Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Curr Issues Mol Biol ; 46(1): 788-807, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38248353

ABSTRACT

Glutamate (Glu) toxicity has been an important research topic in toxicology and neuroscience studies. In vitro and in vivo studies have shown that Group II metabotropic Glu2 (mGlu2) activators have cell viability effects. This study aims to determine a candidate ligand with high mGlu2 allosteric region activity among cytotoxicity-safe molecules using the in silico positioning method and to evaluate its cell viability effect in vitro. We investigated the candidate molecule's cell viability effect on the SH-SY5Y human neuroblastoma cell line by MTT analysis. In the study, LY 379268 (agonist) and JNJ-46281222 (positive allosteric modulator; PAM) were used as control reference molecules. Drug bank screening yielded THRX-195518 (docking score being -12.4 kcal/mol) as a potential novel drug candidate that has a high docking score and has not been mentioned in the literature so far. The orthosteric agonist LY 379268 exhibited a robust protective effect in our study. Additionally, our findings demonstrate that JNJ-46281222 and THRX-195518, identified as activating the mGlu2 allosteric region through in silico methods, preserve cell viability against Glu toxicity. Therefore, our study not only emphasizes the positive effects of this compound on cell viability against Glu toxicity but also sheds light on the potential of THRX-195518, acting as a mGlu2 PAM, based on in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) data, as a candidate drug molecule. These findings underscore the potential utility of THRX-195518 against both neurotoxicity and Central Nervous System (CNS) disorders, providing valuable insights.

2.
J Biomol Struct Dyn ; : 1-22, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38095566

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder with a complex pathogenesis. One promising approach to treating AD is simultaneously targeting multiple aspects of the disease using a multi-target drug (MTD). In this study, multi-target drug (MTD) potential of the nutraceutical molecule Queuine was explored using molecular docking and molecular dynamics (MD) simulations with five different protein targets engaged in AD: AChE, beta-site amyloid precursor protein cleaving enzyme-1 (BACE-1), N-methyl-D-aspartate receptor (NMDAR), monoamine oxidase A (MAO-A), and Synapsin III. Queuine revealed significant binding affinities, the docking scores being -10.1, -5.97, -5.63, -8.40, and -10.56 kcal/mol for AChE, BACE-1, NMDAR, MAO-A, and Synapsin III, respectively. MD simulations showed that Queuine formed stable complexes and preserved its stability throughout the simulation, the backbone fluctuations remaining within 2.5 Å specifically in the case of the BACE-1. Elastic network model simulations and principal component analysis were carried out to illustrate the dynamics of the protein systems. Significant hinge-bending and twisting-type motions that may be relevant to function were observed around the dimerization interfaces or binding sites. Structural clustering based on PCA analysis and cross-correlation maps demonstrated that Queuine binding altered the protein dynamics more drastically in the case of highly mobile proteins NMDAR and MAO-A. We propose that the neuroprotective effect of Queuine may stem from its prominent inhibitory action on enzymes BACE-1 and AChE. Our results suggest that Queuine may serve as a promising MTD candidate for the treatment of AD.Communicated by Ramaswamy H. Sarma.

3.
PLoS One ; 18(4): e0284994, 2023.
Article in English | MEDLINE | ID: mdl-37104478

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder considered as a global public health threat influencing many people. Despite the concerning rise in the affected population, there is still a shortage of potent and safe therapeutic agents. The aim of this research is to discover novel natural source molecules with high therapeutic effects, stability and less toxicity for the treatment of AD, specifically targeting acetylcholinesterase (AChE). This research can be divided into two steps: in silico search for molecules by systematic simulations and in vitro experimental validations. We identified five leading compounds, namely Queuine, Etoperidone, Thiamine, Ademetionine and Tetrahydrofolic acid by screening natural molecule database, conducting molecular docking and druggability evaluations. Stability of the complexes were investigated by Molecular Dynamics simulations and free energy calculations were conducted by Molecular Mechanics Generalized Born Surface Area method. All five complexes were stable within the binding catalytic site (CAS) of AChE, with the exception of Queuine which remains stable on the peripheral site (PAS). On the other hand Etoperidone both interacts with CAS and PAS sites showing dual binding properties. Binding free energy values of Queuine and Etoperidone were -71.9 and -91.0 kcal/mol respectively, being comparable to control molecules Galantamine (-71.3 kcal/mol) and Donepezil (-80.9 kcal/mol). Computational results were validated through in vitro experiments using the SH-SY5Y(neuroblastoma) cell line with Real Time Cell Analysis (RTCA) and cell viability assays. The results showed that the selected doses were effective with half inhibitory concentrations estimated to be: Queuine (IC50 = 70,90 µM), Etoperidone (IC50 = 712,80 µM), Thiamine (IC50 = 18780,34 µM), Galantamine (IC50 = 556,01 µM) and Donepezil (IC50 = 222,23 µM), respectively. The promising results for these molecules suggest the development of the next step in vivo animal testing and provide hope for natural therapeutic aids in the treatment of AD.


Subject(s)
Alzheimer Disease , Neuroblastoma , Animals , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Donepezil/pharmacology , Donepezil/chemistry , Acetylcholinesterase/metabolism , Galantamine , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Cholinesterase Inhibitors/chemistry , Molecular Docking Simulation , Neuroblastoma/drug therapy , Thiamine/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL