Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
J Pediatr Hematol Oncol ; 41(8): 648-652, 2019 11.
Article in English | MEDLINE | ID: mdl-29912035

ABSTRACT

Adoptive cell therapy (ACT) of chimeric antigen receptor T cells has demonstrated remarkable success for the treatment of pediatric B-cell leukemia. For patients who are not candidates for chimeric antigen receptor T-cell therapy, ACT using tumor antigen-experienced polyclonal T cells may be a treatment option. Since leukemic blasts reside in the bone marrow and bone marrow is a preferred site for homeostatic proliferation of cytotoxic memory CD8 T cells, we hypothesized that bone marrow would be a source of activated T cells. The aim of this study was to determine the feasibility of using bone marrow-derived T cells following postinduction chemotherapy for use in adoptive cell transfer. Matched patient samples of bone marrow and peripheral blood-derived T cells expanded ex vivo and displayed similar apoptotic profiles. Before activation and expansion, there was a significant increase in the percentage of bone marrow-derived CD8 T cells expressing activation markers PD1, CD45RO, and CD69 as compared with peripheral blood CD8 T cells. Considering, melanoma-reactive CD8 T cells reside in the subset of PD1CD8 T cells, the bone marrow may be an enriched source leukemic-specific T cells that can be used for ACT.


Subject(s)
Apoptosis/immunology , Bone Marrow Cells/immunology , CD8-Positive T-Lymphocytes/immunology , Gene Expression Regulation, Leukemic/immunology , Immunologic Memory , Induction Chemotherapy , Leukemia , Neoplasm Proteins/immunology , Programmed Cell Death 1 Receptor/immunology , Antigens, Differentiation/immunology , Bone Marrow Cells/pathology , CD8-Positive T-Lymphocytes/pathology , Child , Female , Humans , Leukemia/drug therapy , Leukemia/immunology , Leukemia/pathology , Male
2.
BMC Cancer ; 18(1): 335, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29587663

ABSTRACT

BACKGROUND: Patient-derived tumor models are the new standard for pre-clinical drug testing and biomarker discovery. However, the emerging technology of primary pancreatic cancer organoids has not yet been broadly implemented in research, and complex organotypic models using organoids in co-culture with stromal and immune cellular components of the tumor have yet to be established. In this study, our objective was to develop and characterize pancreatic cancer organoids and multi-cell type organotypic co-culture models to demonstrate their applicability to the study of pancreatic cancer. METHODS: We employed organoid culture methods and flow cytometric, cytologic, immunofluorescent and immunohistochemical methods to develop and characterize patient-derived pancreatic cancer organoids and multi-cell type organotypic co-culture models of the tumor microenvironment. RESULTS: We describe the culture and characterization of human pancreatic cancer organoids from resection, ascites and rapid autopsy sources and the derivation of adherent tumor cell monocultures and tumor-associated fibroblasts from these sources. Primary human organoids displayed tumor-like cellular morphology, tissue architecture and polarity in contrast to cell line spheroids, which formed homogenous, non-lumen forming spheres. Importantly, we demonstrate the construction of complex organotypic models of tumor, stromal and immune components of the tumor microenvironment. Activation of myofibroblast-like cancer associated fibroblasts and tumor-dependent lymphocyte infiltration were observed in these models. CONCLUSIONS: These studies provide the first report of novel and disease-relevant 3D in-vitro models representing pancreatic tumor, stromal and immune components using primary organoid co-cultures representative of the tumor-microenvironment. These models promise to facilitate the study of tumor-stroma and tumor-immune interaction and may be valuable for the assessment of immunotherapeutics such as checkpoint inhibitors in the context of T-cell infiltration.


Subject(s)
Cell Culture Techniques , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Stromal Cells/pathology , Tumor Microenvironment/immunology , Cell Line, Tumor , Coculture Techniques , Humans , In Vitro Techniques , Spheroids, Cellular , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Cells, Cultured
3.
J Immunol ; 190(11): 5620-8, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23616570

ABSTRACT

Early phase clinical trials targeting the programmed death receptor-1/ligand-1 (PD-1/PD-L1) pathway to overcome tumor-mediated immunosuppression have reported promising results for a variety of cancers. This pathway appears to play an important role in the failure of immune reactivity to malignant plasma cells in multiple myeloma patients, as the tumor cells express relatively high levels of PD-L1, and T cells show increased PD-1 expression. In the current study, we demonstrate that PD-1/PD-L1 blockade with a PD-L1-specific Ab elicits rejection of a murine myeloma when combined with lymphodepleting irradiation. This particular combined approach by itself has not previously been shown to be efficacious in other tumor models. The antitumor effect of lymphodepletion/anti-PD-L1 therapy was most robust when tumor Ag-experienced T cells were present either through cell transfer or survival after nonmyeloablative irradiation. In vivo depletion of CD4 or CD8 T cells completely eliminated antitumor efficacy of the lymphodepletion/anti-PD-L1 therapy, indicating that both T cell subsets are necessary for tumor rejection. Elimination of myeloma by T cells occurs relatively quickly as tumor cells in the bone marrow were nearly nondetectable by 5 d after the first anti-PD-L1 treatment, suggesting that antimyeloma reactivity is primarily mediated by preactivated T cells, rather than newly generated myeloma-reactive T cells. Anti-PD-L1 plus lymphodepletion failed to improve survival in two solid tumor models, but demonstrated significant efficacy in two hematologic malignancy models. In summary, our results support the clinical testing of lymphodepletion and PD-1/PD-L1 blockade as a novel approach for improving the survival of patients with multiple myeloma.


Subject(s)
Antibodies, Monoclonal/pharmacology , B7-H1 Antigen/antagonists & inhibitors , Lymphocyte Depletion , Multiple Myeloma/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , Antibodies, Monoclonal/administration & dosage , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Disease Models, Animal , Gene Expression , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Multiple Myeloma/genetics , Multiple Myeloma/immunology , Multiple Myeloma/mortality , Whole-Body Irradiation
4.
Front Immunol ; 15: 1306490, 2024.
Article in English | MEDLINE | ID: mdl-38873594

ABSTRACT

Recurrent exposures to a pathogenic antigen remodel the CD8+ T cell compartment and generate a functional memory repertoire that is polyclonal and complex. At the clonotype level, the response to the conserved influenza antigen, M158-66 has been well characterized in healthy individuals, but not in patients receiving immunosuppressive therapy or with aberrant immunity, such as those with juvenile idiopathic arthritis (JIA). Here we show that patients with JIA have a reduced number of M158-66 specific RS/RA clonotypes, indicating decreased clonal richness and, as a result, have lower repertoire diversity. By using a rank-frequency approach to analyze the distribution of the repertoire, we found several characteristics of the JIA T cell repertoire to be akin to repertoires seen in healthy adults, including an amplified RS/RA-specific antigen response, representing greater clonal unevenness. Unlike mature repertoires, however, there is more fluctuation in clonotype distribution, less clonotype stability, and more variable IFNy response of the M158-66 specific RS/RA clonotypes in JIA. This indicates that functional clonal expansion is altered in patients with JIA on immunosuppressive therapies. We propose that the response to the influenza M158-66 epitope described here is a general phenomenon for JIA patients receiving immunosuppressive therapy, and that the changes in clonal richness and unevenness indicate a retarded and uneven generation of a mature immune response.


Subject(s)
Arthritis, Juvenile , CD8-Positive T-Lymphocytes , Influenza Vaccines , Influenza, Human , Humans , Arthritis, Juvenile/immunology , CD8-Positive T-Lymphocytes/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Female , Child , Male , Adolescent , Vaccination , Clone Cells/immunology , Child, Preschool , Immunologic Memory , Young Adult
6.
Blood ; 117(25): 6952-62, 2011 Jun 23.
Article in English | MEDLINE | ID: mdl-21521781

ABSTRACT

A multifaceted immunotherapeutic strategy that includes hematopoietic stem cell (HSC) transplantation, T-cell adoptive transfer, and tumor vaccination can effectively eliminate established neuroblastoma tumors in mice. In vivo depletion of CD4⁺ T cells in HSC transplantation recipients results in increased antitumor immunity when adoptively transferred T cells are presensitized, but development of T-cell memory is severely compromised. Because increased percentages of regulatory T (Treg) cells are seen in HSC transplantation recipients, here we hypothesized that the inhibitory effect of CD4⁺ T cells is primarily because of the presence of expanded Treg cells. Remarkably, adoptive transfer of presensitized CD25-depleted T cells increased tumor vaccine efficacy. The enhanced antitumor effect achieved by ex vivo depletion of CD25⁺ Treg cells was similar to that achieved by in vivo depletion of all CD4⁺ T cells. Depletion of CD25⁺ Treg cells resulted in elevated frequencies of tumor-reactive CD8 and CD4⁺ T cells and increased CD8-to-Treg cell ratios inside tumor masses. All mice given presensitized CD25-depleted T cells survived a tumor rechallenge, indicating the development of long-term CD8⁺ T-cell memory to tumor antigens. These observations should aid in the future design of immunotherapeutic approaches that promote the generation of both acute and long-term antitumor immunity.


Subject(s)
Cancer Vaccines/therapeutic use , Hematopoietic Stem Cell Transplantation/methods , Immunotherapy, Adoptive/methods , Interleukin-2 Receptor alpha Subunit/immunology , Neuroblastoma/immunology , Neuroblastoma/therapy , T-Lymphocytes/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/transplantation , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/transplantation , Cancer Vaccines/immunology , Hepatocyte Nuclear Factor 3-gamma/immunology , Mice , T-Lymphocytes/transplantation , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/transplantation
7.
Blood ; 113(18): 4449-57, 2009 Apr 30.
Article in English | MEDLINE | ID: mdl-19182203

ABSTRACT

High-risk neuroblastoma remains a clinically challenging disease. Here, we report that a multifaceted immunotherapeutic approach including syngeneic hematopoietic stem cell transplantation (HSCT), adoptive transfer of sensitized T cells (from syngeneic donors vaccinated to tumor antigens), and early posttransplantation tumor vaccination can effectively treat mice with established neuroblastoma. Vaccination was an important component of this immunotherapy, as it resulted in enhanced and prolonged tumor-specific CD8 T-cell activity and improved antitumor efficacy. Surprisingly, CD4 cell depletion of mice given sensitized T cells resulted in better tumor-free survival, which was associated with an early increased expansion of CD8 T cells with an effector phenotype, increased numbers of tumor-reactive CD8 T cells, and increased tumor infiltration by CD8 T cells. However, in the absence of CD4 T cells, development of long-term tumor immunity (memory) was severely compromised as reflected by diminished CD8 T-cell recall responses and an inability to resist tumor rechallenge in vivo. Based on these results, a major challenge with this immunotherapeutic approach is how to obtain the ideal initial antitumor response but still preserve antitumor immune memory. These data suggest that identification and selective depletion of immune inhibitory CD4 T cells may be a strategy to enhance early antitumor immunity and induce a long-lasting tumor response after HSCT.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Hematopoietic Stem Cell Transplantation , Immunologic Memory/immunology , Immunotherapy , Lymphocyte Depletion , Neuroblastoma/therapy , Animals , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/transplantation , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/therapeutic use , Enzyme-Linked Immunosorbent Assay , Immunoenzyme Techniques , Immunotherapy, Adoptive , Interferon-gamma/metabolism , Mice , Mice, Inbred A , Myeloablative Agonists , Neuroblastoma/immunology , Phenotype , Spleen/immunology , Spleen/pathology , Survival Rate , T-Lymphocytes, Regulatory/immunology , Transplantation, Isogeneic , Vaccination
8.
J Immunol ; 181(3): 1877-86, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18641325

ABSTRACT

Neuroblastomas and many other solid tumors produce high amounts of macrophage migration inhibitory factor (MIF), which appears to play a role in tumor progression. We found that MIF expression in neuroblastoma inhibits T cell proliferation in vitro, raising the possibility that MIF promotes tumorigenesis, in part, by suppressing antitumor immunity. To examine whether tumor-derived MIF leads to suppression of T cell immunity in vivo, we generated MIF-deficient neuroblastoma cell lines using short hairpin small interfering RNAs (siRNA). The MIF knockdown (MIFKD) AGN2a neuroblastoma cells were more effectively rejected in immune-competent mice than control siRNA-transduced or wild-type AGN2a. However, the increased rejection of MIFKD AGN2a was not observed in T cell-depleted mice. MIFKD tumors had increased infiltration of CD8(+) and CD4(+) T cells, as well as increased numbers of macrophages, dendritic cells, and B cells. Immunization with MIFKD AGN2a cells significantly increased protection against tumor challenge as compared with immunization with wild-type AGN2a, and the increased protection correlated with elevated frequencies of tumor-reactive CD8(+) T cells in the lymphoid tissue of treated animals. Increased numbers of infiltrating tumor-reactive CD8(+) T cells were also observed at the site of tumor vaccination. In vitro, treatment of AGN2a-derived culture supernatants with neutralizing MIF-specific Ab failed to reverse T cell suppressive activity, suggesting that MIF is not directly responsible for the immune suppression in vivo. This supports a model whereby MIF expression in neuroblastoma initiates a pathway that leads to the suppression of T cell immunity in vivo.


Subject(s)
Gene Expression Regulation , Macrophage Migration-Inhibitory Factors/metabolism , Neuroblastoma/immunology , Neuroblastoma/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Annexin A5/metabolism , Cancer Vaccines/immunology , Cell Proliferation , Cells, Cultured , Macrophage Migration-Inhibitory Factors/genetics , Mice , Neoplasm Transplantation , Protein Binding , RNA Interference
9.
Int J Hematol Oncol ; 8(1): IJH10, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30863527

ABSTRACT

Children with multiple relapsed or refractory leukemia have dismal survival. Research has identified engagement of immune checkpoint receptors (e.g., PD-1, PD-L1 and CTLA-4) as a mechanism for treatment resistance. For adult cancer, inhibitors of PD-1 (nivolumab) and CTLA-4 (ipilimumab) have shown promise with response rates ranging from 7 to 40%. In vitro studies using acute myeloid leukemia cell lines have shown that acute myeloid leukemia blasts may similarly utilize the PD-1/PD-L1 axis to evade an anticancer immune response. We report the first case of a pediatric patient with multiple relapsed/refractory leukemia treated with nivolumab, ipilimumab and 5-azacytidine who tolerated therapy with brief improvement of symptoms.

10.
J Immunother Cancer ; 7(1): 115, 2019 04 29.
Article in English | MEDLINE | ID: mdl-31036082

ABSTRACT

Pancreatic cancer is characterized by an immune suppressive stromal reaction that creates a barrier to therapy. A murine transgenic pancreatic cancer cell line that recapitulates human disease was used to test whether a STimulator of Interferon Genes (STING) agonist could reignite immunologically inert pancreatic tumors. STING agonist treatment potently changed the tumor architecture, altered the immune profile, and increased the survival of tumor-bearing mice. Notably, STING agonist increased numbers and activity of cytotoxic T cells within tumors and decreased levels of suppressive regulatory T cells. Further, STING agonist treatment upregulated costimulatory molecule expression on cross-presenting dendritic cells and reprogrammed immune-suppressive macrophages into immune-activating subtypes. STING agonist promoted the coordinated and differential cytokine production by dendritic cells, macrophages, and pancreatic cancer cells. Cumulatively, these data demonstrate that pancreatic cancer progression is potently inhibited by STING agonist, which reignited immunologically cold pancreatic tumors to promote trafficking and activation of tumor-killing T cells.


Subject(s)
Antineoplastic Agents/pharmacology , Membrane Proteins/agonists , Pancreatic Neoplasms/drug therapy , Tumor Escape/drug effects , Tumor Microenvironment/drug effects , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor/transplantation , Dendritic Cells/drug effects , Dendritic Cells/immunology , Disease Models, Animal , Female , Homeodomain Proteins/genetics , Humans , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Macrophages/drug effects , Macrophages/immunology , Male , Membrane Proteins/immunology , Mice , Mice, Knockout , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , Tumor Burden/drug effects , Tumor Burden/immunology , Tumor Microenvironment/immunology , Xanthones/pharmacology , Xanthones/therapeutic use
11.
Cancer Epidemiol Biomarkers Prev ; 28(4): 680-689, 2019 04.
Article in English | MEDLINE | ID: mdl-30530849

ABSTRACT

BACKGROUND: Despite the accessibility of blood, identification of systemic biomarkers associated with cancer progression has been especially challenging. The aim of this study was to determine a difference in baseline serum immune signatures in patients that experienced early pancreatic ductal adenocarcinoma (PDAC) metastasis compared with patients that did not. We hypothesized that immune mediators would differ in the baseline serum of these patient cohorts. To test this hypothesis, novel approaches of systemic immune analysis were performed. METHODS: A serum-induced transcriptional assay was used to identify transcriptome signatures. To enable an understanding of the transcriptome data in a global sense, a transcriptome index was calculated for each patient taking into consideration the relationship of up- and downregulated transcripts. For each patient, serum cytokine concentrations were also analyzed globally as a cytokine index (CI). RESULTS: A transcriptome signature of innate type I IFN inflammation was identified in patients that experienced early metastatic progression. Patients without early metastatic progression had a baseline transcriptome signature of TGFß/IL10-regulated acute inflammation. The transcriptome index was greater in patients with early metastasis. There was a significant difference in the CI in patients with and without early metastatic progression. CONCLUSIONS: The association of serum-induced transcriptional signatures with PDAC metastasis is a novel finding. Global assessment of serum cytokine concentrations as a CI is a novel approach to assess systemic cancer immunity. IMPACT: These systemic indices can be assessed in combination with tumor markers to further define subsets of PDAC that will provide insight into effective treatment, progression, and outcome.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Pancreatic Ductal/genetics , Cytokines/genetics , Transcriptome/genetics , Disease Progression , Female , Humans , Male , Neoplasm Metastasis , Prognosis
12.
NPJ Precis Oncol ; 3: 24, 2019.
Article in English | MEDLINE | ID: mdl-31602400

ABSTRACT

Metastatic outcomes depend on the interactions of metastatic cells with a specific organ microenvironment. Our previous studies have shown that triple-negative breast cancer (TNBC) MDA-MB-231 cells passaged in astrocyte-conditioned medium (ACM) show proclivity to form brain metastases, but the underlying mechanism is unknown. The combination of microarray analysis, qPCR, and ELISA assay were carried out to demonstrate the ACM-induced expression of angiopoietin-like 4 (ANGPTL4) in TNBC cells. A stable ANGPTL4-knockdown MDA-MB-231 cell line was generated by ANGPTL4 short-hairpin RNA (shRNA) and inoculated into mice via left ventricular injection to evaluate the role of ANGPTL4 in brain metastasis formation. The approaches of siRNA, neutralizing antibodies, inhibitors, and immunoprecipitation were used to demonstrate the involved signaling molecules. We first found that ACM-conditioned TNBC cells upregulated the expression of ANGPTL4, a secreted glycoprotein whose effect on tumor progression is known to be tumor microenvironment- and tumor-type dependent. Knockdown of ANGPTL4 in TNBC MDA-MB-231 cells with shRNA decreased ACM-induced tumor cell metastatic growth in the brain and attributed to survival in a mouse model. Furthermore, we identified that astrocytes produced transforming growth factor-beta 2 (TGF-ß2), which in part is responsible for upregulation of ANGPTL4 expression in TNBC through induction of SMAD signaling. Moreover, we identified that tumor cells communicate with astrocytes, where tumor cell-derived interleukin-1 beta (IL-1ß) and tumor necrosis factor alpha (TNF-α) increased the expression of TGF-ß2 in astrocytes. Collectively, these findings indicate that the invading TNBC cells interact with astrocytes in the brain microenvironment that facilitates brain metastases of TNBC cells through a TGF-ß2/ANGPTL4 axis. This provides groundwork to target ANGPTL4 as a treatment for breast cancer brain metastases.

13.
J Leukoc Biol ; 104(5): 883-893, 2018 11.
Article in English | MEDLINE | ID: mdl-30063264

ABSTRACT

Inhibitory cell surface proteins on T cells are often dynamically regulated, which contributes to their physiologic function. PECAM-1 (CD31) is an inhibitory receptor that facilitates TGF-ß-mediated suppression of T cell activity. It is well established in CD4+ T cells that PECAM-1 is expressed in naïve recent thymic emigrants, but is down-regulated after acute T cell activation and absent from memory cells. The extent to which PECAM-1 expression is similarly regulated in CD8+ T cells is much less well characterized. We evaluated T cells recovered from mice after infection with a model intracellular pathogen and determined that, in CD8+ T cells, PECAM-1 expression was strongly down-regulated during acute infection but re-expressed to intermediate levels in memory cells. Down-regulation of PECAM-1 expression in CD8+ T cells was transcriptionally regulated and affected by the strength and nature of TCR signaling. PECAM-1 was also detected on the surface of human activated/memory CD8+ , but not CD4+ T cells. These data demonstrate that PECAM-1 expression is dynamically regulated, albeit differently, in both CD4+ and CD8+ T cells. Furthermore, unlike memory CD4+ T cells, memory CD8+ T cells retain PECAM-1 expression and have the potential to be modulated by this inhibitory receptor.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , Lymphocyte Activation/immunology , Platelet Endothelial Cell Adhesion Molecule-1/immunology , Animals , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Platelet Endothelial Cell Adhesion Molecule-1/biosynthesis
14.
Cancer Res ; 77(20): 5676-5686, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28916658

ABSTRACT

Efforts to improve the efficacy of adoptive T-cell therapies and immune checkpoint therapies in myelogenous leukemia are desired. In this study, we evaluated the antileukemia activity of adoptively transferred polyclonal cancer antigen-reactive T cells deficient in the regulator diacylglycerol kinase zeta (DGKζ) with or without PD-1/PD-L1 blockade. In the C1498 mouse model of myeloid leukemia, we showed that leukemia was eradicated more effectively in DGKζ-deficient (DGKζ-/-) mice than wild-type mice. T cells transferred from DGKζ-deficient mice to wild-type tumor-bearing recipients conferred this benefit. Leukemia clearance was similar to mice treated with anti-PD-L1. Strikingly, we found that the activity of adoptively transferred DGKζ-/- T cells relied partly on induction of sustainable host T-cell immunity. Transferring DGKζ-deficient T cells increased the levels of IFNγ and other cytokines in recipient mice, especially with coadministration of anti-PD-L1. Overall, our results offered evidence that targeting DGKζ may leverage the efficacy of adoptive T-cell and immune checkpoint therapies in leukemia treatment. Furthermore, they suggest that DGKζ targeting might decrease risks of antigen escape or resistance to immune checkpoint blockade. Cancer Res; 77(20); 5676-86. ©2017 AACR.


Subject(s)
Diacylglycerol Kinase/immunology , Immunotherapy, Adoptive/methods , Leukemia/immunology , Leukemia/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T-Lymphocytes/enzymology , Animals , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Programmed Cell Death 1 Receptor/immunology , Signal Transduction , T-Lymphocytes/immunology
15.
J Immunother Cancer ; 5: 51, 2017.
Article in English | MEDLINE | ID: mdl-28642819

ABSTRACT

BACKGROUND: Adoptive cellular therapy (ACT) with cancer antigen-reactive T cells following lymphodepletive pre-conditioning has emerged as a potentially curative therapy for patients with advanced cancers. However, identification and enrichment of appropriate T cell subsets for cancer eradication remains a major challenge for hematologic cancers. METHODS: PD-1+ and PD-1- T cell subsets from myeloma-bearing mice were sorted and analyzed for myeloma reactivity in vitro. In addition, the T cells were activated and expanded in culture and given to syngeneic myeloma-bearing mice as ACT. RESULTS: Myeloma-reactive T cells were enriched in the PD-1+ cell subset. Similar results were also observed in a mouse AML model. PD-1+ T cells from myeloma-bearing mice were found to be functional, they could be activated and expanded ex vivo, and they maintained their anti-myeloma reactivity after expansion. Adoptive transfer of ex vivo-expanded PD-1+ T cells together with a PD-L1 blocking antibody eliminated established myeloma in Rag-deficient mice. Both CD8 and CD4 T cell subsets were important for eradicating myeloma. Adoptively transferred PD-1+ T cells persisted in recipient mice and were able to mount an adaptive memory immune response. CONCLUSIONS: These results demonstrate that PD-1 is a biomarker for functional myeloma-specific T cells, and that activated and expanded PD-1+ T cells can be effective as ACT for myeloma. Furthermore, this strategy could be useful for treating other hematologic cancers.


Subject(s)
CD8-Positive T-Lymphocytes/transplantation , Multiple Myeloma/therapy , Programmed Cell Death 1 Receptor/blood , T-Lymphocyte Subsets/transplantation , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Cytokines/biosynthesis , Immunologic Memory/immunology , Immunophenotyping , Immunotherapy, Adoptive/methods , Lymphocyte Activation/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Mice, Inbred C57BL , Multiple Myeloma/immunology , T-Lymphocyte Subsets/immunology , Tumor Cells, Cultured
16.
Nucleic Acids Res ; 30(11): 2524-37, 2002 Jun 01.
Article in English | MEDLINE | ID: mdl-12034842

ABSTRACT

In the ciliated protozoan Tetrahymena thermophila, extensive DNA elimination is associated with differentiation of the somatic macronucleus from the germline micronucleus. This study describes the isolation and complete characterization of Tlr elements, a family of approximately 30 micronuclear DNA sequences that are efficiently eliminated from the developing macronucleus. The data indicate that Tlr elements are comprised of an approximately 22 kb internal region flanked by complex and variable termini. The Tlr internal region is highly conserved among family members and contains 15 open reading frames, some of which resemble genes encoded by transposons and viruses. The Tlr termini appear to be long inverted repeats consisting of (i) a variable region containing multiple direct repeats which differ in number and sequence from element to element and (ii) a conserved terminal 47 bp sequence. Taken together, these results suggest that Tlr elements comprise a novel family of mobile genetic elements that are confined to the Tetrahymena germline genome. Possible mechanisms of developmentally programmed Tlr elimination are discussed.


Subject(s)
DNA Transposable Elements/genetics , DNA, Protozoan/genetics , Genome, Protozoan , Germ Cells/metabolism , Multigene Family/genetics , Tetrahymena thermophila/genetics , Amino Acid Sequence , Animals , Base Composition , Base Sequence , Blotting, Southern , Cell Nucleus/genetics , Conserved Sequence/genetics , Genomic Library , Germ Cells/cytology , Germ-Line Mutation/genetics , Molecular Sequence Data , Open Reading Frames/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Repetitive Sequences, Nucleic Acid/genetics , Sequence Alignment , Tetrahymena thermophila/chemistry , Tetrahymena thermophila/cytology
17.
Oncotarget ; 7(28): 43363-43375, 2016 Jul 12.
Article in English | MEDLINE | ID: mdl-27270319

ABSTRACT

Substantial experimental evidence has shown that dedifferentiation from an epithelial state to a mesenchymal-like state (EMT) drives tumor cell metastasis. This transition facilitates tumor cells to acquire motility and invasive features. Intriguingly, tumor cells at the metastatic site are primarily epithelial, and it is believed that they differentiate back to an epithelial state by a process called mesenchymal to epithelial transition (MET). However, there is little in vivo evidence to support the MET process. To investigate EMT and MET in vivo, we generated two epithelial (E) and two mesenchymal (M) primary clonal cell lines from a spontaneous mouse mammary tumor (Tg MMTV/neu). These cells were labeled with reporters (GFP and luciferase), and tracked in vivo during primary tumor growth and subsequent secondary metastasis. Once E cells were implanted into the mammary fat pad, E-cadherin expression progressively decreased and continued to decrease as the primary tumor enlarged over time. A greater percentage of E tumor cells expressed E-cadherin at the secondary metastatic site as compared to the corresponding primary tumor site. Collectively, these data provide direct in vivo evidence that epithelial tumor cells have metastatic potential, undergo EMT at the primary tumor site, and MET at the metastatic site.


Subject(s)
Cadherins/metabolism , Clone Cells/metabolism , Epithelial-Mesenchymal Transition , Mammary Neoplasms, Experimental/pathology , Neoplasm Invasiveness/pathology , Animals , Breast/cytology , Breast/pathology , Cell Line, Tumor , Cell Movement , Clone Cells/pathology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Flow Cytometry , Gene Expression Regulation, Neoplastic , Liver Neoplasms, Experimental/pathology , Liver Neoplasms, Experimental/secondary , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Mice , Microarray Analysis , Primary Cell Culture , Spleen/pathology
18.
Genet Vaccines Ther ; 3(1): 4, 2005 Jun 21.
Article in English | MEDLINE | ID: mdl-15969754

ABSTRACT

BACKGROUND: The production of cell-based cancer vaccines by gene vectors encoding proteins that stimulate the immune system has advanced rapidly in model systems. We sought to develop non-viral transfection methods that could transform patient tumor cells into cancer vaccines, paving the way for rapid production of autologous cell-based vaccines. METHODS: As the extended culture and expansion of most patient tumor cells is not possible, we sought to first evaluate a new technology that combines electroporation and chemical transfection in order to determine if plasmid-based gene vectors could be instantaneously delivered to the nucleus, and to determine if gene expression was possible in a cell-cycle independent manner. We tested cultured cell lines, a primary murine tumor, and primary human leukemia cells from diagnostic work-up for transgene expression, using both RFP and CD137L expression vectors. RESULTS: Combined electroporation-transfection directly delivered plasmid DNA to the nucleus of transfected cells, as demonstrated by confocal microscopy and real-time PCR analysis of isolated nuclei. Expression of protein from plasmid vectors could be detected as early as two hours post transfection. However, the kinetics of gene expression from plasmid-based vectors in tumor cell lines indicated that optimal gene expression was still dependent on cell division. We then tested to see if pediatric acute lymphocytic leukemia (ALL) would also display the rapid gene expression kinetics of tumor cells lines, determining gene expression 24 hours after transfection. Six of 12 specimens showed greater than 17% transgene expression, and all samples showed at least some transgene expression. CONCLUSION: Given that transgene expression could be detected in a majority of primary tumor samples analyzed within hours, direct electroporation-based transfection of primary leukemia holds the potential to generate patient-specific cancer vaccines. Plasmid-based gene therapy represents a simple means to generate cell-based cancer vaccines and does not require the extensive infrastructure of a virus-based vector system.

19.
J Immunother Cancer ; 3: 24, 2015.
Article in English | MEDLINE | ID: mdl-26082836

ABSTRACT

BACKGROUND: Neuroblastoma is a pediatric cancer of neural crest origin. Despite aggressive treatment, mortality remains at 40 % for patients with high-risk disseminated disease, underscoring the need to test new combinations of therapies. In murine tumor models, our laboratory previously showed that T cell-mediated anti-tumor immune responses improve in the context of lymphopenia. The goal of this study was to incorporate lymphodepletion into an effective immune therapy that can be easily translated into neuroblastoma standard of care. Based on the lymphodepleting effects of cyclophosphamide, we hypothesized that cyclophosphamide would synergize with the TLR9 agonist, CpG oligodeoxynucleotide (ODN), to produce a T cell-mediated anti-neuroblastoma effect. METHODS: To test this hypothesis, we used the AgN2a aggressive murine model of neuroblastoma. Mice bearing subcutaneous tumors were treated with cyclophosphamide followed by treatment with tumor cell lysate mixed with CpG ODN injected at the tumor site. RESULTS: Subcutaneous neuroblastoma regressed only in mice that were treated with 100 mg/kg cyclophosphamide prior to receiving treatments of tumor lysate mixed with CpG ODN. The anti-neuroblastoma response was T cell-mediated. Synergy between cyclophosphamide and the tumor lysate/CpG ODN treatment influenced the production of anti-tumor CD8 T cell effectors, and dendritic cell homeostasis. For clinical consideration, an allogeneic tumor lysate was used effectively with this protocol to eliminate AgN2a tumor in vivo. CONCLUSION: Synergistic immune modulating effects of cyclophosphamide and a treatment containing tumor cell lysate and CpG ODN provide T cell-mediated anti-tumor activity against murine neuroblastoma.

20.
J Immunother Cancer ; 3(1): 2, 2015.
Article in English | MEDLINE | ID: mdl-25614821

ABSTRACT

BACKGROUND: Multiple myeloma is characterized by the presence of transformed neoplastic plasma cells in the bone marrow and is generally considered to be an incurable disease. Successful treatments will likely require multi-faceted approaches incorporating conventional drug therapies, immunotherapy and other novel treatments. Our lab previously showed that a combination of transient lymphodepletion (sublethal whole body irradiation) and PD-1/PD-L1 blockade generated anti-myeloma T cell reactivity capable of eliminating established disease. We hypothesized that blocking a combination of checkpoint receptors in the context of low-dose, lymphodepleting whole body radiation would boost anti-tumor immunity. METHODS: To test our central hypothesis, we utilized a 5T33 murine multiple myeloma model. Myeloma-bearing mice were treated with a low dose of whole body irradiation and combinations of blocking antibodies to PD-L1, LAG-3, TIM-3, CD48 (the ligand for 2B4) and CTLA4. RESULTS: Temporal phenotypic analysis of bone marrow from myeloma-bearing mice demonstrated that elevated percentages of PD-1, 2B4, LAG-3 and TIM-3 proteins were expressed on T cells. When PD-L1 blockade was combined with blocking antibodies to LAG-3, TIM-3 or CTLA4, synergistic or additive increases in survival were observed (survival rates improved from ~30% to >80%). The increased survival rates correlated with increased frequencies of tumor-reactive CD8 and CD4 T cells. When stimulated in vitro with myeloma cells, CD8 T cells from treated mice produced elevated levels proinflammatory cytokines. Cytokines were spontaneously released from CD4 T cells isolated from mice treated with PD-L1 plus CTLA4 blocking antibodies. CONCLUSIONS: These data indicate that blocking PD-1/PD-L1 interactions in conjunction with other immune checkpoint proteins provides synergistic anti-tumor efficacy following lymphodepletive doses of whole body irradiation. This strategy is a promising combination strategy for myeloma and other hematologic malignancies.

SELECTION OF CITATIONS
SEARCH DETAIL