ABSTRACT
Dipeptides 1 and 2 were synthesized from unnatural amino acids containing pyrene as a fluorescent label and polynucleotide binding unit, and modified tyrosine as a photochemically reactive unit. Photophysical properties of the peptides were investigated by steady-state and time-resolved fluorescence. Both peptides are fluorescent (Φf = 0.3-0.4) and do not show a tendency to form pyrene excimers in the concentration range < 10-5 M, which is important for their application in the fluorescent labeling of polynucleotides. Furthermore, both peptides are photochemically reactive and undergo deamination delivering quinone methides (QMs) (ΦR = 0.01-0.02), as indicated from the preparative photomethanolysis study of the corresponding N-Boc protected derivatives 7 and 8. Both peptides form stable complexes with polynucleotides (log Ka > 6) by noncovalent interactions and similar affinities, binding to minor grooves, preferably to the AT reach regions. Peptide 2 with a longer spacer between the fluorophore and the photo-activable unit undergoes a more efficient deamination reaction, based on the comparison with the N-Boc protected derivatives. Upon light excitation of the complex 2·oligoAT10, the photo-generation of QM initiates the alkylation, which results in the fluorescent labeling of the oligonucleotide. This study demonstrated, as a proof of principle, that small molecules can combine dual forms of fluorescent labeling of polynucleotides, whereby initial addition of the dye rapidly forms a reversible high-affinity noncovalent complex with ds-DNA/RNA, which can be, upon irradiation by light, converted to the irreversible (covalent) form. Such a dual labeling ability of a dye could have many applications in biomedicinal sciences.
Subject(s)
Polynucleotides , Tyrosine , Dipeptides , Peptides , PyrenesABSTRACT
Arginine, due to the guanidine moiety, increases peptides' hydrophilicity and enables interactions with charged molecules, but at the same time, its presence in a peptide chain might reduce its permeability through biological membranes. This might be resolved by temporary coverage of the peptide charge by lipophilic, enzyme-sensitive alkoxycarbonyl groups. Unfortunately, such a modification of a guanidine moiety has not been reported to date and turned out to be challenging. Here, we present a new, optimized strategy to obtain arginine building blocks with increased lipophilicity that were successfully utilized in the solid-phase peptide synthesis of novel arginine vasopressin prodrugs.
Subject(s)
Arginine , Solid-Phase Synthesis Techniques , Arginine/chemistry , Peptides/chemistry , GuanidinesABSTRACT
A concise and practical strategy towards a novel class of 14-membered macrocycles containing an enediyne (Z-3-ene-1,5-diyne) structural unit is described. A highly modular assembly of various precursors via sequential Ugi/Sonogashira reactions allowed the preparation of hybrid enediyne-peptide macrocycles in most cases as single diastereoisomers. Selected macrocyclic compounds showed moderate antiproliferative activity, and can be considered as templates suitable for further diversification in terms of ring size, shape, and stereochemistry.
Subject(s)
Macrocyclic Compounds , Enediynes/chemistry , Macrocyclic Compounds/chemistry , PeptidesABSTRACT
Human neurohormone vasopressin (AVP) is synthesized in overlapping regions in the hypothalamus. It is mainly known for its vasoconstricting abilities, and it is responsible for the regulation of plasma osmolality by maintaining fluid homeostasis. Over years, many attempts have been made to modify this hormone and find AVP analogues with different pharmacological profiles that could overcome its limitations. Non-peptide AVP analogues with low molecular weight presented good affinity to AVP receptors. Natural peptide counterparts, found in animals, are successfully applied as therapeutics; for instance, lypressin used in treatment of diabetes insipidus. Synthetic peptide analogues compensate for the shortcomings of AVP. Desmopressin is more resistant to proteolysis and presents mainly antidiuretic effects, while terlipressin is a long-acting AVP analogue and a drug recommended in the treatment of varicose bleeding in patients with liver cirrhosis. Recently published results on diverse applications of AVP analogues in medicinal practice, including potential lypressin, terlipressin and ornipressin in the treatment of SARS-CoV-2, are discussed.
Subject(s)
COVID-19 Drug Treatment , Diabetes Insipidus/prevention & control , SARS-CoV-2/drug effects , Vasopressins/therapeutic use , Animals , Antidiuretic Agents/chemistry , Antidiuretic Agents/metabolism , Antidiuretic Agents/therapeutic use , COVID-19/epidemiology , COVID-19/virology , Deamino Arginine Vasopressin/chemistry , Deamino Arginine Vasopressin/metabolism , Deamino Arginine Vasopressin/therapeutic use , Diabetes Insipidus/metabolism , Hemostatics/chemistry , Hemostatics/metabolism , Hemostatics/therapeutic use , Humans , Lypressin/chemistry , Lypressin/metabolism , Lypressin/therapeutic use , Molecular Structure , Ornipressin/chemistry , Ornipressin/metabolism , Ornipressin/therapeutic use , Pandemics/prevention & control , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Terlipressin/chemistry , Terlipressin/metabolism , Terlipressin/therapeutic use , Vasopressins/chemistry , Vasopressins/metabolismABSTRACT
Multicomponent reactions represent a highly efficient approach to a broad spectrum of structurally diverse compounds starting from simple and affordable compounds. A focused library of tweezers-like compounds is prepared by employing the multicomponent Passerini reaction comprising enediyne-derived amino aldehydes. The reaction proceeds under mild conditions yielding Passerini products in good to excellent yields. Postcondensation modifications of Passerini products are demonstrated through a simple deprotection/coupling approach comprising amino functionality, furnishing enediyne cores with highly decorated arms.