Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Molecules ; 29(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38398599

ABSTRACT

Here, we report an adapted protocol using the Promega NAD/NADH-Glo™ Assay kit. The assay normally allows quantification of trace amounts of both oxidized and reduced forms of nicotinamide adenine dinucleotide (NAD) by enzymatic cycling, but we now show that the NAD analog 3-acetylpyridine adenine dinucleotide (AcPyrAD) also acts as a substrate for this enzyme-cycling assay. In fact, AcPyrAD generates amplification signals of a larger amplitude than those obtained with NAD. We exploited this finding to devise and validate a novel method for assaying the base-exchange activity of SARM1 in reactions containing NAD and an excess of the free base 3-acetylpyridine (AcPyr), where the product is AcPyrAD. We then used this assay to study competition between AcPyr and other free bases to rank the preference of SARM1 for different base-exchange substrates, identifying isoquinoline as a highly effect substrate that completely outcompetes even AcPyr. This has significant advantages over traditional HPLC methods for assaying SARM1 base exchange as it is rapid, sensitive, cost-effective, and easily scalable. This could represent a useful tool given current interest in the role of SARM1 base exchange in programmed axon death and related human disorders. It may also be applicable to other multifunctional NAD glycohydrolases (EC 3.2.2.6) that possess similar base-exchange activity.


Subject(s)
Cytoskeletal Proteins , NAD , Humans , Chromatography, High Pressure Liquid , Armadillo Domain Proteins
2.
Hum Mol Genet ; 28(3): 448-458, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30304512

ABSTRACT

Nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) is an endogenous axon maintenance factor that preserves axon health by blocking Wallerian-like axon degeneration. Mice lacking NMNAT2 die at birth with severe axon defects in both the peripheral nervous system and central nervous system so the complete absence of NMNAT2 in humans is likely to be similarly harmful but probably rare. However, there is evidence of widespread natural variation in human NMNAT2 mRNA expression so it is important to establish whether reduced levels of NMNAT2 have consequences that impact health. While mice that express reduced levels of NMNAT2, either those heterozygous for a silenced Nmnat2 allele or compound heterozygous for one silenced and one partially silenced Nmnat2 allele, remain overtly normal into old age, we now report that Nmnat2 compound heterozygote mice present with early and age-dependent peripheral nerve axon defects. Compound heterozygote mice already have reduced numbers of myelinated sensory axons at 1.5 months and lose more axons, likely motor axons, between 18 and 24 months and, crucially, these changes correlate with early temperature insensitivity and a later-onset decline in motor performance. Slower neurite outgrowth and increased sensitivity to axonal stress are also evident in primary cultures of Nmnat2 compound heterozygote superior cervical ganglion neurons. These data reveal that reducing NMNAT2 levels below a particular threshold compromises the development of peripheral axons and increases their vulnerability to stresses. We discuss the implications for human neurological phenotypes where axons are longer and have to be maintained over a much longer lifespan.


Subject(s)
Axons/metabolism , Nicotinamide-Nucleotide Adenylyltransferase/metabolism , Age Factors , Animals , Female , Male , Mice , Nerve Degeneration , Neurogenesis , Neurons/metabolism , Nicotinamide-Nucleotide Adenylyltransferase/genetics , Primary Cell Culture
3.
Neurobiol Dis ; 134: 104678, 2020 02.
Article in English | MEDLINE | ID: mdl-31740269

ABSTRACT

Wallerian degeneration of physically injured axons involves a well-defined molecular pathway linking loss of axonal survival factor NMNAT2 to activation of pro-degenerative protein SARM1. Manipulating the pathway through these proteins led to the identification of non-axotomy insults causing axon degeneration by a Wallerian-like mechanism, including several involving mitochondrial impairment. Mitochondrial dysfunction is heavily implicated in Parkinson's disease, Charcot-Marie-Tooth disease, hereditary spastic paraplegia and other axonal disorders. However, whether and how mitochondrial impairment activates Wallerian degeneration has remained unclear. Here, we show that disruption of mitochondrial membrane potential leads to axonal NMNAT2 depletion in mouse sympathetic neurons, increasing the substrate-to-product ratio (NMN/NAD) of this NAD-synthesising enzyme, a metabolic fingerprint of Wallerian degeneration. The mechanism appears to involve both impaired NMNAT2 synthesis and reduced axonal transport. Expression of WLDS and Sarm1 deletion both protect axons after mitochondrial uncoupling. Blocking the pathway also confers neuroprotection and increases the lifespan of flies with Pink1 loss-of-function mutation, which causes severe mitochondrial defects. These data indicate that mitochondrial impairment replicates all the major steps of Wallerian degeneration, placing it upstream of NMNAT2 loss, with the potential to contribute to axon pathology in mitochondrial disorders.


