Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Phytother Res ; 38(8): 4177-4188, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38923108

ABSTRACT

Inflammatory bowel disease (IBD) is a morbid condition characterized by relapsing-remitting inflammation of the colon, accompanied by persistent gut dysmotility and abdominal pain. Different reports demonstrated biological activities of aged black garlic (ABG), including anti-inflammatory and antioxidant effects. We aimed to investigate beneficial effects exerted by ABGE on colon inflammation by using ex vivo and in vivo experimental models. We investigated the anti-inflammatory effects of an ABG water extract (ABGE) on rat colon specimens exposed to E. coli lipopolysaccharide (LPS), a known ex vivo experimental model of ulcerative colitis. We determined gene expression of various biomarkers involved in inflammation, including interleukin (IL)-1ß, IL-6, nuclear factor-kB (NF-kB), tumor necrosis factor (TNF)-α. Moreover, we studied the acute effects of ABGE on visceral pain associated with colitis induced by 2,4-di-nitrobenzene sulfonic acid (DNBS) injection in rats. ABGE suppressed LPS-induced gene expression of IL-1ß, IL-6, NF-kB, and TNF-α. In addition, the acute administration of ABGE (0.03-1 g kg-1) dose-dependently relieved post-inflammatory visceral pain, with the higher dose (1 g kg-1) able to significantly reduce both the behavioral nociceptive response and the entity of abdominal contraction (assessed by electromyography) in response to colorectal distension after the acute administration in DNBS-treated rats. Present findings showed that ABGE could represent a potential strategy for treatment of colitis-associated inflammatory process and visceral pain. The beneficial effects induced by the extract could be related to the pattern of polyphenolic composition, with particular regard to gallic acid and catechin.


Subject(s)
Anti-Inflammatory Agents , Colitis, Ulcerative , Disease Models, Animal , Garlic , NF-kappa B , Plant Extracts , Visceral Pain , Animals , Plant Extracts/pharmacology , Colitis, Ulcerative/drug therapy , Rats , Male , Anti-Inflammatory Agents/pharmacology , Visceral Pain/drug therapy , Garlic/chemistry , NF-kappa B/metabolism , Lipopolysaccharides , Tumor Necrosis Factor-alpha/metabolism , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Colitis/drug therapy , Colitis/chemically induced , Interleukin-6/metabolism , Hyperalgesia/drug therapy , Colon/drug effects , Rats, Sprague-Dawley , Rats, Wistar
2.
Mar Drugs ; 21(12)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38132963

ABSTRACT

Hydrogen sulfide (H2S) is a signaling molecule endogenously produced within mammals' cells that plays an important role in inflammation, exerting anti-inflammatory effects. In this view, the research has shown a growing interest in identifying natural H2S donors. Herein, for the first time, the potential of marine extract as a source of H2S-releasing agents has been explored. Different fractions obtained by the Indonesian ascidian Polycarpa aurata were evaluated for their ability to release H2S in solution. The main components of the most active fraction were then characterized by liquid chromatography-high-resolution mass spectrometry (LC-HRMS) and NMR spectroscopy. The ability of this fraction to release H2S was evaluated in a cell-free assay and J774 macrophages by a fluorimetric method, and its anti-inflammatory activity was evaluated in vitro and in vivo by using carrageenan-induced mouse paw edema. The anti-inflammatory effects were assessed by inhibiting the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), and interleukin-6 (IL-6), coupled with a reduction in nitric oxide (NO) and IL-6 levels. Thus, this study defines the first example of a marine source able to inhibit inflammatory responses in vivo through the release of H2S.


Subject(s)
Hydrogen Sulfide , Mice , Animals , Hydrogen Sulfide/adverse effects , Hydrogen Sulfide/metabolism , Interleukin-6/metabolism , Anti-Inflammatory Agents/chemistry , Inflammation/drug therapy , Inflammation/metabolism , Carrageenan/adverse effects , Nitric Oxide/metabolism , Edema/chemically induced , Edema/drug therapy , Nitric Oxide Synthase Type II/metabolism , Mammals/metabolism
3.
Pharmacol Ther ; 258: 108649, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615798

ABSTRACT

Current epidemiological data estimate that one in five people suffers from chronic pain with considerable impairment of health-related quality of life. The pharmacological treatment is based on first- and second-line analgesic drugs, including COX-2 selective and nonselective nonsteroidal anti-inflammatory drugs, paracetamol, antidepressants, anti-seizure drugs and opioids, that are characterized by important side effects. N-palmitoylethanolamine (PEA) is a body's own fatty-acid ethanolamide belonging to the family of autacoid local injury antagonist amides. The anti-inflammatory and pain-relieving properties of PEA have been recognized for decades and prompted to depict its role in the endogenous mechanisms of pain control. Together with its relative abundance in food sources, this opened the way to the use of PEA as a pain-relieving nutritional intervention. Naïve PEA is a large particle size lipid molecule with low solubility and bioavailability. Reducing particle size is a useful method to increase surface area, thereby improving dissolution rate and bioavailability accordingly. Micron-size formulations of PEA (e.g., ultramicronized and co-(ultra)micronized) have shown higher oral efficacy compared to naïve PEA. In particular, ultramicronized PEA has been shown to efficiently cross the intestinal wall and, more importantly, the blood-brain and blood-spinal cord barrier. Several preclinical and clinical studies have shown the efficacy, safety and tolerability of ultramicronized PEA. This narrative review summarizes the available pharmacokinetic/pharmacodynamic data on ultramicronized PEA and focuses to its contribution to pain control, in particular as 'add-on' nutritional intervention. Data showing the ability of ultramicronized PEA to limit opioid side effects, including the development of tolerance, have also been reviewed.


Subject(s)
Analgesics , Chronic Pain , Ethanolamines , Palmitic Acids , Ethanolamines/adverse effects , Ethanolamines/therapeutic use , Palmitic Acids/therapeutic use , Palmitic Acids/pharmacology , Palmitic Acids/adverse effects , Humans , Analgesics/adverse effects , Analgesics/pharmacology , Chronic Pain/drug therapy , Animals , Amides , Particle Size , Biological Availability
4.
Curr Neuropharmacol ; 22(1): 88-106, 2024.
Article in English | MEDLINE | ID: mdl-36443965

ABSTRACT

BACKGROUND: In the current management of neuropathic pain, in addition to antidepressants and anticonvulsants, the use of opioids is wide, despite their related and well-known issues. OBJECTIVE: N-palmitoylethanolamine (PEA), a natural fatty-acid ethanolamide whose anti-inflammatory, neuroprotective, immune-modulating and anti-hyperalgesic activities are known, represents a promising candidate to modulate and/or potentiate the action of opioids. METHODS: This study was designed to evaluate if the preemptive and morphine concomitant administration of ultramicronized PEA, according to fixed or increasing doses of both compounds, delays the onset of morphine tolerance and improves its analgesic efficacy in the chronic constriction injury (CCI) model of neuropathic pain in rats. RESULTS: Behavioral experiments showed that the preemptive and co-administration of ultramicronized PEA significantly decreased the effective dose of morphine and delayed the onset of morphine tolerance. The activation of spinal microglia and astrocytes, commonly occurring both on opioid treatment and neuropathic pain, was investigated through GFAP and Iba-1 immunofluorescence. Both biomarkers were found to be increased in CCI untreated or morphine treated animals in a PEA-sensitive manner. The increased density of endoneural mast cells within the sciatic nerve of morphine-treated and untreated CCI rats was significantly reduced by ultramicronized PEA. The decrease of mast cell degranulation, evaluated in terms of reduced plasma levels of histamine and N-methyl-histamine metabolite, was mainly observed at intermediate-high doses of ultramicronized PEA, with or without morphine. CONCLUSION: Overall, these results show that the administration of ultramicronized PEA in CCI rats according to the study design fully fulfilled the hypotheses of this study.


Subject(s)
Morphine , Neuralgia , Rats , Animals , Morphine/pharmacology , Morphine/therapeutic use , Mast Cells , Histamine/metabolism , Histamine/pharmacology , Histamine/therapeutic use , Neuralgia/drug therapy , Neuroglia/metabolism , Analgesics, Opioid/pharmacology
6.
J Clin Med ; 13(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38592312

ABSTRACT

(1) Background: Dry eye disease (DED) is a multifactorial ocular surface disease characterized by an imbalance in ocular surface homeostasis, and tear substitutes constitute the first line of treatment. The present study aimed to evaluate the changes in the signs and symptoms of patients with DED treated with a novel tear substitute containing the GlicoPro® complex. (2) Methods: Patients with DED not successfully responding to other tear substitutes were enrolled and treated with a novel ophthalmic solution (two drops four times daily). Patients were examined before starting the study treatment (T0) and after 30 (T1) and 60 (T2) days of treatment by means of Keratograph for the evaluation of the following: (i) tear meniscus height (TMH); (ii) noninvasive Keratograph break-up time (NIKBUT); (iii) bulbar redness; and (iv) infrared meibography. The SANDE questionnaire was administered to assess ocular discomfort symptoms. Analysis of the tear content of proenkephalin and Met/Leu-enkephalin was also performed. (3) Results: At T2, a significant improvement in NIKBUT first, average, and class, TMH, and SANDE score was found. The tear content of proenkephalins was significantly higher at T1, whereas processed active Met/Leu-enkephalins increased at both T1 and T2. (4) Conclusions: Our novel tear substitute based on GlicoPro® resulted in a significant improvement in ocular discomfort symptoms, tear volume, and stability in the patients treated. The increase in active peptides processed in tears may represent the pathophysiological substrate underlying this finding.

7.
J Drug Target ; 32(8): 953-963, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38864378

ABSTRACT

Nowadays, the pharmacological management of visceral hypersensitivity associated with colitis is ineffective. In this context, targeting purinergic P2X4 receptor (P2X4R), which can modulate visceral pain transmission, could represent a promising therapeutic strategy. Herein, we tested the pain-relieving effect of two novel and selective P2X4R antagonists (NC-2600 and NP-1815-PX) in a murine model of DNBS-induced colitis and investigated the mechanisms underlying their effect. Tested drugs and dexamethasone (DEX) were administered orally, two days after colitis induction. Treatment with tested drugs and DEX improved tissue inflammatory parameters (body weight, spleen weight, macroscopic damage, TNF and IL-1ß levels) in DNBS-rats. In addition, NC-2600 and NP-1815-PX attenuated visceral pain better than DEX and prevented the reduction of occludin expression. In in vitro studies, treatment of CaCo2 cells with supernatant from THP-1 cells, previously treated with LPS plus ATP, reduced the expression of tight junctions protein. By contrast, CaCo2 cells treated with supernatant from THP-1 cells, previously incubated with tested drugs, counteracted the reduction of tight junctions due to the inhibition of P2X4R/NLRP3/IL-1ß axis. In conclusion, these results suggest that the direct and selective inhibition of P2X4R represents a viable approach for the management of visceral pain associated with colitis via NLRP3/IL-1ß axis inhibition.


Subject(s)
Colitis , Disease Models, Animal , Purinergic P2X Receptor Antagonists , Receptors, Purinergic P2X4 , Visceral Pain , Animals , Visceral Pain/drug therapy , Colitis/drug therapy , Purinergic P2X Receptor Antagonists/pharmacology , Purinergic P2X Receptor Antagonists/therapeutic use , Receptors, Purinergic P2X4/metabolism , Rats , Male , Humans , Dexamethasone/pharmacology , Interleukin-1beta/metabolism
8.
Biomed Pharmacother ; 177: 116867, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38889634

ABSTRACT

The aim of this study was to determine the anti-hypersensitivity activity of novel non-hallucinogenic compounds derived from iboga alkaloids (i.e., ibogalogs), including tabernanthalog (TBG), ibogainalog (IBG), and ibogaminalog (DM506), using mouse models of neuropathic (Chronic Constriction Injury; CCI) and visceral pain (dextrane sulfate sodium; DSS). Ibogalogs decreased mechanical hyperalgesia and allodynia induced by CCI in a dose- and timeframe-dependent manner, where IBG showed the longest anti-hyperalgesic activity at a comparatively lower dose, whereas DM506 displayed the quickest response. These compounds also decreased hypersensitivity induced by colitis, where DM506 showed the longest activity. To understand the mechanisms involved in these effects, two approaches were utilized: ibogalogs were challenged with the 5-HT2A receptor antagonist ketanserin and the pharmacological activity of these compounds was assessed at the respective 5-HT2A, 5-HT6, and 5-HT7 receptor subtypes. The behavioral results clearly demonstrated that ketanserin abolishes the pain-relieving activity of ibogalogs without inducing any effect per se, supporting the concept that 5-HT2A receptor activation, but not inhibition, is involved in this process. The functional results showed that ibogalogs potently activate the 5-HT2A and 5-HT6 receptor subtypes, whereas they behave as inverse agonists (except TBG) at the 5-HT7 receptor. Considering previous studies showing that 5-HT6 receptor inhibition, but not activation, and 5-HT7 receptor activation, but not inhibition, relieved chronic pain, we can discard these two receptor subtypes as participating in the pain-relieving activity of ibogalogs. The potential involvement of 5-HT2B/2 C receptor subtypes was also ruled out. In conclusion, the anti-hypersensitivity activity of ibogalogs in mice is mediated by a mechanism involving 5-HT2A receptor activation.


Subject(s)
Alkaloids , Neuralgia , Receptor, Serotonin, 5-HT2A , Visceral Pain , Animals , Neuralgia/drug therapy , Neuralgia/metabolism , Male , Receptor, Serotonin, 5-HT2A/metabolism , Receptor, Serotonin, 5-HT2A/drug effects , Mice , Visceral Pain/drug therapy , Visceral Pain/metabolism , Alkaloids/pharmacology , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Serotonin 5-HT2 Receptor Agonists/pharmacology , Disease Models, Animal , Analgesics/pharmacology , Dose-Response Relationship, Drug
9.
Biomedicines ; 11(12)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38137502

ABSTRACT

Modulation of mitochondrial K channels represents a pharmacological strategy to promote cardioprotective effects. Isothiocyanates emerge as molecules capable of releasing hydrogen sulfide (H2S), an endogenous pleiotropic gasotransmitter responsible for anti-ischemic cardioprotective effects also through the involvement of mitoK channels. Erucin (ERU) is a natural isothiocyanate resulting from the enzymatic hydrolysis of glucosinolates (GSLs) present in Eruca sativa Mill. seeds, an edible plant of the Brassicaceae family. In this experimental work, the specific involvement of mitoKATP channels in the cardioprotective effect induced by ERU was evaluated in detail. An in vivo preclinical model of acute myocardial infarction was reproduced in rats to evaluate the cardioprotective effect of ERU. Diazoxide was used as a reference compound for the modulation of potassium fluxes and 5-hydroxydecanoic acid (5HD) as a selective blocker of KATP channels. Specific investigations on isolated cardiac mitochondria were carried out to evaluate the involvement of mitoKATP channels. The results obtained showed ERU cardioprotective effects against ischemia/reperfusion (I/R) damage through the involvement of mitoKATP channels and the consequent depolarizing effect, which in turn reduced calcium entry and preserved mitochondrial integrity.

SELECTION OF CITATIONS
SEARCH DETAIL