Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
PLoS One ; 17(5): e0265775, 2022.
Article in English | MEDLINE | ID: mdl-35544454

ABSTRACT

The initial movement of herders and livestock into the eastern steppe is of great interest, as this region has long been home to pastoralist groups. Due to a paucity of faunal remains, however, it has been difficult to discern the timing of the adoption of domesticated ruminants and horses into the region, though recent research on ancient dairying has started to shed new light on this history. Here we present proteomic evidence for shifts in dairy consumption in the Altai Mountains, drawing on evidence from sites dating from the Early Bronze to the Late Iron Age. We compare these finds with evidence for the rise of social complexity in western Mongolia, as reflected in material remains signaling population growth, the establishment of structured cemeteries, and the erection of large monuments. Our results suggest that the subsistence basis for the development of complex societies began at the dawn of the Bronze Age, with the adoption of ruminant livestock. Investments in pastoralism intensified over time, enabling a food production system that sustained growing populations. While pronounced social changes and monumental constructions occurred in tandem with the first evidence for horse dairying, ~1350 cal BCE, these shifts were fueled by a long-term economic dependence on ruminant livestock. Therefore, the spread into the Mongolian Altai of herds, and then horses, resulted in immediate dietary changes, with subsequent social and demographic transformations occurring later.


Subject(s)
Dairying , Livestock , Animals , Asian People , History, Ancient , Horses , Humans , Mongolia , Proteomics
2.
Forensic Sci Int Genet ; 12: 199-207, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25016250

ABSTRACT

The Altai Mountains have been a long-term boundary zone between the Eurasian Steppe populations and South and East Asian populations. To disentangle some of the historical population movements in this area, 14 ancient human specimens excavated in the westernmost part of the Mongolian Altai were studied. Thirteen of them were dated from the Middle to the End of the Bronze Age and one of them to the Eneolithic period. The environmental conditions encountered in this region led to the good preservation of DNA in the human remains. Therefore, a multi-markers approach was adopted for the genetic analysis of identity, ancestry and phenotype markers. Mitochondrial DNA analyses revealed that the ancient Altaians studied carried both Western (H, U, T) and Eastern (A, C, D) Eurasian lineages. In the same way, the patrilineal gene pool revealed the presence of different haplogroups (Q1a2a1-L54, R1a1a1b2-Z93 and C), probably marking different origins for the male paternal lineages. To go further in the search of the origin of these ancient specimens, phenotypical characters (i.e. hair and eye color) were determined. For this purpose, we adapted the HIrisPlex assay recently described to MALDI-TOF mass spectrometry. In addition, some ancestry informative markers were analyzed with this assay. The results revealed mixed phenotypes among this group confirming the probable admixed ancestry of the studied Altaian population at the Middle Bronze Age. The good results obtained from ancient DNA samples suggest that this approach might be relevant for forensic casework too.


Subject(s)
DNA, Mitochondrial/genetics , Asia , Chromosomes, Human, Y , Europe , Female , Genetic Markers , Humans , Male , Microsatellite Repeats
3.
C R Biol ; 335(10-11): 698-707, 2012.
Article in English | MEDLINE | ID: mdl-23199638

ABSTRACT

The Hmong Diaspora is one of the widest modern human migrations. Mainly localised in South-East Asia, the United States of America, and metropolitan France, a small community has also settled the Amazonian forest of French Guiana. We have biologically analysed 62 individuals of this unique Guianese population through three complementary genetic markers: mitochondrial DNA (HVS-I/II and coding region SNPs), Y-chromosome (SNPs and STRs), and the Gm allotypic system. All genetic systems showed a high conservation of the Asian gene pool (Asian ancestry: mtDNA=100.0%; NRY=99.1%; Gm=96.6%), without a trace of founder effect. When compared across various Asian populations, the highest correlations were observed with Hmong-Mien groups still living in South-East Asia (Fst<0.05; P-value<0.05). Despite a long history punctuated by exodus, the French Guianese Hmong have maintained their original genetic diversity.


Subject(s)
Asian People/genetics , Asia, Southeastern , Chromosomes, Human, X/genetics , DNA, Mitochondrial/genetics , Data Interpretation, Statistical , Ethnicity/genetics , French Guiana , Gene Frequency , Gene Pool , Genetic Variation , Haplotypes , Human Migration , Humans , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Polymorphism, Single Nucleotide , Population , Tandem Repeat Sequences
SELECTION OF CITATIONS
SEARCH DETAIL