L4.


Subject(s)
Drug Resistance, Bacterial/genetics , Linezolid/pharmacology , RNA, Ribosomal, 23S/genetics , Staphylococcal Infections/microbiology , Staphylococcus/drug effects , Anti-Bacterial Agents/pharmacology , Base Sequence , Humans , Mutation
6.
Front Immunol ; 13: 952715, 2022.
Article in English | MEDLINE | ID: mdl-36090979

ABSTRACT

The immunological events leading to type 1 diabetes (T1D) are complex and heterogeneous, underscoring the necessity to study rare cases to improve our understanding. Here, we report the case of a 16-year-old patient who showed glycosuria during a regular checkup. Upon further evaluation, stage 2 T1D, autoimmune thrombocytopenic purpura (AITP), and common variable immunodeficiency (CVID) were diagnosed. The patient underwent low carb diet, losing > 8 kg, and was placed on Ig replacement therapy. Anti-CD20 monoclonal antibody (Rituximab, RTX) was administered 2 years after diagnosis to treat peripheral polyneuropathy, whereas an atypical mycobacteriosis manifested 4 years after diagnosis and was managed with prolonged antibiotic treatment. In the fifth year of monitoring, the patient progressed to insulin dependency despite ZnT8A autoantibody resolution and IA-2A and GADA autoantibody decline. The patient had low T1D genetic risk score (GRS = 0.22817) and absence of human leukocyte antigen (HLA) DR3/DR4-DQ8. Genetic analysis identified the monoallelic mutation H159Y in TNFRSF13C, a gene encoding B-cell activating factor receptor (BAFFR). Significant reduced blood B-cell numbers and BAFFR levels were observed in line with a dysregulation in BAFF-BAFFR signaling. The elevated frequency of PD-1+ dysfunctional Tfh cells composed predominantly by Th1 phenotype was observed at disease onset and during follow-up. This case report describes a patient progressing to T1D on a BAFFR-mediated immunodysregulatory background, suggesting a role of BAFF-BAFFR signaling in islet-specific tolerance and T1D progression.


Subject(s)
Diabetes Mellitus, Type 1 , Adolescent , Autoantibodies , B-Cell Activating Factor/genetics , Humans , Insulin/genetics , Mutation
7.
Diabetes ; 70(12): 2892-2902, 2021 12.
Article in English | MEDLINE | ID: mdl-34620616

ABSTRACT

In the attempt to understand the origin of autoantibody (AAb) production in patients with and at risk for type 1 diabetes (T1D), multiple studies have analyzed and reported alterations in T follicular helper (Tfh) cells in presymptomatic AAb+ subjects and patients with T1D. Yet, whether the regulatory counterpart of Tfh cells, represented by T follicular regulatory (Tfr) cells, is similarly altered is still unclear. To address this question, we performed analyses in peripheral blood, spleen, and pancreatic lymph nodes (PLN) of organ donor subjects with T1D. Blood analyses were also performed in living AAb- and AAb+ subjects. While negligible differences in the frequency and phenotype of blood Tfr cells were observed among T1D, AAb-, and AAb+ adult subjects, the frequency of Tfr cells was significantly reduced in spleen and PLN of T1D as compared with nondiabetic control subjects. Furthermore, adoptive transfer of Tfr cells delayed disease development in a mouse model of T1D, a finding that could indicate that Tfr cells play an important role in peripheral tolerance and regulation of autoreactive Tfh cells. Together, our findings provide evidence of Tfr cell alterations within disease-relevant tissues in patients with T1D, suggesting a role for Tfr cells in defective humoral tolerance and disease pathogenesis.


Subject(s)
Diabetes Mellitus, Type 1/immunology , Lymph Nodes/pathology , Spleen/pathology , T-Lymphocytes, Regulatory/pathology , Adult , Animals , Case-Control Studies , Cells, Cultured , Diabetes Mellitus, Type 1/pathology , Humans , Lymphocyte Count , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Pancreas
8.
Front Immunol ; 9: 1761, 2018.
Article in English | MEDLINE | ID: mdl-30131802

ABSTRACT

Mutations in genes that control class switch recombination and somatic hypermutation during the germinal center (GC) response can cause diverse immune dysfunctions. In particular, mutations in CD40LG, CD40, AICDA, or UNG cause hyper-IgM (HIGM) syndrome, a heterogeneous group of primary immunodeficiencies. Follicular helper (Tfh) and follicular regulatory (Tfr) T cells play a key role in the formation and regulation of GCs, but their role in HIGM pathogenesis is still limited. Here, we found that compared to CD40 ligand (CD40L)- and activation-induced cytidine deaminase (AICDA)-deficient patients, circulating Tfh and Tfr cells were severely compromised in terms of frequency and activation phenotype in a child with CD40 deficiency. These findings offer useful insight for human Tfh biology, with potential implications for understanding the molecular basis of HIGM syndrome caused by mutations in CD40.


Subject(s)
CD40 Antigens/deficiency , Hyper-IgM Immunodeficiency Syndrome/immunology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Regulatory/immunology , Adolescent , Adult , CD40 Antigens/genetics , CD40 Ligand/genetics , Child, Preschool , Cytidine Deaminase/deficiency , Cytidine Deaminase/genetics , Female , Humans , Hyper-IgM Immunodeficiency Syndrome/genetics , Immunophenotyping , Lymphocyte Activation , Male , Mutation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL