ABSTRACT
Particulate contaminants, such as microplastics (1 µm to 5 mm) and nanoplastics (<1 µm), are disseminated in many terrestrial environments. However, it is still unclear how particles' properties drive their mobility through soils and aquifers due to (i) poor environmental relevance of the model particles that are studied (e.g., spherical and monodisperse) and (ii) the use of packed bed experiments which do not allow a direct observation of deposition dynamics. Using transparent 2D porous media, this study analyzes deposition dynamics of rough polystyrene fragments with irregular shapes and with a size continuum (≈10 nm to 5 µm). Using in situ and ex situ measurements, particle deposition as a function of size was monitored over time under repulsive conditions. In the absence of natural organic matter (NOM), micrometric particles rapidly deposit and promote the physical interception of smaller nanoparticles by creating local porous roughness or obstacles. In the presence of NOM, differences according to particle size were no longer observed, and all fragments were more prone to being re-entrained, thereby limiting the growth of deposits. This work demonstrates the importance of pore surface roughness and porosity of the pore surface for the deposition of colloidal particles, such as microplastics and nanoplastics, under repulsive conditions.
Subject(s)
Microplastics , Particle Size , Nanoparticles/chemistry , Porosity , Polystyrenes/chemistryABSTRACT
Arctic autochthonous communities and the environment face unprecedented challenges due to climate change and anthropogenic activities. One less-explored aspect of these challenges is the release and distribution of anthropogenic nanomaterials in autochthonous communities. This study pioneers a comprehensive investigation into the nature and dispersion of anthropogenic nanomaterials within Arctic Autochthonous communities, originating from their traditional waste-burning practices. Employing advanced nanoanalytical tools, we unraveled the nature and prevalence of nanomaterials, including metal oxides (TiO2, PbO), alloys (SnPb, SbPb, SnAg, SnCu, SnZn), chromated copper arsenate-related nanomaterials (CuCrO2, CuCr2O4), and nanoplastics (polystyrene and polypropylene) in snow and sediment near waste burning sites. This groundbreaking study illuminates the unintended consequences of waste burning in remote Arctic areas, stressing the urgent need for interdisciplinary research, community engagement, and sustainable waste management. These measures are crucial to safeguard the fragile Arctic ecosystem and the health of autochthonous communities.
ABSTRACT
Among aquatic organisms, filter feeders are particularly exposed to the ingestion of microplastics (MPs) and nanoplastics (NPs). The present study investigates the effect of environmental microplastics (ENV MPs) and nanoplastics (ENV NPs) generated from macro-sized plastic debris collected in the Garonne River (France), and polystyrene NPs (PS NPs) on the freshwater bivalve Corbicula fluminea. Organisms were exposed to plastic particles at three concentrations: 0.008, 10, and 100 µg L-1 for 21 days. Gene expression measurements were conducted in gills and visceral mass at 7 and 21 days to assess the effects of plastic particles on different functions. Our results revealed: (i) an up-regulation of genes, mainly involved in endocytosis, oxidative stress, immunity, apoptosis, and neurotoxicity, at 7 days of exposure for almost all environmental plastic particles and at 21 days of exposure for PS NPs in the gills, (ii) PS NPs at the three concentrations tested and ENV MPs at 0.008 µg L-1 induced strong down-regulation of genes involved in detoxication, oxidative stress, immunity, apoptosis, and neurotoxicity at 7 days of exposure in the visceral mass whereas ENV MPs at 10 and 100 µg L-1 and all ENV NPs induced less pronounced effects, (iii) overall, PS NPs and ENV MPs 0.008 µg L-1 did not trigger the same effects as ENV MPs 10 and 100 µg L-1 and all ENV NPs, either in the gills or the visceral mass at 7 and 21 days of exposure. This study highlighted the need to use MPs and NPs sampled in the environment for future studies as their properties induce different effects at the molecular level to living organisms.
Subject(s)
Corbicula , Microplastics , Polystyrenes , Water Pollutants, Chemical , Animals , Corbicula/drug effects , Corbicula/physiology , Water Pollutants, Chemical/toxicity , Polystyrenes/toxicity , Microplastics/toxicity , France , Gills/drug effects , Oxidative Stress/drug effects , Plastics/toxicity , Nanoparticles/toxicityABSTRACT
Due to the flux of plastic debris entering the environment, it becomes urgent to document and monitor their degradation pathways at different scales. At the colloidal scale, the systematic hetero-association of nanoplastics with the natural organic matter complexifies the ability to detect plastic signatures in the particle collected in the various environments. The current techniques used for microplastics could not discriminate the polymers at the nanoscale from the natural macromolecules, as the plastic mass in the aggregate is within the same order. Only a few methods are available concerning nanoplastics identification in complex matrices, with the coupling of pyrolysis with gas chromatography and mass spectrometry (Py-GC-MS) as one of the most promising due to its mass-based detection. However, natural organic matter in environmental samples interferes with similar pyrolysis products. These interferences are even more critical for polystyrene polymers as this plastic presents no dominant pyrolysis markers, such as polypropylene, that could be identified at trace concentrations. Here, we investigate the ability to detect and quantify polystyrene nanoplastics in a rich phase of natural organic matter proposed based on the relative ratio of pyrolyzates. The use of specific degradation products (styrene dimer and styrene trimer) and the toluene/styrene ratio (RT/S) are explored for these two axes. While the size of the polystyrene nanoplastics biased the pyrolyzates of styrene dimer and trimer, the RT/S was correlated with the nanoplastics mass fraction in the presence of natural organic matter. An empirical model is proposed to evaluate the relative quantity of polystyrene nanoplastics in relevant environmental matrices. The model was applied to real contaminated soil by plastic debris and literature data to demonstrate its potential.
ABSTRACT
Microplastics (MPs) have become one of the major global environmental issues in recent decades due to their ubiquity in the environment. Understanding MPs source origin and reactivity is urgently needed to better constrain their fate and budget. Despite improvements in analytical methods to characterize MPs, new tools are needed to help understand their sources and reactivity in a complex environment. In this work, we developed and applied an original Purge-&-Trap system coupled to a GC-MS-C-IRMS to explore the δ13C compound-specific stable isotope analysis (CSIA) of volatile organic compounds (VOC) embedded in MPs. The method consists of heating and purging MP samples, with VOCs being cryo-trapped on a Tenax sorbent, followed by GC-MS-C-IRMS analysis. The method was developed using a polystyrene plastic material showing that sample mass and heating temperature increased the sensitivity while not influencing VOC δ13C values. This robust, precise, and accurate methodology allows VOC identification and δ13C CSIA in plastic materials in the low nanogram concentration range. Results show that the monomer styrene displays a different δ13C value (- 22.2 ± 0.2), compared to the δ13C value of the bulk polymer sample (- 27.8 ± 0.2). This difference could be related to the synthesis procedure and/or diffusion processes. The analysis of complementary plastic materials such as polyethylene terephthalate, and polylactic acid displayed unique VOC δ13C patterns, with toluene showing specific δ13C values for polystyrene (- 25.9 ± 0.1), polyethylene terephthalate (- 28.4 ± 0.5), and polylactic acid (- 38.7 ± 0.5). These results illustrate the potential of VOC δ13C CSIA in MP research to fingerprint plastic materials, and to improve our understanding of their source cycle. Further studies in the laboratory are needed to determine the main mechanisms responsible for MPs VOC stable isotopic fractionation.
ABSTRACT
Identification of nanoplastics in complex environmental matrices remains a challenge. Despite the increase in nanoplastics studies, there is a lack of studies dedicated to nanoplastics detection, partially explained by their carbon-based structure, their wide variety of composition, and their low environmental concentrations compared to the natural organic matter. Here, pyrolysis coupled to a GCMS instrumental setup provided a relevant analytical response for polypropylene and polystyrene nanoplastic suspensions. Specific pyrolysis markers and their indicative fragment ions were selected and validated. Possible interferences with environmental matrices were explored by spiking nanoplastics in various organic matter suspensions (i.e., algae, soil natural organic matter, and soil humic acid) and analyzing an environmental suspension of nanoplastics. While a rapid polypropylene nanoplastics identification was validated, polystyrene nanoplastics require preliminary treatment. The strategies presented herein open new possibilities for the detection/identification of nanoplastics in environmental matrices such as soil, dust, and biota.
Subject(s)
Microplastics , Polystyrenes , Humic Substances , Polypropylenes , SoilABSTRACT
The aim of this study is to demonstrate how the flow and diffusion of nanoplastics through a salinity gradient (SG), as observed in mangrove swamps (MSPs), influence their aggregation pathways. These two parameters have never yet been used to evaluate the fate and behavior of colloids in the environment, since they cannot be incorporated into classical experimental setups. Land-sea continuums, such as estuaries and MSP systems, are known to be environmentally reactive interfaces that influence the colloidal distribution of pollutants. Using a microfluidic approach to reproduce the SG and its dynamics, the results show that nanoplastics arriving in a MSP are fractionated. First, a substantial fraction rapidly aggregates to reach the microscale, principally governed by an orthokinetic aggregation process and diffusiophoresis drift. These large nanoplastic aggregates eventually float near the water's surface or settle into the sediment at the bottom of the MSP, depending on their density. The second, smaller fraction remains stable and is transported toward the saline environment. This distribution results from the combined action of the spatial salt concentration gradient and orthokinetic aggregation, which is largely underestimated in the literature. Due to nanoplastics' reactive behavior, the present work demonstrates that mangrove and estuarine systems need to be better examined regarding plastic pollution.
Subject(s)
Plastics , Water Pollutants, Chemical , Environmental Monitoring , Estuaries , Lab-On-A-Chip Devices , Microplastics , Salinity , Water Pollutants, Chemical/analysisABSTRACT
Applications of asymmetrical flow field-flow fractionation (AF4) continue to expand rapidly in the fields of nanotechnology and biotechnology. In particular, AF4 has proven valuable for the separation and analysis of particles, biomolecular species (e.g., proteins, bacteria) and polymers (natural and synthetic), ranging in size from a few nanometers to several micrometers. The separation of non-spheroidal structures (e.g., rods, tubes, etc.) with primary dimensions in the nanometer regime, is a particularly challenging application deserving of greater study and consideration. The goal of the present study was to advance current understanding of the mechanism of separation of rod-like nano-objects in the AF4 channel. To achieve this, we have systematically investigated a series of commercially available cetyltrimethylammonium bromide stabilized gold nanorods (AuNRs), with aspect ratios from 1.7 to 10. Results show clearly that the retention time is principally dependent on the translational diffusion coefficient of the AuNRs. Equations used to calculate translational and rotational diffusion coefficients (cylinder and prolate ellipsoid models) yield similarly good fits to experimental data. Well characterized gold nanorods (length and diameter by transmission electron microscopy) can be used as calibrants for AF4 measurements allowing one to determine the aspect ratio of nanorod samples based on their retention times. Graphical abstract á .
Subject(s)
Fractionation, Field Flow/methods , Gold/chemistry , Nanotubes/chemistry , Cetrimonium , Cetrimonium Compounds/chemistry , Diffusion , Hydrodynamics , Nanotubes/ultrastructure , Particle SizeABSTRACT
Plastics can be found in all ecosystems across the globe. This type of environmental pollution is important, even if its impact is not fully understood. The presence of small plastic particles at the micro- and nanoscales is of growing concern, but nanoplastic has not yet been observed in natural samples. In this study, we examined four size fractions (meso-, large micro-, small micro-, and nanoplastics) of debris collected in the North Atlantic subtropical gyre. To obtain the nanoplastic portion, we isolated the colloidal fraction of seawater. After ultrafiltration, the occurrence of nanoscale particles was demonstrated using dynamic light scattering experiments. The chemical fingerprint of the colloids was obtained by pyrolysis coupled with gas chromatography-mass spectrometry. We demonstrated that the signal was anthropogenic and attributed to a combination of plastics. The polymer composition varied among the size classes. At the micro- and nanoscales, polyvinyl chloride, polyethylene terephthalate, polystyrene and polyethylene were observed. We also observed changes in the pyrolytic signals of polyethylene with decreasing debris size, which could be related to the structural modification of this plastic as a consequence of weathering.
Subject(s)
Environmental Monitoring , Plastics , Polyethylene , Polystyrenes , SeawaterABSTRACT
In the last 10 years, asymmetrical flow field flow fractionation (AF4) has been one of the most promising approaches to characterize colloidal particles. Nevertheless, despite its potentialities, it is still considered a complex technique to set up, and the theory is difficult to apply for the characterization of complex samples containing submicron particles and nanoparticles. In the present work, we developed and propose a simple analytical strategy to rapidly determine the presence of several submicron populations in an unknown sample with one programmed AF4 method. To illustrate this method, we analyzed polystyrene particles and fullerene aggregates of size covering the whole colloidal size distribution. A global and fast AF4 method (method O) allowed us to screen the presence of particles with size ranging from 1 to 800 nm. By examination of the fractionating power F d, as proposed in the literature, convenient fractionation resolution was obtained for size ranging from 10 to 400 nm. The global F d values, as well as the steric inversion diameter, for the whole colloidal size distribution correspond to the predicted values obtained by model studies. On the basis of this method and without the channel components or mobile phase composition being changed, four isocratic subfraction methods were performed to achieve further high-resolution separation as a function of different size classes: 10-100 nm, 100-200 nm, 200-450 nm, and 450-800 nm in diameter. Finally, all the methods developed were applied in characterization of nanoplastics, which has received great attention in recent years. Graphical Absract Characterization of the nanoplastics by asymmetrical flow field flow fractionation within the colloidal size range.
ABSTRACT
The control of gold nanorod (GNR) solution-based syntheses has been hindered in part by the inability to examine and control the conversion of precursor seed populations to anisotropic materials, which have resulted in low yields of desired products and limited their commercial viability. The advantages offered by tandem separation and characterization methods utilizing asymmetric-flow field flow fractionation (A4F) are principally achieved as a result of their non-disruptive nature (minimizing artefacts), fast throughput, and in-situ analysis. With hyphenated A4F methods, resolved populations of seeds and secondary products, up to long aspect ratio rods, have been achieved and exemplify progress towards elucidating mechanistic aspects of formation and thus rational design. While there have been previously reported studies on A4F separation of GNRs, to our knowledge, this is the first published investigation of in situ GNR growth, separation, and characterization based on A4F, where its utilization in this capacity goes beyond traditional separation analysis. By using hydroquinone as the reducing agent, the conversion of the initial seed population to a distribution of products, including the GNRs, could be monitored in real time using A4F hyphenated with a diode array detector. Transmission electron microscopy confirms that the number of peaks observed during fractionation corresponds with size and shape dispersity. This proof-of-principle study introduces A4F as a technique that establishes a foundation for future mechanistic studies on the growth of GNRs from gold seeds, including conversion of the seed population to initial products, a topic highly relevant to advancing progress in nanomanufacturing.
Subject(s)
Gold/chemistry , Nanotubes , Fractionation, Field Flow , Microscopy, Electron, TransmissionABSTRACT
Cationic polyethylenimine conjugated gold nanoparticles (AuNP-PEI) are a widely studied vector for drug delivery and an effective probe for interrogating NP-cell interactions. However, an inconsistent body of literature currently exists regarding the reproducibility of physicochemical properties, colloidal stability, and efficacy for these species. To address this gap, we systematically examined the preparation, stability, and formation mechanism of PEI conjugates produced from citrate-capped AuNPs. We considered the dependence on relative molar mass, Mr, backbone conformation, and material source. The conjugation mechanism of Au-PEI was probed using attenuated total reflectance FTIR and X-ray photoelectron spectroscopy, revealing distinct fates for citrate when interacting with different PEI species. The differences in residual citrate, PEI properties, and sample preparation resulted in distinct products with differentiated stability. Overall, branched PEI (25 kDa) conjugates exhibited the greatest colloidal stability in all media tested. By contrast, linear PEI (25 kDa) induced agglomeration. Colloidal stability of the products was also observed to correlate with displaced citrate, which supports a glaring knowledge gap that has emerged regarding the role of this commonly used carboxylate species as a "place holder" for conjugation with ligands of broad functionalities. We observed an unexpected and previously unreported conversion of amine functional groups to quaternary ammonium species for 10 kDa branched conjugates. Results suggest that the AuNP surface catalyzes this conversion. The product is known to manifest distinct processes and uptake in biological systems compared to amines and may lead to unintentional toxicological consequences or decreased efficacy as delivery vectors. Overall, comprehensive physicochemical characterization (tandem spectroscopy methods combined with physical measurements) of the conjugation process provides a methodology for elucidating the contributing factors of colloidal stability and chemical functionality that likely influence the previously reported variations in conjugate properties and biological response models.
Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Models, Biological , Polyethyleneimine/chemistry , Colloids/chemistry , Particle Size , Surface PropertiesABSTRACT
We report the development of a novel cationic dendron (TAG1-PCD) and a positively charged gold nanoparticle-dendron conjugate (PCD-AuNP). TAG1-PCD was designed by considering the reactivity, hydrophilicity, and cationic nature that is required to yield a stable gold conjugate in aqueous media. The PCD-AuNPs, nominally 10 nm in size, were synthesized by reduction of chloroauric acid in the presence of TAG1-PCD. The physicochemical properties of PCD-AuNPs were characterized by dynamic light scattering, transmission electron microscopy, UV-vis absorbance, and X-ray photoelectron spectroscopy for investigation of size distribution, shape uniformity, surface plasmon resonance bands, and Au-dendron bonding. Asymmetric-flow field flow fractionation was employed to confirm the in situ size, purity, and surface properties of the PCD-AuNPs. Additionally, the stability of PCD-AuNPs was systematically evaluated with respect to shelf life determination, stability in biological media and a wide range of pH values, chemical resistance against cyanide, redispersibility from lyophilized state, and stability at temperatures relevant to biological systems. Dose dependent cell viability was evaluated in vitro using the human lung epithelial cell line A549 and a monkey kidney Vero cell line. Observations from in vitro studies are discussed. Overall, the investigation confirmed the successful development of stable PCD-AuNPs with excellent stability in biologically relevant test media containing proteins and electrolytes, and with a shelf life exceeding 6 months. The excellent aqueous stability and apparent lack of toxicity for this conjugate enhances its potential use as a test material for investigating interactions between positively charged NPs and biocellular and biomolecular systems, or as a vehicle for drug delivery.
Subject(s)
Dendrimers/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Animals , Cell Line, Tumor , Cell Survival/drug effects , Chlorides/chemistry , Chlorocebus aethiops , Cyanides/chemistry , Dendrimers/pharmacology , Drug Carriers , Fractionation, Field Flow , Gold Compounds/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Metal Nanoparticles/toxicity , Metal Nanoparticles/ultrastructure , Particle Size , Static Electricity , Surface Properties , Temperature , Vero CellsABSTRACT
The development of highly efficient asymmetric-flow field flow fractionation (A4F) methodology for biocompatible PEGylated gold nanorods (GNR) without the need for surfactants in the mobile phase is presented. We report on the potential of A4F for rapid separation by evaluating the efficiency of functionalized surface coverage in terms of fractionation, retention time (t R ) shifts, and population analysis. By optimizing the fractionation conditions, we observed that the mechanism of separation for PEGylated GNRs by A4F is the same as that for CTAB stabilized GNRs (i.e., according to their AR) which confirms that the elution mechanism is not dependent on the surface charge of the analytes and/or the membrane. In addition, we demonstrated that A4F can distinguish different surface coverage populations of PEGylated GNRs. The data established that a change in Mw of the functional group and/or surface orientation can be detected and fractionated by A4F. The findings in this study provide the foundation for a complete separation and physicochemical analysis of GNRs and their surface coatings, which can provide accurate and reproducible characterization critical to advancing biomedical research.
Subject(s)
Fractionation, Field Flow/methods , Gold/chemistry , Nanotubes/chemistry , Polyethylene Glycols/chemistry , Equipment Design , Fractionation, Field Flow/instrumentation , Particle Size , Spectrophotometry, Ultraviolet , Surface PropertiesABSTRACT
The methodological approach used to robustly optimize the characterization of the polydisperse colloidal phase of drain water samples is presented. The approach is based on asymmetric flow field-flow fractionation coupled to online ultraviolet/visible spectrophotometry, multi-angle light scattering, and inductively coupled plasma mass spectrometry. Operating factors such as the amount of sample injected and the ratio between main-flow and cross-flow rates were considered. The evaluation of the injection and fractionation steps was performed considering the polydispersity index and the contribution to the polydispersity of the plate height, the recovery, the retention ratio and the size range of the fractionated colloids. This approach allows the polydispersity of natural colloid samples to be taken into consideration to achieve the most efficient and representative fractionation. In addition to the size characterization, elemental analysis was also evaluated using the recovery, precision, and limits of detection and quantification relative to a trace element of interest (copper) in drain water. To complete this investigation, the potential application of the methodology was assessed using several independent drain water samples from different soils. The contribution of the polydispersity to the plate height ranges from 4.8 to 8.9 cm with a mean precision of 6%. The mean colloidal recovery was 81 ± 3 %, and the mean retention ratio was 0.043-0.062. The limits of detection and quantification for copper were 0.6 and 1.8 µg L(-1), respectively.
Subject(s)
Colloids/analysis , Copper/analysis , Fractionation, Field Flow/methods , Water/analysis , Colloids/isolation & purification , Copper/isolation & purification , Limit of Detection , Particle Size , Spectrophotometry, UltravioletABSTRACT
Rare earth element (REE) mobility in the environment is expected to be controlled by colloids. Recent research has detailed the structure of iron-organic colloids (Fe-OM colloids), which include both large colloids and smaller nano-colloids. To assess how these nano-colloids affect REE mobility, their interactions with REE and calcium (Ca) were investigated at pH 4 and 6. Using Asymmetric Flow Field Flow Fractionation (A4F) combined with UV and Triple Quadrupole Inductively Coupled Plasma Mass Spectrometry (QQQ-ICP-MS), Fe-OM nano-colloids were separated from bulk Fe-OM colloids and their REE and Ca content were analyzed. Without REE and Ca, nano-colloids had an average diameter of approximately 25 nm. Their structure is pH-dependent, with aggregation increasing as pH decreases. At high REE loadings (REE/Fe ≥ 0.05), REE induced a size increase of nano-colloids, regardless of pH. Heavy REE (HREE), with their high affinity for organic matter, formed strong complexes with Fe-OM colloids, resulting in large aggregates. In contrast, light REE (LREE), which bind less strongly to organic molecules, were associated with the smallest nano-colloids. Low REE loading did not cause noticeable fractionation. Calcium further enhanced the aggregation process at both pH levels by neutralizing the charges on nano-colloids. These findings indicate that REE can act as aggregating agent controlling their own mobility, and regulating colloid transfer.
Subject(s)
Colloids , Metals, Rare Earth , Colloids/chemistry , Metals, Rare Earth/chemistry , Metals, Rare Earth/analysis , Fractionation, Field Flow/methods , Mass Spectrometry , Calcium/chemistry , Calcium/analysis , Hydrogen-Ion Concentration , Iron/chemistryABSTRACT
Most studies on nanoplastics (NPs) focus on aquatic environments, overlooking their combined bioaccumulation with pollutants in terrestrial ecosystems. This study addresses a part of this gap by investigating how polystyrene nanoplastics (PS-NPs) affect the bioaccumulation and translocation of lead (Pb) in Hordeum vulgare L. plants. Using the RHIZOtest device for precise soil contamination control, we quantified PS-NPs (50 nm) in plant shoots via pyrolysis-gas chromatography/mass spectrometry (Py-GCMS) after plant KOH digestion. Our findings revealed that PS-NPs reduce Pb bioaccumulation and make adsorbed Pb onto PS-NPs less bioavailable to plants. For the highest Pb concentration, the Pb uptake index (PUI) followed the trend: Free Pb > NPs + Pb > Pb primary adsorbed by NPs, showing reduced Pb translocation to shoots in the presence of PS-NPs. Moreover, the presence of Pb decreased the bioavailability of PS-NPs probably in response to PS-NPs aggregation or modified charge. The PS-NPs concentrations in shoots range from 275.2 to 400 µg g-1, representing 3.9 to 5.75% of the total PS-NPs. This study highlights the intricate interactions between nanoplastics and metals in soil-plant systems and emphasizes the need for further research on their combined effects and potential risks to food safety.
Subject(s)
Hordeum , Lead , Polystyrenes , Soil Pollutants , Hordeum/metabolism , Hordeum/drug effects , Lead/metabolism , Soil Pollutants/metabolism , Soil Pollutants/analysis , Nanoparticles , Plant Shoots/metabolism , Plant Shoots/chemistry , Bioaccumulation , Plastics/metabolism , MicroplasticsABSTRACT
Metal contaminants were found in a soil amended with a compost produced from household waste that included plastic debris. A strong correlation between the microplastics (MPs) distribution and the metal concentrations in the soil profile. Metals in the highest concentrations corresponded to the most significant plastic additives. As the total amount of plastic debris and the loss of metals and plastic particles were unknown, it was not possible to conclude that plastic debris is responsible for all of the metal contamination. Amount of calcium (Ca) in MPs (24.5 g kg-1 of MPs) are high in response to it use as filler in plastic formulation. As strontium (Sr) is an analogous of Ca, the potential of 87Sr/86Sr ratios to quantify MPs and nanoplastics (NPs) was tested. Elemental concentrations (Ca, Cd, Cr Pb, Ni and Sr) coupled with Sr isotopic ratios were compared in both amended soil and a reference soil without amendment. The 87Sr/86Sr ratios of the amended soil were less radiogenic than for the reference soil (0.724296 ± 0.000010 against 0.726610 ± 0.00009 for the 0-5 cm soil layer, respectively). The Sr isotopic ratio of MPs was also significantly less radiogenic (0.711527 ± 0.000010 for the 0-5 cm soil layer) than for soils. The MPs< 2 mm occurred in the ploughed soil depth with concentration varying from 1.19 to 0.09 mg kg-1. The NPs concentration stayed quite constant from 0 to 55 cm at around 0.25 µg kg-1. The presence of NPs until 55 cm soil depth was attested by the detection of polypropylene NPs by Py-GCMS in the soil solution < 0.8 µm. These results highlighted, for the first time, the NPs mobility throughout the soil depth and their ability to reach hydrosystems. It also demonstrated that Sr could be a potential tracer of the MPs< 2 mm and NPs amount occurring in soils.
ABSTRACT
In this work, we highlight the size-independent influence of the material properties of nanoparticles (NPs) on their retention behavior in asymmetric-flow field-flow fractionation (A4F) by comparing four NP populations with similar nominal size. The phenomena described here suggest there are limits to the effectiveness and accuracy of using a single type of NP standard (polystyrene beads most typically) in order to generically calibrate retention time in normal mode elution. The dual objectives of this paper are to (1) demonstrate the uncertainties resulting from current practice and (2) initiate a discussion of these effects and their origins. The results presented here illustrate clearly that the retention time is higher for metallic NPs relative to lower (bulk) density NPs. By modifying the fundamental field-flow fractionation equation to account for differences in particle density, we show that the effect of the gravitational force is finite but insignificant for NPs. We postulate that the observed material-dependent retention behavior may be attributed to differences in the attractive van der Waals force between the NPs and the accumulation wall (membrane surface). We hope that our results will stimulate discussion and reassessment of the calibration procedure, perhaps by more fully accounting for all influential material parameters relevant to the fractionation of nanoscale particles by A4F.
Subject(s)
Metal Nanoparticles/chemistry , Fractionation, Field Flow , Gravitation , Particle SizeABSTRACT
The application of asymmetric-flow field flow fractionation (A4F) for low aspect ratio gold nanorod (GNR) fractionation and characterization was comprehensively investigated. We report on two novel aspects of this application. The first addresses the analytical challenge involved in the fractionation of positively charged nanoparticles by A4F, due to the interaction that exists between the negatively charged native membrane and the analyte. We show that the mobile phase composition is a critical parameter for controlling fractionation and mitigating the membrane-analyte interaction. A mixture of ammonium nitrate and cetyl trimethyl ammonium bromide at different molar ratios enables separation of GNRs with high recovery. The second aspect is the demonstration of shape-based separation of GNRs in A4F normal mode elution (i.e., Brownian mode). We show that the elution of GNRs is due both to aspect ratio and a steric-entropic contribution for GNRs with the same diameter. This latter effect can be explained by their orientation vector inside the A4F channel. Our experimental results demonstrate the relevance of the theory described by Beckett and Giddings for non-spherical fractionation (Beckett and Giddings, J Colloid and Interface Sci 186(1):53-59, 1997). However, it is shown that this theory has its limit in the case of complex GNR mixtures, and that shape (i.e., aspect ratio) is the principal material parameter controlling elution of GNRs in A4F; the apparent translational diffusion coefficient of GNRs increases with aspect ratio. Finally, the performance of the methodology developed in this work is evaluated by the fractionation and characterization of individual components from a mixture of GNR aspect ratios.