Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
Int J Surg ; 110(4): 1983-1991, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38241421

ABSTRACT

BACKGROUND: Colorectal cancer is the third most commonly diagnosed malignancy and the second leading cause of mortality worldwide. A positive resection margin following surgery for colorectal cancer is linked with higher rates of local recurrence and poorer survival. The authors investigated diffuse reflectance spectroscopy (DRS) to distinguish tumour and non-tumour tissue in ex-vivo colorectal specimens, to aid margin assessment and provide augmented visual maps to the surgeon in real-time. METHODS: Patients undergoing elective colorectal cancer resection surgery at a London-based hospital were prospectively recruited. A hand-held DRS probe was used on the surface of freshly resected ex-vivo colorectal tissue. Spectral data were acquired for tumour and non-tumour tissue. Binary classification was achieved using conventional machine learning classifiers and a convolutional neural network (CNN), which were evaluated in terms of sensitivity, specificity, accuracy and the area under the curve. RESULTS: A total of 7692 mean spectra were obtained for tumour and non-tumour colorectal tissue. The CNN-based classifier was the best performing machine learning algorithm, when compared to contrastive approaches, for differentiating tumour and non-tumour colorectal tissue, with an overall diagnostic accuracy of 90.8% and area under the curve of 96.8%. Live on-screen classification of tissue type was achieved using a graduated colourmap. CONCLUSION: A high diagnostic accuracy for a DRS probe and tracking system to differentiate ex-vivo tumour and non-tumour colorectal tissue in real-time with on-screen visual feedback was highlighted by this study. Further in-vivo studies are needed to ensure integration into a surgical workflow.


Subject(s)
Colorectal Neoplasms , Margins of Excision , Neural Networks, Computer , Spectrum Analysis , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/surgery , Colorectal Neoplasms/classification , Female , Male , Prospective Studies , Aged , Spectrum Analysis/methods , Middle Aged , Machine Learning , Aged, 80 and over
SELECTION OF CITATIONS
SEARCH DETAIL