Subject(s)
Armadillo Domain Proteins/metabolism , Cytoskeletal Proteins/metabolism , Mitochondria/metabolism , Nicotinamide-Nucleotide Adenylyltransferase/metabolism , Wallerian Degeneration/metabolism , Wallerian Degeneration/pathology , Animals , Axons/metabolism , Axons/pathology , Drosophila , Male , Membrane Potential, Mitochondrial , Mice, Inbred C57BL
4.
Nat Rev Neurosci ; 15(6): 394-409, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24840802

ABSTRACT

Axon degeneration is a prominent early feature of most neurodegenerative disorders and can also be induced directly by nerve injury in a process known as Wallerian degeneration. The discovery of genetic mutations that delay Wallerian degeneration has provided insight into mechanisms underlying axon degeneration in disease. Rapid Wallerian degeneration requires the pro-degenerative molecules SARM1 and PHR1. Nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) is essential for axon growth and survival. Its loss from injured axons may activate Wallerian degeneration, whereas NMNAT overexpression rescues axons from degeneration. Here, we discuss the roles of these and other proposed regulators of Wallerian degeneration, new opportunities for understanding disease mechanisms and intriguing links between Wallerian degeneration, innate immunity, synaptic growth and cell death.


Subject(s)
Axons/physiology , Neurons/pathology , Wallerian Degeneration/pathology , Wallerian Degeneration/physiopathology , Animals , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism , Cell Death/physiology , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Neural Pathways/pathology , Nicotinamide-Nucleotide Adenylyltransferase/genetics , Nicotinamide-Nucleotide Adenylyltransferase/metabolism , Wallerian Degeneration/genetics
5.
Neurobiol Dis ; 85: 1-10, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26459111

ABSTRACT

Expression of the frontotemporal dementia-related tau mutation, P301L, at physiological levels in adult mouse brain (KI-P301L mice) results in overt hypophosphorylation of tau and age-dependent alterations in axonal mitochondrial transport in peripheral nerves. To determine the effects of P301L tau expression in the central nervous system, we examined the kinetics of mitochondrial axonal transport and tau phosphorylation in primary cortical neurons from P301L knock-in (KI-P301L) mice. We observed a significant 50% reduction in the number of mitochondria in the axons of cortical neurons cultured from KI-P301L mice compared to wild-type neurons. Expression of murine P301L tau did not change the speed, direction of travel or likelihood of movement of mitochondria. Notably, the angle that defines the orientation of the mitochondria in the axon, and the volume of individual moving mitochondria, were significantly increased in neurons expressing P301L tau. We found that murine tau phosphorylation in KI-P301L mouse neurons was diminished and the ability of P301L tau to bind to microtubules was also reduced compared to tau in wild-type neurons. The P301L mutation did not influence the ability of murine tau to associate with membranes in cortical neurons or in adult mouse brain. We conclude that P301L tau is associated with mitochondrial changes and causes an early reduction in murine tau phosphorylation in neurons coupled with impaired microtubule binding of tau. These results support the association of mutant tau with detrimental effects on mitochondria and will be of significance for the pathogenesis of tauopathies.


Subject(s)
Axons/metabolism , Mitochondria/metabolism , tau Proteins/metabolism , Animals , Axons/pathology , Cell Membrane/metabolism , Cell Membrane/pathology , Cells, Cultured , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Cytosol/metabolism , Cytosol/pathology , Mice, Inbred C57BL , Mice, Transgenic , Microtubules/metabolism , Mitochondria/pathology , Mutation , Phosphorylation , Rats , tau Proteins/genetics
6.
PLoS Biol ; 11(4): e1001539, 2013.
Article in English | MEDLINE | ID: mdl-23610559

ABSTRACT

Axons require a constant supply of the labile axon survival factor Nmnat2 from their cell bodies to avoid spontaneous axon degeneration. Here we investigate the mechanism of fast axonal transport of Nmnat2 and its site of action for axon maintenance. Using dual-colour live-cell imaging of axonal transport in SCG primary culture neurons, we find that Nmnat2 is bidirectionally trafficked in axons together with markers of the trans-Golgi network and synaptic vesicles. In contrast, there is little co-migration with mitochondria, lysosomes, and active zone precursor vesicles. Residues encoded by the small, centrally located exon 6 are necessary and sufficient for stable membrane association and vesicular axonal transport of Nmnat2. Within this sequence, a double cysteine palmitoylation motif shared with GAP43 and surrounding basic residues are all required for efficient palmitoylation and stable association with axonal transport vesicles. Interestingly, however, disrupting this membrane association increases the ability of axonally localized Nmnat2 to preserve transected neurites in primary culture, while re-targeting the strongly protective cytosolic mutants back to membranes abolishes this increase. Larger deletions within the central domain including exon 6 further enhance Nmnat2 axon protective capacity to levels that exceed that of the slow Wallerian degeneration protein, Wld(S). The mechanism underlying the increase in axon protection appears to involve an increased half-life of the cytosolic forms, suggesting a role for palmitoylation and membrane attachment in Nmnat2 turnover. We conclude that Nmnat2 activity supports axon survival through a site of action distinct from Nmnat2 transport vesicles and that protein stability, a key determinant of axon protection, is enhanced by mutations that disrupt palmitoylation and dissociate Nmnat2 from these vesicles.


Subject(s)
Axons/physiology , Nicotinamide-Nucleotide Adenylyltransferase/physiology , Amino Acid Motifs , Animals , Cell Survival , Cells, Cultured , Exons , Golgi Apparatus/metabolism , Half-Life , Intracellular Membranes/metabolism , Lipoylation , Mice , Mice, Inbred C57BL , Neurons/physiology , Primary Cell Culture , Protein Multimerization , Protein Stability , Protein Transport , Single-Cell Analysis , Time-Lapse Imaging , Transport Vesicles/metabolism , Ubiquitination
7.
Bioorg Med Chem Lett ; 26(12): 2920-2926, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27158141

ABSTRACT

NAMPT may represent a novel target for drug discovery in various therapeutic areas, including oncology and inflammation. Additionally, recent work has suggested that targeting NAMPT has potential in treating axon degeneration. In this work, publicly available X-ray co-crystal structures of NAMPT and the structures of two known NAMPT inhibitors were used as the basis for a structure- and ligand-based virtual screening campaign. From this, two novel series of NAMPT inhibitors were identified, one of which showed a statistically significant protective effect when tested in a cellular model of axon degeneration.


Subject(s)
Antineoplastic Agents/pharmacology , Axons/drug effects , Cytokines/antagonists & inhibitors , Drug Discovery , Enzyme Inhibitors/pharmacology , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Axons/metabolism , Axons/pathology , Caco-2 Cells , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Cytochrome P-450 Enzyme System/metabolism , Cytokines/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Mice , Mice, Nude , Models, Molecular , Molecular Structure , Nicotinamide Phosphoribosyltransferase/metabolism , Structure-Activity Relationship
8.
J Neurosci ; 33(33): 13410-24, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23946398

ABSTRACT

NMNAT2 is an NAD(+)-synthesizing enzyme with an essential axon maintenance role in primary culture neurons. We have generated an Nmnat2 gene trap mouse to examine the role of NMNAT2 in vivo. Homozygotes die perinatally with a severe peripheral nerve/axon defect and truncated axons in the optic nerve and other CNS regions. The cause appears to be limited axon extension, rather than dying-back degeneration of existing axons, which was previously proposed for the NMNAT2-deficient Blad mutant mouse. Neurite outgrowth in both PNS and CNS neuronal cultures consistently stalls at 1-2 mm, similar to the length of truncated axons in the embryos. Crucially, this suggests an essential role for NMNAT2 during axon growth. In addition, we show that the Wallerian degeneration slow protein (Wld(S)), a more stable, aberrant NMNAT that can substitute the axon maintenance function of NMNAT2 in primary cultures, can also correct developmental defects associated with NMNAT2 deficiency. This is dose-dependent, with extension of life span to at least 3 months by homozygous levels of Wld(S) the most obvious manifestation. Finally, we propose that endogenous mechanisms also compensate for otherwise limiting levels of NMNAT2. This could explain our finding that conditional silencing of a single Nmnat2 allele triggers substantial degeneration of established neurites, whereas similar, or greater, reduction of NMNAT2 in constitutively depleted neurons is compatible with normal axon growth and survival. A requirement for NMNAT2 for both axon growth and maintenance suggests that reduced levels could impair axon regeneration as well as axon survival in aging and disease.


Subject(s)
Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Neurites/pathology , Nicotinamide-Nucleotide Adenylyltransferase/metabolism , Animals , Axons , Brain/metabolism , Brain/pathology , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , Gene Knockdown Techniques , Immunoblotting , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Nerve Degeneration/genetics , Neurites/metabolism , Nicotinamide-Nucleotide Adenylyltransferase/genetics , Reverse Transcriptase Polymerase Chain Reaction , Spinal Cord/metabolism , Spinal Cord/pathology , Spinal Nerves/metabolism , Spinal Nerves/pathology , Superior Cervical Ganglion/metabolism , Superior Cervical Ganglion/pathology , Transplantation Chimera
9.
Mol Neurobiol ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39352636

ABSTRACT

Nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) is an endogenous axon survival factor that maintains axon health by blocking activation of the downstream pro-degenerative protein SARM1 (sterile alpha and TIR motif containing protein 1). While complete absence of NMNAT2 in mice results in extensive axon truncation and perinatal lethality, the removal of SARM1 completely rescues these phenotypes. Reduced levels of NMNAT2 can be compatible with life; however, they compromise axon development and survival. Mice born expressing sub-heterozygous levels of NMNAT2 remain overtly normal into old age but develop axonal defects in vivo and in vitro as well as behavioural phenotypes. Therefore, it is important to examine the effects of constitutively low NMNAT2 expression on SARM1 activation and disease susceptibility. Here we demonstrate that chronically low NMNAT2 levels reduce prenatal viability in mice in a SARM1-dependent manner and lead to sub-lethal SARM1 activation in morphologically intact axons of superior cervical ganglion (SCG) primary cultures. This is characterised by a depletion in NAD(P) and compromised neurite outgrowth. We also show that chronically low NMNAT2 expression reverses the NAD-enhancing effect of nicotinamide riboside (NR) in axons in a SARM1-dependent manner. These data indicate that low NMNAT2 levels can trigger sub-lethal SARM1 activation which is detectable at the molecular level and could predispose to human axonal disorders.

10.
Mol Neurodegener ; 19(1): 13, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38282024

ABSTRACT

BACKGROUND: Bioenergetic maladaptations and axonopathy are often found in the early stages of neurodegeneration. Nicotinamide adenine dinucleotide (NAD), an essential cofactor for energy metabolism, is mainly synthesized by Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) in CNS neurons. NMNAT2 mRNA levels are reduced in the brains of Alzheimer's, Parkinson's, and Huntington's disease. Here we addressed whether NMNAT2 is required for axonal health of cortical glutamatergic neurons, whose long-projecting axons are often vulnerable in neurodegenerative conditions. We also tested if NMNAT2 maintains axonal health by ensuring axonal ATP levels for axonal transport, critical for axonal function. METHODS: We generated mouse and cultured neuron models to determine the impact of NMNAT2 loss from cortical glutamatergic neurons on axonal transport, energetic metabolism, and morphological integrity. In addition, we determined if exogenous NAD supplementation or inhibiting a NAD hydrolase, sterile alpha and TIR motif-containing protein 1 (SARM1), prevented axonal deficits caused by NMNAT2 loss. This study used a combination of techniques, including genetics, molecular biology, immunohistochemistry, biochemistry, fluorescent time-lapse imaging, live imaging with optical sensors, and anti-sense oligos. RESULTS: We provide in vivo evidence that NMNAT2 in glutamatergic neurons is required for axonal survival. Using in vivo and in vitro studies, we demonstrate that NMNAT2 maintains the NAD-redox potential to provide "on-board" ATP via glycolysis to vesicular cargos in distal axons. Exogenous NAD+ supplementation to NMNAT2 KO neurons restores glycolysis and resumes fast axonal transport. Finally, we demonstrate both in vitro and in vivo that reducing the activity of SARM1, an NAD degradation enzyme, can reduce axonal transport deficits and suppress axon degeneration in NMNAT2 KO neurons. CONCLUSION: NMNAT2 ensures axonal health by maintaining NAD redox potential in distal axons to ensure efficient vesicular glycolysis required for fast axonal transport.


Subject(s)
Axonal Transport , NAD , Nicotinamide-Nucleotide Adenylyltransferase , Animals , Mice , Adenosine Triphosphate/metabolism , Armadillo Domain Proteins/metabolism , Axons/metabolism , Cytoskeletal Proteins/metabolism , Glycolysis , Homeostasis , NAD/metabolism , Nicotinamide-Nucleotide Adenylyltransferase/metabolism
11.
Nat Commun ; 15(1): 6256, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048544

ABSTRACT

Maintenance of NAD pools is critical for neuronal survival. The capacity to maintain NAD pools declines in neurodegenerative disease. We identify that low NMNAT2, the critical neuronal NAD producing enzyme, drives retinal susceptibility to neurodegenerative insults. As proof of concept, gene therapy over-expressing full length human NMNAT2 is neuroprotective. To pharmacologically target NMNAT2, we identify that epigallocatechin gallate (EGCG) can drive NAD production in neurons through an NMNAT2 and NMN dependent mechanism. We confirm this by pharmacological and genetic inhibition of the NAD-salvage pathway. EGCG is neuroprotective in rodent (mixed sex) and human models of retinal neurodegeneration. As EGCG has poor drug-like qualities, we use it as a tool compound to generate novel small molecules which drive neuronal NAD production and provide neuroprotection. This class of NMNAT2 targeted small molecules could have an important therapeutic impact for neurodegenerative disease following further drug development.


Subject(s)
Catechin , NAD , Neurons , Neuroprotective Agents , Nicotinamide-Nucleotide Adenylyltransferase , Nicotinamide-Nucleotide Adenylyltransferase/metabolism , Nicotinamide-Nucleotide Adenylyltransferase/genetics , NAD/metabolism , Humans , Animals , Neurons/metabolism , Neurons/drug effects , Catechin/analogs & derivatives , Catechin/pharmacology , Neuroprotective Agents/pharmacology , Male , Mice , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/genetics , Female , Retina/metabolism , Retina/drug effects , Mice, Inbred C57BL , Rats , Disease Models, Animal , Genetic Therapy/methods
12.
PLoS Biol ; 8(1): e1000300, 2010 Jan 26.
Article in English | MEDLINE | ID: mdl-20126265

ABSTRACT

The molecular triggers for axon degeneration remain unknown. We identify endogenous Nmnat2 as a labile axon survival factor whose constant replenishment by anterograde axonal transport is a limiting factor for axon survival. Specific depletion of Nmnat2 is sufficient to induce Wallerian-like degeneration of uninjured axons which endogenous Nmnat1 and Nmnat3 cannot prevent. Nmnat2 is by far the most labile Nmnat isoform and is depleted in distal stumps of injured neurites before Wallerian degeneration begins. Nmnat2 turnover is equally rapid in injured Wld(S) neurites, despite delayed neurite degeneration, showing it is not a consequence of degeneration and also that Wld(S) does not stabilize Nmnat2. Depletion of Nmnat2 below a threshold level is necessary for axon degeneration since exogenous Nmnat2 can protect injured neurites when expressed at high enough levels to overcome its short half-life. Furthermore, proteasome inhibition slows both Nmnat2 turnover and neurite degeneration. We conclude that endogenous Nmnat2 prevents spontaneous degeneration of healthy axons and propose that, when present, the more long-lived, functionally related Wld(S) protein substitutes for Nmnat2 loss after axon injury. Endogenous Nmnat2 represents an exciting new therapeutic target for axonal disorders.


Subject(s)
Axons/physiology , Nicotinamide-Nucleotide Adenylyltransferase/physiology , Animals , Axons/metabolism , Cell Line , Humans , Mice , Mice, Inbred C57BL , Nerve Degeneration/genetics , Neurites/metabolism , Neurites/physiology , Neurites/ultrastructure , Rats , Rats, Sprague-Dawley , Rats, Transgenic
13.
Neurosci Res ; 197: 18-24, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36657725

ABSTRACT

The past 20 years of research on axon degeneration has revealed fine details on how NAD biology controls axonal survival. Extensive data demonstrate that the NAD precursor NMN binds to and activates the pro-degenerative enzyme SARM1, so a failure to convert sufficient NMN into NAD leads to toxic NMN accumulation and axon degeneration. This involvement of NMN brings the axon degeneration field to an unexpected overlap with research into ageing and extending healthy lifespan. A decline in NAD levels throughout life, at least in some tissues, is believed to contribute to age-related functional decay and boosting NAD production with supplementation of NMN or other NAD precursors has gained attention as a potential anti-ageing therapy. Recent years have witnessed an influx of NMN-based products and related molecules on the market, sold as food supplements, with many people taking these supplements daily. While several clinical trials are ongoing to check the safety profiles and efficacy of NAD precursors, sufficient data to back their therapeutic use are still lacking. Here, we discuss NMN supplementation, SARM1 and anti-ageing strategies, with an important question in mind: considering that NMN accumulation can lead to axon degeneration, how is this compatible with its beneficial effect in ageing and are there circumstances in which NMN supplementation could become harmful?


Subject(s)
Axons , NAD , Humans , NAD/metabolism , Axons/metabolism , Aging
14.
Res Sq ; 2023 May 19.
Article in English | MEDLINE | ID: mdl-37292715

ABSTRACT

Background: Bioenergetic maladaptations and axonopathy are often found in the early stages of neurodegeneration. Nicotinamide adenine dinucleotide (NAD), an essential cofactor for energy metabolism, is mainly synthesized by Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) in CNS neurons. NMNAT2 mRNA levels are reduced in the brains of Alzheimer's, Parkinson's, and Huntington's disease. Here we addressed whether NMNAT2 is required for axonal health of cortical glutamatergic neurons, whose long-projecting axons are often vulnerable in neurodegenerative conditions. We also tested if NMNAT2 maintains axonal health by ensuring axonal ATP levels for axonal transport, critical for axonal function. Methods: We generated mouse and cultured neuron models to determine the impact of NMNAT2 loss from cortical glutamatergic neurons on axonal transport, energetic metabolism, and morphological integrity. In addition, we determined if exogenous NAD supplementation or inhibiting a NAD hydrolase, sterile alpha and TIR motif-containing protein 1 (SARM1), prevented axonal deficits caused by NMNAT2 loss. This study used a combination of genetics, molecular biology, immunohistochemistry, biochemistry, fluorescent time-lapse imaging, live imaging with optical sensors, and anti-sense oligos. Results: We provide in vivo evidence that NMNAT2 in glutamatergic neurons is required for axonal survival. Using in vivo and in vitro studies, we demonstrate that NMNAT2 maintains the NAD-redox potential to provide "on-board" ATP via glycolysis to vesicular cargos in distal axons. Exogenous NAD+ supplementation to NMNAT2 KO neurons restores glycolysis and resumes fast axonal transport. Finally, we demonstrate both in vitro and in vivo that reducing the activity of SARM1, an NAD degradation enzyme, can reduce axonal transport deficits and suppress axon degeneration in NMNAT2 KO neurons. Conclusion: NMNAT2 ensures axonal health by maintaining NAD redox potential in distal axons to ensure efficient vesicular glycolysis required for fast axonal transport.

15.
Sci Rep ; 12(1): 13846, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35974060

ABSTRACT

SARM1 is a central executioner of programmed axon death, and this role requires intrinsic NAD(P)ase or related enzyme activity. A complete absence of SARM1 robustly blocks axon degeneration in mice, but even a partial depletion confers meaningful protection. Since axon loss contributes substantially to the onset and progression of multiple neurodegenerative disorders, lower inherent SARM1 activity is expected to reduce disease susceptibility in some situations. We, therefore, investigated whether there are naturally occurring SARM1 alleles within the human population that encode SARM1 variants with loss-of-function. Out of the 18 natural SARM1 coding variants we selected as candidates, we found that 10 display loss-of-function in three complimentary assays: they fail to robustly deplete NAD in transfected HEK 293T cells; they lack constitutive and NMN-induced NADase activity; and they fail to promote axon degeneration in primary neuronal cultures. Two of these variants are also able to block axon degeneration in primary culture neurons in the presence of endogenous, wild-type SARM1, indicative of dominant loss-of-function. These results demonstrate that SARM1 loss-of-function variants occur naturally in the human population, and we propose that carriers of these alleles will have different degrees of reduced susceptibility to various neurological conditions.


Subject(s)
Armadillo Domain Proteins , Axons , Cytoskeletal Proteins , NAD , Armadillo Domain Proteins/genetics , Cytoskeletal Proteins/genetics , HEK293 Cells , Humans , Neurons
16.
iScience ; 25(2): 103812, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35198877

ABSTRACT

SARM1 is an NAD(P) glycohydrolase and TLR adapter with an essential, prodegenerative role in programmed axon death (Wallerian degeneration). Like other NAD(P)ases, it catalyzes multiple reactions that need to be fully investigated. Here, we compare these multiple activities for recombinant human SARM1, human CD38, and Aplysia californica ADP ribosyl cyclase. SARM1 has the highest transglycosidation (base exchange) activity at neutral pH and with some bases this dominates NAD(P) hydrolysis and cyclization. All SARM1 activities, including base exchange at neutral pH, are activated by an increased NMN:NAD ratio, at physiological levels of both metabolites. SARM1 base exchange occurs also in DRG neurons and is thus a very likely physiological source of calcium-mobilizing agent NaADP. Finally, we identify regulation by free pyridines, NADP, and nicotinic acid riboside (NaR) on SARM1, all of therapeutic interest. Understanding which specific SARM1 function(s) is responsible for axon degeneration is essential for its targeting in disease.

17.
Elife ; 112022 12 23.
Article in English | MEDLINE | ID: mdl-36476387

ABSTRACT

Axon degeneration contributes to the disruption of neuronal circuit function in diseased and injured nervous systems. Severed axons degenerate following the activation of an evolutionarily conserved signaling pathway, which culminates in the activation of SARM1 in mammals to execute the pathological depletion of the metabolite NAD+. SARM1 NADase activity is activated by the NAD+ precursor nicotinamide mononucleotide (NMN). In mammals, keeping NMN levels low potently preserves axons after injury. However, it remains unclear whether NMN is also a key mediator of axon degeneration and dSarm activation in flies. Here, we demonstrate that lowering NMN levels in Drosophila through the expression of a newly generated prokaryotic NMN-Deamidase (NMN-D) preserves severed axons for months and keeps them circuit-integrated for weeks. NMN-D alters the NAD+ metabolic flux by lowering NMN, while NAD+ remains unchanged in vivo. Increased NMN synthesis by the expression of mouse nicotinamide phosphoribosyltransferase (mNAMPT) leads to faster axon degeneration after injury. We also show that NMN-induced activation of dSarm mediates axon degeneration in vivo. Finally, NMN-D delays neurodegeneration caused by loss of the sole NMN-consuming and NAD+-synthesizing enzyme dNmnat. Our results reveal a critical role for NMN in neurodegeneration in the fly, which extends beyond axonal injury. The potent neuroprotection by reducing NMN levels is similar to the interference with other essential mediators of axon degeneration in Drosophila.


Subject(s)
Drosophila , Nicotinamide Mononucleotide , Animals , Mice , Drosophila/metabolism , Nicotinamide Mononucleotide/metabolism , NAD/metabolism , Axons/physiology , Neurons/physiology , Mammals/metabolism , Cytoskeletal Proteins/metabolism , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism
18.
J Neurosci ; 30(40): 13291-304, 2010 Oct 06.
Article in English | MEDLINE | ID: mdl-20926655

ABSTRACT

Axon and synapse degeneration are common components of many neurodegenerative diseases, and their rescue is essential for effective neuroprotection. The chimeric Wallerian degeneration slow protein (Wld(S)) protects axons dose dependently, but its mechanism is still elusive. We recently showed that Wld(S) acts at a non-nuclear location and is present in axons. This and other recent reports support a model in which Wld(S) protects by extranuclear redistribution of its nuclear NMNAT1 portion. However, it remains unclear whether cytoplasmic NMNAT1 acts locally in axons and synapses or at a non-nuclear site within cell bodies. The potency of axon protection by non-nuclear NMNAT1 relative to Wld(S) also needs to be established in vivo. Because the N-terminal portion of Wld(S) (N70) localized to axons, we hypothesized that it mediates the trafficking of the NMNAT1 portion. To test this, we substituted N70 with an axonal targeting peptide derived from amyloid precursor protein, and fused this to NMNAT1 with disrupted nuclear targeting. In transgenic mice, this transformed NMNAT1 from a molecule unable to inhibit Wallerian degeneration, even at high expression levels, into a protein more potent than Wld(S), able to preserve injured axons for several weeks at undetectable expression levels. Preventing NMNAT1 axonal delivery abolished its protective effect. Axonally targeted NMNAT1 localized to vesicular structures, colocalizing with extranuclear Wld(S), and was cotransported at least partially with mitochondria. We conclude that axonal targeting of NMNAT activity is both necessary and sufficient to delay Wallerian degeneration, and that promoting axonal and synaptic delivery greatly enhances the effectiveness.


Subject(s)
Axonal Transport/genetics , Axons/metabolism , Neuroprotective Agents/metabolism , Nicotinamide-Nucleotide Adenylyltransferase/genetics , Synapses/metabolism , Wallerian Degeneration/metabolism , Wallerian Degeneration/physiopathology , Animals , Cell Culture Techniques , Cells, Cultured , Gene Targeting/methods , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/genetics , Organ Culture Techniques , Protein Structure, Tertiary/genetics , Recombinant Fusion Proteins/genetics , Wallerian Degeneration/prevention & control
19.
BMC Neurosci ; 12: 69, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21762482

ABSTRACT

BACKGROUND: Apoptosis plays a critical role during neuronal development and disease. Developing sympathetic neurons depend on nerve growth factor (NGF) for survival during the late embryonic and early postnatal period and die by apoptosis in its absence. The proapoptotic BH3-only protein Bim increases in level after NGF withdrawal and is required for NGF withdrawal-induced death. The regulation of Bim expression in neurons is complex and this study describes a new mechanism by which an NGF-activated signalling pathway regulates bim gene expression in sympathetic neurons. RESULTS: We report that U0126, an inhibitor of the prosurvival MEK-ERK pathway, increases bim mRNA levels in sympathetic neurons in the presence of NGF. We find that this effect is independent of PI3-K-Akt and JNK-c-Jun signalling and is not mediated by the promoter, first exon or first intron of the bim gene. By performing 3' RACE and microinjection experiments with a new bim-LUC+3'UTR reporter construct, we show that U0126 increases bim expression via the bim 3' UTR. We demonstrate that this effect does not involve a change in bim mRNA stability and by using PD184352, a specific MEK1/2-ERK1/2 inhibitor, we show that this mechanism involves the MEK1/2-ERK1/2 pathway. Finally, we demonstrate that inhibition of MEK/ERK signalling independently reduces cell survival in NGF-treated sympathetic neurons. CONCLUSIONS: These results suggest that in sympathetic neurons, MEK-ERK signalling negatively regulates bim expression via the 3' UTR and that this regulation is likely to be at the level of transcription. This data provides further insight into the different mechanisms by which survival signalling pathways regulate bim expression in neurons.


Subject(s)
3' Untranslated Regions/genetics , Apoptosis Regulatory Proteins/physiology , MAP Kinase Signaling System/physiology , Membrane Proteins/physiology , Proto-Oncogene Proteins/physiology , Signal Transduction/physiology , Sympathetic Nervous System/metabolism , Animals , Animals, Newborn , Bcl-2-Like Protein 11 , Cells, Cultured , Down-Regulation/physiology , Gene Expression Regulation/physiology , Rats , Rats, Sprague-Dawley
20.
Biochem Soc Trans ; 39(4): 933-8, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21787326

ABSTRACT

Considering the many differences between mice and humans, it is perhaps surprising how well mice model late-onset human neurodegenerative disease. Models of Alzheimer's disease, frontotemporal dementia, Parkinson's disease and Huntington's disease show some striking similarities to the corresponding human pathologies in terms of axonal transport disruption, protein aggregation, synapse loss and some behavioural phenotypes. However, there are also major differences. To extrapolate from mouse models to human disease, we need to understand how these differences relate to intrinsic limitations of the mouse system and to the effects of transgene overexpression. In the present paper, we use examples from an amyloid-overexpression model and a mutant-tau-knockin model to illustrate what we learn from each type of approach and what the limitations are. Finally, we discuss the further contributions that knockin and similar approaches can make to understanding pathogenesis and how best to model disorders of aging in a short-lived mammal.


Subject(s)
Disease Models, Animal , Neurodegenerative Diseases/genetics , Animals , Axons/metabolism , Axons/pathology , Humans , Mice , Mice, Transgenic , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Plaque, Amyloid/metabolism , Protein Isoforms , tau Proteins/genetics , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL