Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
J Cell Biol ; 220(11)2021 11 01.
Article in English | MEDLINE | ID: mdl-34586346

ABSTRACT

Mitochondrial function is integrated with cellular status through the regulation of opposing mitochondrial fusion and division events. Here we uncover a link between mitochondrial dynamics and lipid metabolism by examining the cellular role of mitochondrial carrier homologue 2 (MTCH2). MTCH2 is a modified outer mitochondrial membrane carrier protein implicated in intrinsic cell death and in the in vivo regulation of fatty acid metabolism. Our data indicate that MTCH2 is a selective effector of starvation-induced mitochondrial hyperfusion, a cytoprotective response to nutrient deprivation. We find that MTCH2 stimulates mitochondrial fusion in a manner dependent on the bioactive lipogenesis intermediate lysophosphatidic acid. We propose that MTCH2 monitors flux through the lipogenesis pathway and transmits this information to the mitochondrial fusion machinery to promote mitochondrial elongation, enhanced energy production, and cellular survival under homeostatic and starvation conditions. These findings will help resolve the roles of MTCH2 and mitochondria in tissue-specific lipid metabolism in animals.


Subject(s)
Carrier Proteins/metabolism , Lipogenesis/physiology , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membranes/metabolism , Animals , Apoptosis/physiology , COS Cells , Cell Line , Cell Line, Tumor , Chlorocebus aethiops , HCT116 Cells , Humans , Lipid Metabolism/physiology , Mitochondrial Dynamics/physiology , Mitochondrial Proteins/metabolism
2.
Nat Metab ; 2(11): 1265-1283, 2020 11.
Article in English | MEDLINE | ID: mdl-33199924

ABSTRACT

Declining tissue nicotinamide adenine dinucleotide (NAD) levels are linked to ageing and its associated diseases. However, the mechanism for this decline is unclear. Here, we show that pro-inflammatory M1-like macrophages, but not naive or M2 macrophages, accumulate in metabolic tissues, including visceral white adipose tissue and liver, during ageing and acute responses to inflammation. These M1-like macrophages express high levels of the NAD-consuming enzyme CD38 and have enhanced CD38-dependent NADase activity, thereby reducing tissue NAD levels. We also find that senescent cells progressively accumulate in visceral white adipose tissue and liver during ageing and that inflammatory cytokines secreted by senescent cells (the senescence-associated secretory phenotype, SASP) induce macrophages to proliferate and express CD38. These results uncover a new causal link among resident tissue macrophages, cellular senescence and tissue NAD decline during ageing and offer novel therapeutic opportunities to maintain NAD levels during ageing.


Subject(s)
ADP-ribosyl Cyclase 1/genetics , Aging/metabolism , Cellular Senescence , Macrophage Activation , Membrane Glycoproteins/genetics , NAD/metabolism , ADP-ribosyl Cyclase/metabolism , Adipose Tissue, White/metabolism , Animals , Antigens, CD/metabolism , Cytokines/metabolism , Female , GPI-Linked Proteins/metabolism , Gene Expression , Glycolysis/genetics , Humans , Liver/metabolism , Male , Metabolome , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , NAD+ Nucleosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL