Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
Add more filters

Publication year range
1.
Cochrane Database Syst Rev ; 6: CD007693, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38899538

ABSTRACT

BACKGROUND: This is an update of a review first published in 2010. Use of topical fluoride has become more common over time. Excessive fluoride consumption from topical fluorides in young children could potentially lead to dental fluorosis in permanent teeth. OBJECTIVES: To describe the relationship between the use of topical fluorides in young children and the risk of developing dental fluorosis in permanent teeth. SEARCH METHODS: We carried out electronic searches of the Cochrane Oral Health Trials Register, CENTRAL, MEDLINE, Embase, three other databases, and two trials registers. We searched the reference lists of relevant articles. The latest search date was 28 July 2022. SELECTION CRITERIA: We included randomized controlled trials (RCTs), quasi-RCTs, cohort studies, case-control studies, and cross-sectional surveys comparing fluoride toothpaste, mouth rinses, gels, foams, paint-on solutions, and varnishes to a different fluoride therapy, placebo, or no intervention. Upon the introduction of topical fluorides, the target population was children under six years of age. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane and used GRADE to assess the certainty of the evidence. The primary outcome measure was the percentage prevalence of fluorosis in the permanent teeth. Two authors extracted data from all included studies. In cases where both adjusted and unadjusted risk ratios or odds ratios were reported, we used the adjusted value in the meta-analysis. MAIN RESULTS: We included 43 studies: three RCTs, four cohort studies, 10 case-control studies, and 26 cross-sectional surveys. We judged all three RCTs, one cohort study, one case-control study, and six cross-sectional studies to have some concerns for risk of bias. We judged all other observational studies to be at high risk of bias. We grouped the studies into five comparisons. Comparison 1. Age at which children started toothbrushing with fluoride toothpaste Two cohort studies (260 children) provided very uncertain evidence regarding the association between children starting to use fluoride toothpaste for brushing at or before 12 months versus after 12 months and the development of fluorosis (risk ratio (RR) 0.98, 95% confidence interval (CI) 0.81 to 1.18; very low-certainty evidence). Similarly, evidence from one cohort study (3939 children) and two cross-sectional studies (1484 children) provided very uncertain evidence regarding the association between children starting to use fluoride toothpaste for brushing before or after the age of 24 months (RR 0.83, 95% CI 0.61 to 1.13; very low-certainty evidence) or before or after four years (odds ratio (OR) 1.60, 95% CI 0.77 to 3.35; very low-certainty evidence), respectively. Comparison 2. Frequency of toothbrushing with fluoride toothpaste Two case-control studies (258 children) provided very uncertain evidence regarding the association between children brushing less than twice per day versus twice or more per day and the development of fluorosis (OR 1.63, 95% CI 0.81 to 3.28; very low-certainty evidence). Two cross-sectional surveys (1693 children) demonstrated that brushing less than once per day versus once or more per day may be associated with a decrease in the development of fluorosis in children (OR 0.62, 95% CI 0.53 to 0.74; low-certainty evidence). Comparison 3. Amount of fluoride toothpaste used for toothbrushing Two case-control studies (258 children) provided very uncertain evidence regarding the association between children using less than half a brush of toothpaste, versus half or more of the brush, and the development of fluorosis (OR 0.77, 95% CI 0.41 to 1.46; very low-certainty evidence). The evidence from cross-sectional surveys was also very uncertain (OR 0.92, 95% CI 0.66 to 1.28; 3 studies, 2037 children; very low-certainty evidence). Comparison 4. Fluoride concentration in toothpaste There was evidence from two RCTs (1968 children) that lower fluoride concentration in the toothpaste used by children under six years of age likely reduces the risk of developing fluorosis: 550 parts per million (ppm) fluoride versus 1000 ppm (RR 0.75, 95% CI 0.57 to 0.99; moderate-certainty evidence); 440 ppm fluoride versus 1450 ppm (RR 0.72, 95% CI 0.58 to 0.89; moderate-certainty evidence). The age at which the toothbrushing commenced was 24 months and 12 months, respectively. Two case-control studies (258 children) provided very uncertain evidence regarding the association between fluoride concentrations under 1000 ppm, versus concentrations of 1000 ppm or above, and the development of fluorosis (OR 0.89, 95% CI 0.52 to 1.52; very low-certainty evidence). Comparison 5. Age at which topical fluoride varnish was applied There was evidence from one RCT (123 children) that there may be little to no difference between a fluoride varnish application before four years, versus no application, and the development of fluorosis (RR 0.77, 95% CI 0.45 to 1.31; low-certainty evidence). There was low-certainty evidence from two cross-sectional surveys (982 children) that the application of topical fluoride varnish before four years of age may be associated with the development of fluorosis in children (OR 2.18, 95% CI 1.46 to 3.25). AUTHORS' CONCLUSIONS: Most evidence identified mild fluorosis as a potential adverse outcome of using topical fluoride at an early age. There is low- to very low-certainty and inconclusive evidence on the risk of having fluorosis in permanent teeth for: when a child starts receiving topical fluoride varnish application; toothbrushing with fluoride toothpaste; the amount of toothpaste used by the child; and the frequency of toothbrushing. Moderate-certainty evidence from RCTs showed that children who brushed with 1000 ppm or more fluoride toothpaste from one to two years of age until five to six years of age probably had an increased chance of developing dental fluorosis in permanent teeth. It is unethical to propose new RCTs to assess the development of dental fluorosis. However, future RCTs focusing on dental caries prevention could record children's exposure to topical fluoride sources in early life and evaluate the dental fluorosis in their permanent teeth as a long-term outcome. In the absence of these studies and methods, further research in this area will come from observational studies. Attention needs to be given to the choice of study design, bearing in mind that prospective controlled studies will be less susceptible to bias than retrospective and uncontrolled studies.


Subject(s)
Fluorides, Topical , Fluorosis, Dental , Randomized Controlled Trials as Topic , Fluorosis, Dental/epidemiology , Humans , Child, Preschool , Fluorides, Topical/administration & dosage , Fluorides, Topical/adverse effects , Child , Toothpastes/adverse effects , Bias , Case-Control Studies , Cariostatic Agents/adverse effects , Cariostatic Agents/administration & dosage , Cohort Studies , Cross-Sectional Studies , Fluorides/administration & dosage , Fluorides/adverse effects
2.
Evid Based Dent ; 25(2): 95-97, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38824186

ABSTRACT

DATA SOURCES: Human, animal, and in vitro studies. Extensive literature search of multiple bibliographic databases, trial registries, major grey literature sources and bibliographies of identified studies. STUDY SELECTION: The authors aimed to identify studies which could be used to determine the maximum safe level for fluoride in drinking water. To identify new studies published since a 2016 Australian review, the search period was 2016 to July 2021. Studies which evaluated the association between either naturally or artificially fluoridated water (any concentration) and any health outcomes were included. No restrictions on study design or publication status. Articles published in a 'non-Latin language' were excluded. Screening of abstracts and full texts was in duplicate. For IQ and dental fluorosis, a top-up search was conducted between 2021 and Feb 2023. DATA EXTRACTION AND SYNTHESIS: Extensive data extraction. Risk of bias assessment using the OHAT tool. A narrative synthesis of the results was carried out. RESULTS: The review included 89 studies in humans, 199 in animals and 10 reviews of in vitro studies. Where there was consistent evidence of a positive association, in relation to a water fluoride concentration of <20 ppm (mg F/L), and where studies were judged to be acceptable or high quality, health effects were taken forwards for further examination of causality using Bradford Hill's 9 criteria. Of the 39 health outcomes reviewed, 4 were further assessed for causality. The authors reported 'strong' evidence of causality for dental fluorosis and reductions in children's IQ scores, 'moderate' strength evidence for thyroid dysfunction, 'weak' for kidney dysfunction, and 'limited' evidence for sex hormone disruption. CONCLUSIONS: The authors conclude that moderate dental fluorosis and reductions in children's IQ scores are the most appropriate health outcomes to use when setting an upper safe level of fluoride in drinking water. For reductions in children's IQ, the authors acknowledge a biological mechanism of action has not been elucidated, and the dose response curve is not clear at lower concentrations, limiting the ability to set an upper safe threshold.


Subject(s)
Fluoridation , Fluorides , Fluorosis, Dental , Intelligence , Humans , Child , Fluorides/adverse effects , Fluoridation/adverse effects , Fluorosis, Dental/etiology , Intelligence/drug effects , Animals , Drinking Water
3.
Cochrane Database Syst Rev ; 8: CD006205, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37650478

ABSTRACT

BACKGROUND: Surgery is a common treatment option in oral cavity cancer (and less frequently in oropharyngeal cancer) to remove the primary tumour and sometimes neck lymph nodes. People with early-stage disease may undergo surgery alone or surgery plus radiotherapy, chemotherapy, immunotherapy/biotherapy, or a combination of these. Timing and extent of surgery varies. This is the third update of a review originally published in 2007. OBJECTIVES: To evaluate the relative benefits and harms of different surgical treatment modalities for oral cavity and oropharyngeal cancers. SEARCH METHODS: We used standard, extensive Cochrane search methods. The latest search date was 9 February 2022. SELECTION CRITERIA: Randomised controlled trials (RCTs) that compared two or more surgical treatment modalities, or surgery versus other treatment modalities, for primary tumours of the oral cavity or oropharynx. DATA COLLECTION AND ANALYSIS: Our primary outcomes were overall survival, disease-free survival, locoregional recurrence, and recurrence; and our secondary outcomes were adverse effects of treatment, quality of life, direct and indirect costs to patients and health services, and participant satisfaction. We used standard Cochrane methods. We reported survival data as hazard ratios (HRs). For overall survival, we reported the HR of mortality, and for disease-free survival, we reported the combined HR of new disease, progression, and mortality; therefore, HRs below 1 indicated improvement in these outcomes. We used GRADE to assess certainty of evidence for each outcome. MAIN RESULTS: We identified four new trials, bringing the total number of included trials to 15 (2820 participants randomised, 2583 participants analysed). For objective outcomes, we assessed four trials at high risk of bias, three at low risk, and eight at unclear risk. The trials evaluated nine comparisons; none compared different surgical approaches for excision of the primary tumour. Five trials evaluated elective neck dissection (ND) versus therapeutic (delayed) ND in people with oral cavity cancer and clinically negative neck nodes. Elective ND compared with therapeutic ND probably improves overall survival (HR 0.64, 95% confidence interval (CI) 0.50 to 0.83; I2 = 0%; 4 trials, 883 participants; moderate certainty) and disease-free survival (HR 0.56, 95% CI 0.45 to 0.70; I2 = 12%; 5 trials, 954 participants; moderate certainty), and probably reduces locoregional recurrence (HR 0.58, 95% CI 0.43 to 0.78; I2 = 0%; 4 trials, 458 participants; moderate certainty) and recurrence (RR 0.58, 95% CI 0.48 to 0.70; I2 = 0%; 3 trials, 633 participants; moderate certainty). Elective ND is probably associated with more adverse events (risk ratio (RR) 1.31, 95% CI 1.11 to 1.54; I2 = 0%; 2 trials, 746 participants; moderate certainty). Two trials evaluated elective radical ND versus elective selective ND in people with oral cavity cancer, but we were unable to pool the data as the trials used different surgical procedures. Neither study found evidence of a difference in overall survival (pooled measure not estimable; very low certainty). We are unsure if there is a difference in effect on disease-free survival (HR 0.57, 95% CI 0.29 to 1.11; 1 trial, 104 participants; very low certainty) or recurrence (RR 1.21, 95% CI 0.63 to 2.33; 1 trial, 143 participants; very low certainty). There may be no difference between the interventions in terms of adverse events (1 trial, 148 participants; low certainty). Two trials evaluated superselective ND versus selective ND, but we were unable to use the data. One trial evaluated supraomohyoid ND versus modified radical ND in 332 participants. We were unable to use any of the primary outcome data. The evidence on adverse events was very uncertain, with more complications, pain, and poorer shoulder function in the modified radical ND group. One trial evaluated sentinel node biopsy versus elective ND in 279 participants. There may be little or no difference between the interventions in overall survival (HR 1.00, 95% CI 0.90 to 1.11; low certainty), disease-free survival (HR 0.98, 95% CI 0.90 to 1.07; low certainty), or locoregional recurrence (HR 1.04, 95% CI 0.91 to 1.19; low certainty). The trial provided no usable data for recurrence, and reported no adverse events (very low certainty). One trial evaluated positron emission tomography-computed tomography (PET-CT) following chemoradiotherapy (with ND only if no or incomplete response) versus planned ND (before or after chemoradiotherapy) in 564 participants. There is probably no difference between the interventions in overall survival (HR 0.92, 95% CI 0.65 to 1.31; moderate certainty) or locoregional recurrence (HR 1.00, 95% CI 0.94 to 1.06; moderate certainty). One trial evaluated surgery plus radiotherapy versus radiotherapy alone and provided very low-certainty evidence of better overall survival in the surgery plus radiotherapy group (HR 0.24, 95% CI 0.10 to 0.59; 35 participants). The data were unreliable because the trial stopped early and had multiple protocol violations. In terms of adverse events, subcutaneous fibrosis was more frequent in the surgery plus radiotherapy group, but there were no differences in other adverse events (very low certainty). One trial evaluated surgery versus radiotherapy alone for oropharyngeal cancer in 68 participants. There may be little or no difference between the interventions for overall survival (HR 0.83, 95% CI 0.09 to 7.46; low certainty) or disease-free survival (HR 1.07, 95% CI 0.27 to 4.22; low certainty). For adverse events, there were too many outcomes to draw reliable conclusions. One trial evaluated surgery plus adjuvant radiotherapy versus chemotherapy. We were unable to use the data for any of the outcomes reported (very low certainty). AUTHORS' CONCLUSIONS: We found moderate-certainty evidence based on five trials that elective neck dissection of clinically negative neck nodes at the time of removal of the primary oral cavity tumour is superior to therapeutic neck dissection, with increased survival and disease-free survival, and reduced locoregional recurrence. There was moderate-certainty evidence from one trial of no difference between positron emission tomography (PET-CT) following chemoradiotherapy versus planned neck dissection in terms of overall survival or locoregional recurrence. The evidence for each of the other seven comparisons came from only one or two studies and was assessed as low or very low-certainty.


Subject(s)
Neoplasm Recurrence, Local , Oropharyngeal Neoplasms , Humans , Immunotherapy , Mouth , Neck , Oropharyngeal Neoplasms/surgery , Randomized Controlled Trials as Topic
4.
J Evid Based Dent Pract ; 23(3): 101895, 2023 09.
Article in English | MEDLINE | ID: mdl-37689454

ABSTRACT

OBJECTIVE: With evidence-based dentistry (EBD) having a far-reaching influence on oral healthcare, dental educators worldwide have made joint efforts to integrate EBD-related knowledge and skills into dental education. The present scoping review aims to identify and summarize the existing teaching contents, teaching methods, and assessment strategies of EBD education. METHODS: Electronic (PubMed and Embase) and manual searches were performed to identify articles related to both "dental education" and "evidence-based practice." Based on predetermined eligibility criteria, articles were selected by 2 reviewers, independently and in duplicate. Data synthesis was conducted based on teaching contents, teaching strategies, and teaching assessment. RESULTS: Of the 1758 articles found in the literature searches, 74 were deemed eligible and included in this review. A total of 4 basic skills (problem formulation, literature searching, critical appraisal, and research methodology), 5 teaching methods, and 6 assessment strategies were identified. In most of the articles, 2, or more skills were taught, and a combination of traditional strategies for teaching and its assessment (eg, courses and questionnaire survey) was involved. Other teaching methods, such as journal clubs and workshops, were seldom used, and validated assessment tools accounted for a relatively small proportion of the assessment strategies involved. CONCLUSIONS: The contents, methods and assessment of EBD education have been widely studied and discussed. However, the current literature focuses mainly on teaching of critical appraisal skills, traditional teaching methods, and short-term outcome assessments. Future research in this area can be aimed at integrating all EBD-related skills into educational models, studying multifaceted teaching approaches, and developing comprehensive teaching outcome assessment methods based on validated tools and dental patient-reported outcomes.


Subject(s)
Evidence-Based Dentistry , Research Design , Humans , Health Facilities , Outcome Assessment, Health Care , Patient Reported Outcome Measures
5.
Cochrane Database Syst Rev ; 5: CD003813, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35536541

ABSTRACT

BACKGROUND: Infective endocarditis is a severe infection arising in the lining of the chambers of the heart. It can be caused by fungi, but most often is caused by bacteria. Many dental procedures cause bacteraemia, which could lead to bacterial endocarditis in a small proportion of people. The incidence of bacterial endocarditis is low, but it has a high mortality rate.  Guidelines in many countries have recommended that antibiotics be administered to people at high risk of endocarditis prior to invasive dental procedures. However, guidance by the National Institute for Health and Care Excellence (NICE) in England and Wales states that antibiotic prophylaxis against infective endocarditis is not recommended routinely for people undergoing dental procedures. This is an update of a review that we first conducted in 2004 and last updated in 2013. OBJECTIVES: Primary objective To determine whether prophylactic antibiotic administration, compared to no antibiotic administration or placebo, before invasive dental procedures in people at risk or at high risk of bacterial endocarditis, influences mortality, serious illness or the incidence of endocarditis. Secondary objectives To determine whether the effect of dental antibiotic prophylaxis differs in people with different cardiac conditions predisposing them to increased risk of endocarditis, and in people undergoing different high risk dental procedures. Harms Had we foundno evidence from randomised controlled trials or cohort studies on whether prophylactic antibiotics affected mortality or serious illness, and we had found evidence from these or case-control studies suggesting that prophylaxis with antibiotics reduced the incidence of endocarditis, then we would also have assessed whether the harms of prophylaxis with single antibiotic doses, such as with penicillin (amoxicillin 2 g or 3 g) before invasive dental procedures, compared with no antibiotic or placebo, equalled the benefits in prevention of endocarditis in people at high risk of this disease. SEARCH METHODS: An information specialist searched four bibliographic databases up to 10 May 2021 and used additional search methods to identify published, unpublished and ongoing studies SELECTION CRITERIA: Due to the low incidence of bacterial endocarditis, we anticipated that few if any trials would be located. For this reason, we included cohort and case-control studies with suitably matched control or comparison groups. The intervention was antibiotic prophylaxis, compared to no antibiotic prophylaxis or placebo, before a dental procedure in people with an increased risk of bacterial endocarditis. Cohort studies would need to follow at-risk individuals and assess outcomes following any invasive dental procedures, grouping participants according to whether or not they had received prophylaxis. Case-control studies would need to match people who had developed endocarditis after undergoing an invasive dental procedure (and who were known to be at increased risk before undergoing the procedure) with those at similar risk who had not developed endocarditis.  Our outcomes of interest were mortality or serious adverse events requiring hospital admission; development of endocarditis following any dental procedure in a defined time period; development of endocarditis due to other non-dental causes; any recorded adverse effects of the antibiotics; and the cost of antibiotic provision compared to that of caring for patients who developed endocarditis. DATA COLLECTION AND ANALYSIS: Two review authors independently screened search records, selected studies for inclusion, assessed the risk of bias in the included study and extracted data from the included study. As an author team, we judged the certainty of the evidence identified for the main comparison and key outcomes using GRADE criteria. We presented the main results in a summary of findings table. MAIN RESULTS: Our new search did not find any new studies for inclusion since the last version of the review in 2013. No randomised controlled trials (RCTs), controlled clinical trials (CCTs) or cohort studies were included in the previous versions of the review, but one case-control study met the inclusion criteria. The trial authors collected information on 48 people who had contracted bacterial endocarditis over a specific two-year period and had undergone a medical or dental procedure with an indication for prophylaxis within the past 180 days. These people were matched to a similar group of people who had not contracted bacterial endocarditis. All study participants had undergone an invasive medical or dental procedure. The two groups were compared to establish whether those who had received preventive antibiotics (penicillin) were less likely to have developed endocarditis. The authors found no significant effect of penicillin prophylaxis on the incidence of endocarditis. No data on other outcomes were reported. The level of certainty we have about the evidence is very low. AUTHORS' CONCLUSIONS: There remains no clear evidence about whether antibiotic prophylaxis is effective or ineffective against bacterial endocarditis in at-risk people who are about to undergo an invasive dental procedure. We cannot determine whether the potential harms and costs of antibiotic administration outweigh any beneficial effect. Ethically, practitioners should discuss the potential benefits and harms of antibiotic prophylaxis with their patients before a decision is made about administration.


Subject(s)
Antibiotic Prophylaxis , Endocarditis, Bacterial , Anti-Bacterial Agents/therapeutic use , Antibiotic Prophylaxis/adverse effects , Dentistry , Endocarditis, Bacterial/drug therapy , Endocarditis, Bacterial/etiology , Endocarditis, Bacterial/prevention & control , Humans , Penicillins/therapeutic use
6.
Cochrane Database Syst Rev ; 1: CD013855, 2021 01 27.
Article in English | MEDLINE | ID: mdl-33502759

ABSTRACT

BACKGROUND: Caries is one of the most prevalent and preventable conditions worldwide. If identified early enough then non-invasive techniques can be applied, and therefore this review focusses on early caries involving the enamel surface of the tooth. The cornerstone of caries detection and diagnosis is a visual and tactile dental examination, although alternative approaches are available. These include illumination-based devices that could potentially support the dental examination. There are three categories of illumination devices that exploit various methods of application and interpretation, each primarily defined by different wavelengths, optical coherence tomography (OCT), near-infrared (NIR), and fibre-optic technology, which incorporates more recently developed digital fibre optics (FOTI/DIFOTI). OBJECTIVES: To estimate the diagnostic test accuracy of different illumination tests for the detection and diagnosis of enamel caries in children or adults. We also planned to explore the following potential sources of heterogeneity: in vitro or in vivo studies with different reference standards; tooth surface (occlusal, proximal, smooth surface, or adjacent to a restoration); single or multiple sites of assessment on a tooth surface; and the prevalence of caries into dentine. SEARCH METHODS: Cochrane Oral Health's Information Specialist undertook a search of the following databases: MEDLINE Ovid (1946 to 15 February 2019); Embase Ovid (1980 to 15 February 2019); US National Institutes of Health Ongoing Trials Register (ClinicalTrials.gov, to 15 February 2019); and the World Health Organization International Clinical Trials Registry Platform (to 15 February 2019). We studied reference lists as well as published systematic review articles. SELECTION CRITERIA: We included diagnostic accuracy study designs that compared the use of illumination-based devices with a reference standard (histology, enhanced visual examination with or without radiographs, or operative excavation). These included prospective studies that evaluated the diagnostic accuracy of a single index test and studies that directly compared two or more index tests. Both in vitro and in vivo studies of primary and permanent teeth were eligible for inclusion. We excluded studies that explicitly recruited participants with caries into dentine or frank cavitation. We also excluded studies that artificially created carious lesions and those that used an index test during the excavation of dental caries to ascertain the optimum depth of excavation. DATA COLLECTION AND ANALYSIS: Two review authors extracted data independently and in duplicate using a standardised data extraction form and quality assessment based on QUADAS-2 specific to the clinical context. Estimates of diagnostic accuracy were determined using the bivariate hierarchical method to produce summary points of sensitivity and specificity with 95% confidence regions. The comparative accuracy of different illumination devices was conducted based on indirect and direct comparisons between methods. Potential sources of heterogeneity were pre-specified and explored visually and more formally through meta-regression. MAIN RESULTS: We included 24 datasets from 23 studies that evaluated 16,702 tooth surfaces. NIR was evaluated in 6 datasets (673 tooth surfaces), OCT in 10 datasets (1171 tooth surfaces), and FOTI/DIFOTI in 8 datasets (14,858 tooth surfaces). The participant selection domain had the largest number of studies judged at high risk of bias (16 studies). Conversely, for the index test, reference standard, and flow and timing domains the majority of studies were judged to be at low risk of bias (16, 12, and 16 studies respectively). Concerns regarding the applicability of the evidence were judged as high or unclear for all domains. Notably, 14 studies were judged to be of high concern for participant selection, due to selective participant recruitment, a lack of independent examiners, and the use of an in vitro study design. The summary estimate across all the included illumination devices was sensitivity 0.75 (95% confidence interval (CI) 0.62 to 0.85) and specificity 0.87 (95% CI 0.82 to 0.92), with a diagnostic odds ratio of 21.52 (95% CI 10.89 to 42.48). In a cohort of 1000 tooth surfaces with a prevalence of enamel caries of 57%, this would result in 142 tooth surfaces being classified as disease free when enamel caries was truly present (false negatives), and 56 tooth surfaces being classified as diseased in the absence of enamel caries (false positives). A formal comparison of the accuracy according to device type indicated a difference in sensitivity and/or specificity (Chi2(4) = 34.17, P < 0.01). Further analysis indicated a difference in the sensitivity of the different devices (Chi2(2) = 31.24, P < 0.01) with a higher sensitivity of 0.94 (95% CI 0.88 to 0.97) for OCT compared to NIR 0.58 (95% CI 0.46 to 0.68) and FOTI/DIFOTI 0.47 (95% CI 0.35 to 0.59), but no meaningful difference in specificity (Chi2(2) = 3.47, P = 0.18). In light of these results, we planned to formally assess potential sources of heterogeneity according to device type, but due to the limited number of studies for each device type we were unable to do so. For interpretation, we presented the coupled forest plots for each device type according to the potential source of heterogeneity. We rated the certainty of the evidence as low and downgraded two levels in total due to avoidable and unavoidable study limitations in the design and conduct of studies, indirectness arising from the in vitro studies, and imprecision of the estimates. AUTHORS' CONCLUSIONS: Of the devices evaluated, OCT appears to show the most potential, with superior sensitivity to NIR and fibre-optic devices. Its benefit lies as an add-on tool to support the conventional oral examination to confirm borderline cases in cases of clinical uncertainty. OCT is not currently available to the general dental practitioner, and so further research and development are necessary. FOTI and NIR are more readily available and easy to use; however, they show limitations in their ability to detect enamel caries but may be considered successful in the identification of sound teeth. Future studies should strive to avoid research waste by ensuring that recruitment is conducted in such a way as to minimise selection bias and that studies are clearly and comprehensively reported. In terms of applicability, any future studies should be undertaken in a clinical setting that is reflective of the complexities encountered in caries assessment within the oral cavity.


Subject(s)
Dental Caries/diagnosis , Fiber Optic Technology , Spectroscopy, Near-Infrared , Tomography, Optical Coherence , Transillumination/methods , Datasets as Topic , Dental Enamel , False Negative Reactions , False Positive Reactions , Humans , Reference Standards , Selection Bias , Sensitivity and Specificity
7.
Cochrane Database Syst Rev ; 6: CD014546, 2021 06 14.
Article in English | MEDLINE | ID: mdl-34124773

ABSTRACT

BACKGROUND: The detection and diagnosis of caries at the initial (non-cavitated) and moderate (enamel) levels of severity is fundamental to achieving and maintaining good oral health and prevention of oral diseases. An increasing array of methods of early caries detection have been proposed that could potentially support traditional methods of detection and diagnosis. Earlier identification of disease could afford patients the opportunity of less invasive treatment with less destruction of tooth tissue, reduce the need for treatment with aerosol-generating procedures, and potentially result in a reduced cost of care to the patient and to healthcare services. OBJECTIVES: To determine the diagnostic accuracy of different visual classification systems for the detection and diagnosis of non-cavitated coronal dental caries for different purposes (detection and diagnosis) and in different populations (children or adults). SEARCH METHODS: Cochrane Oral Health's Information Specialist undertook a search of the following databases: MEDLINE Ovid (1946 to 30 April 2020); Embase Ovid (1980 to 30 April 2020); US National Institutes of Health Ongoing Trials Register (ClinicalTrials.gov, to 30 April 2020); and the World Health Organization International Clinical Trials Registry Platform (to 30 April 2020). We studied reference lists as well as published systematic review articles. SELECTION CRITERIA: We included diagnostic accuracy study designs that compared a visual classification system (index test) with a reference standard (histology, excavation, radiographs). This included cross-sectional studies that evaluated the diagnostic accuracy of single index tests and studies that directly compared two or more index tests. Studies reporting at both the patient or tooth surface level were included. In vitro and in vivo studies were considered. Studies that explicitly recruited participants with caries into dentine or frank cavitation were excluded. We also excluded studies that artificially created carious lesions and those that used an index test during the excavation of dental caries to ascertain the optimum depth of excavation. DATA COLLECTION AND ANALYSIS: We extracted data independently and in duplicate using a standardised data extraction and quality assessment form based on QUADAS-2 specific to the review context. Estimates of diagnostic accuracy were determined using the bivariate hierarchical method to produce summary points of sensitivity and specificity with 95% confidence intervals (CIs) and regions, and 95% prediction regions. The comparative accuracy of different classification systems was conducted based on indirect comparisons. Potential sources of heterogeneity were pre-specified and explored visually and more formally through meta-regression. MAIN RESULTS: We included 71 datasets from 67 studies (48 completed in vitro) reporting a total of 19,590 tooth sites/surfaces. The most frequently reported classification systems were the International Caries Detection and Assessment System (ICDAS) (36 studies) and Ekstrand-Ricketts-Kidd (ERK) (15 studies). In reporting the results, no distinction was made between detection and diagnosis. Only two studies were at low risk of bias across all four domains, and 15 studies were at low concern for applicability across all three domains. The patient selection domain had the highest proportion of high risk of bias studies (49 studies). Four studies were assessed at high risk of bias for the index test domain, nine for the reference standard domain, and seven for the flow and timing domain. Due to the high number of studies on extracted teeth concerns regarding applicability were high for the patient selection and index test domains (49 and 46 studies respectively). Studies were synthesised using a hierarchical bivariate method for meta-analysis. There was substantial variability in the results of the individual studies: sensitivities ranged from 0.16 to 1.00 and specificities from 0 to 1.00. For all visual classification systems the estimated summary sensitivity and specificity point was 0.86 (95% CI 0.80 to 0.90) and 0.77 (95% CI 0.72 to 0.82) respectively, diagnostic odds ratio (DOR) 20.38 (95% CI 14.33 to 28.98). In a cohort of 1000 tooth surfaces with 28% prevalence of enamel caries, this would result in 40 being classified as disease free when enamel caries was truly present (false negatives), and 163 being classified as diseased in the absence of enamel caries (false positives). The addition of test type to the model did not result in any meaningful difference to the sensitivity or specificity estimates (Chi2(4) = 3.78, P = 0.44), nor did the addition of primary or permanent dentition (Chi2(2) = 0.90, P = 0.64). The variability of results could not be explained by tooth surface (occlusal or approximal), prevalence of dentinal caries in the sample, nor reference standard. Only one study intentionally included restored teeth in its sample and no studies reported the inclusion of sealants. We rated the certainty of the evidence as low, and downgraded two levels in total for risk of bias due to limitations in the design and conduct of the included studies, indirectness arising from the in vitro studies, and inconsistency of results. AUTHORS' CONCLUSIONS: Whilst the confidence intervals for the summary points of the different visual classification systems indicated reasonable performance, they do not reflect the confidence that one can have in the accuracy of assessment using these systems due to the considerable unexplained heterogeneity evident across the studies. The prediction regions in which the sensitivity and specificity of a future study should lie are very broad, an important consideration when interpreting the results of this review. Should treatment be provided as a consequence of a false-positive result then this would be non-invasive, typically the application of fluoride varnish where it was not required, with low potential for an adverse event but healthcare resource and finance costs. Despite the robust methodology applied in this comprehensive review, the results should be interpreted with some caution due to shortcomings in the design and execution of many of the included studies. Studies to determine the diagnostic accuracy of methods to detect and diagnose caries in situ are particularly challenging. Wherever possible future studies should be carried out in a clinical setting, to provide a realistic assessment of performance within the oral cavity with the challenges of plaque, tooth staining, and restorations, and consider methods to minimise bias arising from the use of imperfect reference standards in clinical studies.


Subject(s)
Dental Caries/diagnosis , Dental Enamel , Early Diagnosis , Palpation/methods , Physical Examination/methods , Adult , Bias , Child , Confidence Intervals , Humans , Sensitivity and Specificity
8.
Cochrane Database Syst Rev ; 12: CD006386, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34929047

ABSTRACT

BACKGROUND: Oral cavity and oropharyngeal cancers are the most common cancers arising in the head and neck. Treatment of oral cavity cancer is generally surgery followed by radiotherapy, whereas oropharyngeal cancers, which are more likely to be advanced at the time of diagnosis, are managed with radiotherapy or chemoradiation. Surgery for oral cancers can be disfiguring and both surgery and radiotherapy have significant functional side effects. The development of new chemotherapy agents, new combinations of agents and changes in the relative timing of surgery, radiotherapy, and chemotherapy treatments may potentially bring about increases in both survival and quality of life for this group of patients. This review updates one last published in 2011. OBJECTIVES: To determine whether chemotherapy, in addition to radiotherapy and/or surgery for oral cavity and oropharyngeal squamous cell carcinoma results in improved overall survival, improved disease-free survival and/or improved locoregional control, when incorporated as either induction therapy given prior to locoregional treatment (i.e. radiotherapy or surgery), concurrent with radiotherapy or in the adjuvant (i.e. after locoregional treatment with radiotherapy or surgery) setting. SEARCH METHODS: An information specialist searched 4 bibliographic databases up to 15 September 2021 and used additional search methods to identify published, unpublished and ongoing studies. SELECTION CRITERIA: We included randomised controlled trials (RCTs) where more than 50% of participants had primary tumours in the oral cavity or oropharynx, and that evaluated the addition of chemotherapy to other treatments such as radiotherapy and/or surgery, or compared two or more chemotherapy regimens or modes of administration. DATA COLLECTION AND ANALYSIS: For this update, we assessed the new included trials for their risk of bias and at least two authors extracted data from them. Our primary outcome was overall survival (time to death from any cause). Secondary outcomes were disease-free survival (time to disease recurrence or death from any cause) and locoregional control (response to primary treatment). We contacted trial authors for additional information or clarification when necessary. MAIN RESULTS: We included 100 studies with 18,813 participants. None of the included trials were at low risk of bias.  For induction chemotherapy, we reported the results for contemporary regimens that will be of interest to clinicians and people being treated for oral cavity and oropharyngeal cancers. Overall, there is insufficient evidence to clearly demonstrate a survival benefit from induction chemotherapy with platinum plus 5-fluorouracil prior to radiotherapy (hazard ratio (HR) for death 0.85, 95% confidence interval (CI) 0.70 to 1.04, P = 0.11; 7427 participants, 5 studies; moderate-certainty evidence), prior to surgery (HR for death 1.06, 95% CI 0.71 to 1.60, P = 0.77; 198 participants, 1 study; low-certainty evidence) or prior to concurrent chemoradiation (CRT) with cisplatin (HR for death 0.71, 95% CI 0.37 to 1.35, P = 0.30; 389 participants, 2 studies; low-certainty evidence). There is insufficient evidence to support the use of an induction chemotherapy regimen with cisplatin plus 5-fluorouracil plus docetaxel prior to CRT with cisplatin (HR for death 1.08, 95% CI 0.80 to 1.44, P = 0.63; 760 participants, 3 studies; low-certainty evidence).  There is insufficient evidence to support the use of adjuvant chemotherapy over observation only following surgery (HR for death 0.95, 95% CI 0.73 to 1.22, P = 0.67; 353 participants, 5 studies; moderate-certainty evidence). Among studies that compared post-surgical adjuvant CRT, as compared to post-surgical RT, adjuvant CRT showed a survival benefit (HR 0.84, 95% CI 0.72 to 0.98, P = 0.03; 1097 participants, 4 studies; moderate-certainty evidence). Primary treatment with CRT, as compared to radiotherapy alone,  was associated with a reduction in the risk of death (HR for death 0.74, 95% CI 0.67 to 0.83, P < 0.00001; 2852 participants, 24 studies; moderate-certainty evidence).  AUTHORS' CONCLUSIONS: The results of this review demonstrate that chemotherapy in the curative-intent treatment of oral cavity and oropharyngeal cancers only seems to be of benefit when used in specific circumstances together with locoregional treatment. The  evidence does not show a clear survival benefit from the use of induction chemotherapy prior to radiotherapy, surgery or CRT. Adjuvant CRT reduces the risk of death by 16%, as compared to radiotherapy alone. Concurrent chemoradiation as compared to radiation alone is associated with a greater than 20% improvement in overall survival; however, additional research is required to inform how the specific chemotherapy regimen may influence this benefit.


Subject(s)
Mouth Neoplasms , Oropharyngeal Neoplasms , Chemoradiotherapy, Adjuvant , Humans , Mouth Neoplasms/drug therapy , Neoplasm Recurrence, Local , Oropharyngeal Neoplasms/drug therapy
9.
Cochrane Database Syst Rev ; 12: CD010173, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34891214

ABSTRACT

BACKGROUND: The early detection of oral cavity squamous cell carcinoma (OSCC) and oral potentially malignant disorders (OPMD), followed by appropriate treatment, may improve survival and reduce the risk for malignant transformation respectively. This is an update of a Cochrane Review first published in 2013. OBJECTIVES: To estimate the diagnostic test accuracy of conventional oral examination, vital rinsing, light-based detection, mouth self-examination, remote screening, and biomarkers, used singly or in combination, for the early detection of OPMD or OSCC in apparently healthy adults. SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 20 October 2020), MEDLINE Ovid (1946 to 20 October 2020), and Embase Ovid (1980 to 20 October 2020). The US National Institutes of Health Trials Registry (ClinicalTrials.gov) and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases. We conducted citation searches, and screened reference lists of included studies for additional references. SELECTION CRITERIA: We selected studies that reported the test accuracy of any of the aforementioned tests in detecting OPMD or OSCC during a screening procedure. Diagnosis of OPMD or OSCC was provided by specialist clinicians or pathologists, or alternatively through follow-up. DATA COLLECTION AND ANALYSIS: Two review authors independently screened titles and abstracts for relevance. Eligibility, data extraction, and quality assessment were carried out by at least two authors independently and in duplicate. Studies were assessed for methodological quality using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). We reported the sensitivity and specificity of the included studies. We provided judgement of the certainty of the evidence using a GRADE assessment. MAIN RESULTS: We included 18 studies, recruiting 72,202 participants, published between 1986 and 2019. These studies evaluated the diagnostic test accuracy of conventional oral examination (10 studies, none new to this update), mouth self-examination (four studies, two new to this update), and remote screening (three studies, all new to this update). One randomised controlled trial of test accuracy directly evaluated conventional oral examination plus vital rinsing versus conventional oral examination alone. There were no eligible studies evaluating light-based detection or blood or salivary sample analysis (which tests for the presence of biomarkers for OPMD and OSCC). Only one study of conventional oral examination was judged as at overall low risk of bias and overall low concern regarding applicability. Given the clinical heterogeneity of the included studies in terms of the participants recruited, setting, prevalence of the target condition, the application of the index test and reference standard, and the flow and timing of the process, the data could not be pooled within the broader categories of index test. For conventional oral examination (10 studies, 25,568 participants), prevalence in the test accuracy sample ranged from 1% to 51%. For the seven studies with prevalence of 10% or lower, a prevalence more comparable to the general population, the sensitivity estimates were variable, and ranged from 0.50 (95% confidence interval (CI) 0.07 to 0.93) to 0.99 (95% CI 0.97 to 1.00); the specificity estimates were more consistent and ranged from 0.94 (95% CI 0.88 to 0.97) to 0.99 (95% CI 0.98 to 1.00). We judged the overall certainty of the evidence to be low, and downgraded for inconsistency and indirectness. Evidence for mouth self-examination and remote screening was more limited. We judged the overall certainty of the evidence for these index tests to be very low, and downgraded for imprecision, inconsistency, and indirectness. We judged the evidence for vital rinsing (toluidine blue) as an adjunct to conventional oral examination compared to conventional oral examination to be moderate, and downgraded for indirectness as the trial was undertaken in a high-risk population. AUTHORS' CONCLUSIONS: There is a lack of high-certainty evidence to support the use of screening programmes for oral cavity cancer and OPMD in the general population. Frontline screeners such as general dentists, dental hygienists, other allied professionals, and community healthcare workers should remain vigilant for signs of OPMD and OSCC.


Subject(s)
Carcinoma, Squamous Cell , Early Detection of Cancer , Bias , Carcinoma, Squamous Cell/diagnosis , Humans , Mouth , Sensitivity and Specificity , United States
10.
Cochrane Database Syst Rev ; 3: CD014547, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33724442

ABSTRACT

BACKGROUND: Caries is one of the most prevalent, preventable conditions worldwide. A wide variety of management options are available at different thresholds of disease, ranging from non-operative preventive strategies such as improved oral hygiene, reduced sugar diet, and application of topical fluoride, to minimally invasive treatments for early lesions which are limited to enamel, through to selective removal and restoration for extensive lesions. The cornerstone of caries detection is a visual and tactile dental examination, however, an increasing array of methods of caries lesion detection have been proposed that could potentially support traditional methods of detection and diagnosis. Earlier identification of disease could afford patients the opportunity of less invasive treatment with less destruction of tooth tissue, reduce the need for treatment with aerosol-generating procedures, and potentially result in a reduced cost of care to the patient and to healthcare services. OBJECTIVES: Our primary objective was to determine the diagnostic accuracy of different electrical conductance devices for the detection and diagnosis of non-cavitated coronal dental caries in different populations (children, adolescents, and adults) and when tested against different reference standards. SEARCH METHODS: Cochrane Oral Health's Information Specialist undertook a search of the following databases: MEDLINE Ovid (1946 to 26 April 2019); Embase Ovid (1980 to 26 April 2019); US National Institutes of Health Ongoing Trials Register (ClinicalTrials.gov, to 26 April 2019); and the World Health Organization International Clinical Trials Registry Platform (to 26 April 2019). We studied reference lists as well as published systematic review articles. SELECTION CRITERIA: We included diagnostic accuracy studies that compared electrical conductance devices with a reference standard of histology or an enhanced visual examination. This included prospective studies that evaluated the diagnostic accuracy of single index tests and studies that directly compared two or more index tests. We included studies using previously extracted teeth or those that recruited participants with teeth believed to be sound or with early lesions limited to enamel. Studies that explicitly recruited participants with more advanced lesions that were obviously into dentine or frankly cavitated were excluded. DATA COLLECTION AND ANALYSIS: Two review authors extracted data independently using a piloted study data extraction form based on the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). Sensitivity and specificity with 95% confidence intervals (CIs) were reported for each study. This information was displayed as coupled forest plots, and plotted as summary receiver operating characteristic (SROC) plots, displaying the sensitivity-specificity points for each study. Due to variability in thresholds we estimated diagnostic accuracy using hierarchical summary receiver operating characteristic (HSROC) methods. MAIN RESULTS: We included seven studies reporting a total of 719 tooth sites or surfaces, with an overall prevalence of the target condition of 73% (528 tooth sites or surfaces). The included studies evaluated two index tests: the electronic caries monitor (ECM) (four studies, 475 tooth surfaces) and CarieScan Pro (three studies, 244 tooth surfaces). Six studies used histology as the reference standard, one used an enhanced visual examination. No study was considered to be at low risk of bias across all four domains or low concern for applicability or both. All studies were at high (five studies) or unclear (two studies) risk of bias for the patient selection domain. We judged two studies to be at unclear risk of bias for the index test domain, and one study to be at high risk of bias for the reference standard and flow and timing domains. We judged three studies to be at low concern for applicability for patient selection, and all seven studies to be of low concern for reference standard and flow and timing domains. Studies were synthesised using a hierarchical method for meta-analysis. There was variability in the results of the individual studies, with sensitivities which ranged from 0.55 to 0.98 and specificities from 0 to 1.00. These extreme values of specificity may be explained by a low number of healthy tooth surfaces in the included samples. The diagnostic odds ratio (DOR) was 15.65 (95% CI 1.43 to 171.15), and indicative of the variability in the included studies. Through meta-regression we observed no meaningful difference in accuracy according to device type or dentition. Due to the small number of studies we were unable to formally investigate other potential sources of heterogeneity. We judged the certainty of the evidence as very low, and downgraded for risk of bias due to limitations in the design and conduct of the included studies, imprecision arising from the relatively small number of surfaces studied, and inconsistency due to the variability of results. AUTHORS' CONCLUSIONS: The design and conduct of studies to determine the diagnostic accuracy of methods to detect and diagnose caries in situ is particularly challenging. The evidence base to support the detection and diagnosis of caries with electrical conductance devices is sparse. Newer electrical conductance devices show promise and further research at the enamel caries threshold using a robust study design to minimise bias is warranted. In terms of applicability, any future studies should be carried out in a clinical setting to provide a realistic assessment within the oral cavity where plaque, staining, and restorations can be problematic.


Subject(s)
Dental Caries/diagnosis , Electric Conductivity , Adolescent , Adult , Child , Confidence Intervals , Dental Instruments , Humans , Prospective Studies , Reference Standards , Sensitivity and Specificity
11.
Cochrane Database Syst Rev ; 3: CD014545, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33720395

ABSTRACT

BACKGROUND: The detection and diagnosis of caries at the earliest opportunity is fundamental to the preservation of tooth tissue and maintenance of oral health. Radiographs have traditionally been used to supplement the conventional visual-tactile clinical examination. Accurate, timely detection and diagnosis of early signs of disease could afford patients the opportunity of less invasive treatment with less destruction of tooth tissue, reduce the need for treatment with aerosol-generating procedures, and potentially result in a reduced cost of care to the patient and to healthcare services. OBJECTIVES: To determine the diagnostic accuracy of different dental imaging methods to inform the detection and diagnosis of non-cavitated enamel only coronal dental caries. SEARCH METHODS: Cochrane Oral Health's Information Specialist undertook a search of the following databases: MEDLINE Ovid (1946 to 31 December 2018); Embase Ovid (1980 to 31 December 2018); US National Institutes of Health Ongoing Trials Register (ClinicalTrials.gov, to 31 December 2018); and the World Health Organization International Clinical Trials Registry Platform (to 31 December 2018). We studied reference lists as well as published systematic review articles. SELECTION CRITERIA: We included diagnostic accuracy study designs that compared a dental imaging method with a reference standard (histology, excavation, enhanced visual examination), studies that evaluated the diagnostic accuracy of single index tests, and studies that directly compared two or more index tests. Studies reporting at both the patient or tooth surface level were included. In vitro and in vivo studies were eligible for inclusion. Studies that explicitly recruited participants with more advanced lesions that were obviously into dentine or frankly cavitated were excluded. We also excluded studies that artificially created carious lesions and those that used an index test during the excavation of dental caries to ascertain the optimum depth of excavation. DATA COLLECTION AND ANALYSIS: Two review authors extracted data independently and in duplicate using a standardised data extraction form and quality assessment based on QUADAS-2 specific to the clinical context. Estimates of diagnostic accuracy were determined using the bivariate hierarchical method to produce summary points of sensitivity and specificity with 95% confidence regions. Comparative accuracy of different radiograph methods was conducted based on indirect and direct comparisons between methods. Potential sources of heterogeneity were pre-specified and explored visually and more formally through meta-regression. MAIN RESULTS: We included 104 datasets from 77 studies reporting a total of 15,518 tooth sites or surfaces. The most frequently reported imaging methods were analogue radiographs (55 datasets from 51 studies) and digital radiographs (42 datasets from 40 studies) followed by cone beam computed tomography (CBCT) (7 datasets from 7 studies). Only 17 studies were of an in vivo study design, carried out in a clinical setting. No studies were considered to be at low risk of bias across all four domains but 16 studies were judged to have low concern for applicability across all domains. The patient selection domain had the largest number of studies judged to be at high risk of bias (43 studies); the index test, reference standard, and flow and timing domains were judged to be at high risk of bias in 30, 12, and 7 studies respectively. Studies were synthesised using a hierarchical bivariate method for meta-analysis. There was substantial variability in the results of the individual studies, with sensitivities that ranged from 0 to 0.96 and specificities from 0 to 1.00. For all imaging methods the estimated summary sensitivity and specificity point was 0.47 (95% confidence interval (CI) 0.40 to 0.53) and 0.88 (95% CI 0.84 to 0.92), respectively. In a cohort of 1000 tooth surfaces with a prevalence of enamel caries of 63%, this would result in 337 tooth surfaces being classified as disease free when enamel caries was truly present (false negatives), and 43 tooth surfaces being classified as diseased in the absence of enamel caries (false positives). Meta-regression indicated that measures of accuracy differed according to the imaging method (Chi2(4) = 32.44, P < 0.001), with the highest sensitivity observed for CBCT, and the highest specificity observed for analogue radiographs. None of the specified potential sources of heterogeneity were able to explain the variability in results. No studies included restored teeth in their sample or reported the inclusion of sealants. We rated the certainty of the evidence as low for sensitivity and specificity and downgraded two levels in total for risk of bias due to limitations in the design and conduct of the included studies, indirectness arising from the in vitro studies, and the observed inconsistency of the results. AUTHORS' CONCLUSIONS: The design and conduct of studies to determine the diagnostic accuracy of methods to detect and diagnose caries in situ are particularly challenging. Low-certainty evidence suggests that imaging for the detection or diagnosis of early caries may have poor sensitivity but acceptable specificity, resulting in a relatively high number of false-negative results with the potential for early disease to progress. If left untreated, the opportunity to provide professional or self-care practices to arrest or reverse early caries lesions will be missed. The specificity of lesion detection is however relatively high, and one could argue that initiation of non-invasive management (such as the use of topical fluoride), is probably of low risk. CBCT showed superior sensitivity to analogue or digital radiographs but has very limited applicability to the general dental practitioner. However, given the high-radiation dose, and potential for caries-like artefacts from existing restorations, its use cannot be justified in routine caries detection. Nonetheless, if early incidental carious lesions are detected in CBCT scans taken for other purposes, these should be reported. CBCT has the potential to be used as a reference standard in diagnostic studies of this type. Despite the robust methodology applied in this comprehensive review, the results should be interpreted with some caution due to shortcomings in the design and execution of many of the included studies. Future research should evaluate the comparative accuracy of different methods, be undertaken in a clinical setting, and focus on minimising bias arising from the use of imperfect reference standards in clinical studies.


Subject(s)
Cone-Beam Computed Tomography , Datasets as Topic , Dental Caries/diagnostic imaging , Radiography, Dental/methods , Adult , Bias , Child , Cone-Beam Computed Tomography/statistics & numerical data , Dentition, Permanent , False Negative Reactions , False Positive Reactions , Humans , Radiography, Dental/statistics & numerical data , Radiography, Dental, Digital/statistics & numerical data , Reference Standards , Sensitivity and Specificity , Tooth, Deciduous
12.
Cochrane Database Syst Rev ; 12: CD013811, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33319353

ABSTRACT

BACKGROUND: Caries is one of the most prevalent and preventable conditions worldwide. If identified early enough then non-invasive techniques can be applied, and therefore this review focusses on early caries involving the enamel surface of the tooth. The cornerstone of caries detection is a visual and tactile dental examination, however alternative methods of detection are available, and these include fluorescence-based devices. There are three categories of fluorescence-based device each primarily defined by the different wavelengths they exploit; we have labelled these groups as red, blue, and green fluorescence. These devices could support the visual examination for the detection and diagnosis of caries at an early stage of decay. OBJECTIVES: Our primary objectives were to estimate the diagnostic test accuracy of fluorescence-based devices for the detection and diagnosis of enamel caries in children or adults. We planned to investigate the following potential sources of heterogeneity: tooth surface (occlusal, proximal, smooth surface or adjacent to a restoration); single point measurement devices versus imaging or surface assessment devices; and the prevalence of more severe disease in each study sample, at the level of caries into dentine. SEARCH METHODS: Cochrane Oral Health's Information Specialist undertook a search of the following databases: MEDLINE Ovid (1946 to 30 May 2019); Embase Ovid (1980 to 30 May 2019); US National Institutes of Health Ongoing Trials Register (ClinicalTrials.gov, to 30 May 2019); and the World Health Organization International Clinical Trials Registry Platform (to 30 May 2019). We studied reference lists as well as published systematic review articles. SELECTION CRITERIA: We included diagnostic accuracy study designs that compared a fluorescence-based device with a reference standard. This included prospective studies that evaluated the diagnostic accuracy of single index tests and studies that directly compared two or more index tests. Studies that explicitly recruited participants with caries into dentine or frank cavitation were excluded. DATA COLLECTION AND ANALYSIS: Two review authors extracted data independently using a piloted study data extraction form based on the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). Sensitivity and specificity with 95% confidence intervals (CIs) were reported for each study. This information has been displayed as coupled forest plots and summary receiver operating characteristic (SROC) plots, displaying the sensitivity-specificity points for each study. We estimated diagnostic accuracy using hierarchical summary receiver operating characteristic (HSROC) methods. We reported sensitivities at fixed values of specificity (median 0.78, upper quartile 0.90). MAIN RESULTS: We included a total of 133 studies, 55 did not report data in the 2 x 2 format and could not be included in the meta-analysis. 79 studies which provided 114 datasets and evaluated 21,283 tooth surfaces were included in the meta-analysis. There was a high risk of bias for the participant selection domain. The index test, reference standard, and flow and timing domains all showed a high proportion of studies to be at low risk of bias. Concerns regarding the applicability of the evidence were high or unclear for all domains, the highest proportion being seen in participant selection. Selective participant recruitment, poorly defined diagnostic thresholds, and in vitro studies being non-generalisable to the clinical scenario of a routine dental examination were the main reasons for these findings. The dominance of in vitro studies also means that the information on how the results of these devices are used to support diagnosis, as opposed to pure detection, was extremely limited. There was substantial variability in the results which could not be explained by the different devices or dentition or other sources of heterogeneity that we investigated. The diagnostic odds ratio (DOR) was 14.12 (95% CI 11.17 to 17.84). The estimated sensitivity, at a fixed median specificity of 0.78, was 0.70 (95% CI 0.64 to 0.75). In a hypothetical cohort of 1000 tooth sites or surfaces, with a prevalence of enamel caries of 57%, obtained from the included studies, the estimated sensitivity of 0.70 and specificity of 0.78 would result in 171 missed tooth sites or surfaces with enamel caries (false negatives) and 95 incorrectly classed as having early caries (false positives). We used meta-regression to compare the accuracy of the different devices for red fluorescence (84 datasets, 14,514 tooth sites), blue fluorescence (21 datasets, 3429 tooth sites), and green fluorescence (9 datasets, 3340 tooth sites) devices. Initially, we allowed threshold, shape, and accuracy to vary according to device type by including covariates in the model. Allowing consistency of shape, removal of the covariates for accuracy had only a negligible effect (Chi2 = 3.91, degrees of freedom (df) = 2, P = 0.14). Despite the relatively large volume of evidence we rated the certainty of the evidence as low, downgraded two levels in total, for risk of bias due to limitations in the design and conduct of the included studies, indirectness arising from the high number of in vitro studies, and inconsistency due to the substantial variability of results. AUTHORS' CONCLUSIONS: There is considerable variation in the performance of these fluorescence-based devices that could not be explained by the different wavelengths of the devices assessed, participant, or study characteristics. Blue and green fluorescence-based devices appeared to outperform red fluorescence-based devices but this difference was not supported by the results of a formal statistical comparison. The evidence base was considerable, but we were only able to include 79 studies out of 133 in the meta-analysis as estimates of sensitivity or specificity values or both could not be extracted or derived. In terms of applicability, any future studies should be carried out in a clinical setting, where difficulties of caries assessment within the oral cavity include plaque, staining, and restorations. Other considerations include the potential of fluorescence devices to be used in combination with other technologies and comparative diagnostic accuracy studies.


ANTECEDENTES: La caries es una de las afecciones más frecuentes y prevenibles en todo el mundo. Si se identifican con suficiente antelación, se pueden aplicar técnicas no invasivas y, por lo tanto, esta revisión se centra en las caries tempranas que afectan la superficie del esmalte del diente. La piedra angular de la detección de la caries es una exploración dental visual y táctil; sin embargo, existen métodos alternativos de detección, entre los que se incluyen los dispositivos basados en la fluorescencia. Hay tres categorías de dispositivos basados en la fluorescencia, cada una de ellas definida principalmente por las diferentes longitudes de onda que utilizan; estos grupos se han llamado fluorescencia roja, azul y verde. Estos dispositivos podrían apoyar la exploración visual para la detección y el diagnóstico de la caries en una etapa temprana de descomposición. OBJETIVOS: Los objetivos principales fueron determinar la exactitud de la prueba diagnóstica de dispositivos basados en la fluorescencia para la detección y el diagnóstico de la caries del esmalte en niños o adultos. Se planificó investigar las siguientes fuentes potenciales de heterogeneidad: superficie dental (oclusal, proximal, superficie lisa o adyacente a una restauración); dispositivos de medición de punto único frente a dispositivos de imagen o de evaluación de superficie; y la prevalencia de enfermedades más graves en cada muestra de estudio, a nivel de caries en la dentina. MÉTODOS DE BÚSQUEDA: El documentalista del Grupo Cochrane de Salud Oral (Cochrane Oral Health Group) realizó una búsqueda en las siguientes bases de datos: MEDLINE Ovid (1946 al 30 de mayo de 2019); Embase Ovid (1980 al 30 de mayo de 2019); Registro de ensayos en curso de los Institutos Nacionales de Salud de los Estados Unidos (ClinicalTrials.gov, hasta el 30 de mayo de 2019); y la Plataforma de Registro Internacional de Ensayos Clínicos de la Organización Mundial de la Salud (hasta el 30 de mayo de 2019). Se estudiaron las listas de referencias y las revisiones sistemáticas publicadas. CRITERIOS DE SELECCIÓN: Se incluyeron diseños de estudios de exactitud diagnóstica que compararon un dispositivo basado en la fluorescencia con un estándar de referencia. Esto incluyó estudios prospectivos que evaluaron la exactitud diagnóstica de una única prueba índice y estudios que compararon directamente dos o más pruebas índice. Se excluyeron los estudios que reclutaron explícitamente a participantes con caries en la dentina o en la cavitación franca. OBTENCIÓN Y ANÁLISIS DE LOS DATOS: Dos autores de la revisión extrajeron los datos de forma independiente mediante un formulario de extracción de datos de estudios piloto basado en la Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS­2). De cada estudio se informaron la sensibilidad y la especificidad con intervalos de confianza (IC) del 95%. Esta información se ha presentado en forma de diagramas de bosque (forest plot) emparejados y gráficos de curva resumen de rendimiento diagnóstico (SROC), que muestran los puntos de sensibilidad­especificidad de cada estudio. La exactitud diagnóstica se calculó mediante métodos de modelo jerárquico de curva resumen de rendimiento diagnóstico (HSROC). Se informaron sensibilidades a valores fijos de especificidad (mediana 0,78, cuartil superior 0,90). RESULTADOS PRINCIPALES: Se incluyeron un total de 133 estudios, 55 no informaron los datos en el formato 2 x 2 y no se pudieron incluir en el metanálisis. En el metanálisis se incluyeron 79 estudios que proporcionaron 114 conjuntos de datos y evaluaron 21 283 superficies dentales. Hubo alto riesgo de sesgo en el dominio de selección de los participantes. La prueba índice, el estándar de referencia y los dominios de flujo y tiempo mostraron que una alta proporción de los estudios tenían un bajo riesgo de sesgo. Las preocupaciones relacionadas con la aplicabilidad de la evidencia fueron altas o poco claras en todos los dominios, y la mayor proporción se observó en la selección de los participantes. El reclutamiento selectivo de los participantes, los umbrales diagnósticos mal definidos y el hecho de que los estudios in vitro no se puedan generalizar al escenario clínico de una exploración dental de rutina fueron las principales razones de estos hallazgos. El predominio de los estudios in vitro también hizo que la información sobre la forma en que se utilizan los resultados de esos dispositivos para apoyar el diagnóstico, en contraposición con la detección pura, fuera muy limitada. Hubo una variabilidad significativa en los resultados que no se pudo explicar por los diferentes dispositivos o dentición u otras fuentes de heterogeneidad que se investigaron. El odds ratio diagnóstico (ORD) fue 14,12 (IC del 95%: 11,17 a 17,84). La sensibilidad estimada, con una especificidad media fija de 0,78, fue 0,70 (IC del 95%: 0,64 a 0,75). En una cohorte hipotética de 1000 puntos o superficies dentales, con una prevalencia de caries del esmalte del 57%, obtenida de los estudios incluidos, la sensibilidad estimada de 0,70 y la especificidad de 0,78 daría lugar a 171 puntos o superficies dentales con caries del esmalte no detectados (falsos negativos) y 95 incorrectamente considerados con caries temprana (falsos positivos). Se utilizó la metarregresión para comparar la exactitud de los diferentes dispositivos para la fluorescencia roja (84 conjuntos de datos, 14 514 puntos dentales), la fluorescencia azul (21 conjuntos de datos, 3429 puntos dentales), y la fluorescencia verde (nueve conjuntos de datos, 3340 puntos dentales). Inicialmente, se permitió que el umbral, la forma y la exactitud variaran según el tipo de dispositivo, incluyendo covariables en el modelo. Permitiendo la homogeneidad de la forma, la eliminación de las covariables para la exactitud tuvo sólo un efecto insignificante (Ji2 = 3,91; grados de libertad [gl] = 2; p = 0,14). A pesar del volumen relativamente grande de evidencia, la certeza de las mismas se consideró baja, disminuyendo dos niveles en total, por el riesgo de sesgo debido a las limitaciones en el diseño y la realización de los estudios incluidos, los hallazgos indirectos derivados del elevado número de estudios in vitro y la incoherencia debida a la considerable variabilidad de los resultados. CONCLUSIONES DE LOS AUTORES: Existe una considerable variación en la ejecución de estos dispositivos basados en la fluorescencia que no se pudo explicar por las diferentes longitudes de onda de los dispositivos evaluados, los participantes ni las características de los estudios. Los dispositivos basados en la fluorescencia azul y verde parecieron superar a los basados en la fluorescencia roja, pero esta diferencia no estuvo respaldada por los resultados de una comparación estadística formal. La base de evidencia fue considerable, pero sólo fue posible incluir 79 estudios de 133 en el metanálisis, ya que no se pudieron extraer o derivar las estimaciones de los valores de sensibilidad o especificidad o ambos. En cuanto a la aplicabilidad, todo estudio futuro se debería realizar en un ámbito clínico, en el que las dificultades de la evaluación de la caries dentro de la cavidad oral incluyen la placa, la tinción y las restauraciones. Otras consideraciones son el potencial de los dispositivos de fluorescencia para ser utilizados en combinación con otras tecnologías y estudios comparativos de exactitud diagnóstica.


Subject(s)
Dental Caries/diagnosis , Quantitative Light-Induced Fluorescence/instrumentation , Adult , Bias , Child , Color , Fluorescence , Humans , Patient Selection , Prospective Studies , Sensitivity and Specificity
13.
Cochrane Database Syst Rev ; 9: CD013627, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32936948

ABSTRACT

BACKGROUND: COVID-19 infection poses a serious risk to patients and - due to its contagious nature - to those healthcare workers (HCWs) treating them. If the mouth and nose of patients with infection are irrigated with antimicrobial solutions, this may help the patients by killing any coronavirus present at those sites. It may also reduce the risk of the active infection being passed to HCWs through droplet transmission or direct contact. However, the use of such antimicrobial solutions may be associated with harms related to the toxicity of the solutions themselves or alterations in the natural microbial flora of the mouth or nose. OBJECTIVES: To assess the benefits and harms of antimicrobial mouthwashes and nasal sprays administered to patients with suspected or confirmed COVID-19 infection to both the patients and the HCWs caring for them. SEARCH METHODS: Information Specialists from Cochrane ENT and Cochrane Oral Health searched the Central Register of Controlled Trials (CENTRAL 2020, Issue 6); Ovid MEDLINE; Ovid Embase and additional sources for published and unpublished trials. The date of the search was 1 June 2020.  SELECTION CRITERIA: This is a question that urgently requires evidence, however at the present time we did not anticipate finding many completed RCTs. We therefore planned to include the following types of studies: randomised controlled trials (RCTs); quasi-RCTs; non-randomised controlled trials; prospective cohort studies; retrospective cohort studies; cross-sectional studies; controlled before-and-after studies. We set no minimum duration for the studies.   We sought studies comparing antimicrobial mouthwash and/or nasal spray (alone or in combination) at any concentration, delivered with any frequency or dosage to suspected/confirmed COVID-19 patients. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methodological procedures. Our primary outcomes were: 1) RECOVERY* (www.recoverytrial.net) outcomes in patients (mortality; hospitalisation status; use of ventilation; use of renal dialysis or haemofiltration); 2) incidence of symptomatic or test-positive COVID-19 infection in HCWs; 3) significant adverse event: anosmia (or disturbance in sense of smell). Our secondary outcomes were: 4) change in COVID-19 viral load in patients; 5) COVID-19 viral content of aerosol (when present); 6) other adverse events: changes in microbiome in oral cavity, nasal cavity, oro- or nasopharynx; 7) other adverse events: allergy, irritation/burning of nasal, oral or oropharyngeal mucosa (e.g. erosions, ulcers, bleeding), long-term staining of mucous membranes or teeth, accidental ingestion. We planned to use GRADE to assess the certainty of the evidence for each outcome. MAIN RESULTS: We found no completed studies to include in this review. We identified 16 ongoing studies (including 14 RCTs), which aim to enrol nearly 1250 participants. The interventions included in these trials are ArtemiC (artemisinin, curcumin, frankincense and vitamin C), Citrox (a bioflavonoid), cetylpyridinium chloride, chlorhexidine, chlorine dioxide, essential oils, hydrogen peroxide, hypertonic saline, Kerecis spray (omega 3 viruxide - containing neem oil and St John's wort), neem extract, nitric oxide releasing solution, povidone iodine and saline with baby shampoo.  AUTHORS' CONCLUSIONS: We identified no studies for inclusion in this review. This is not surprising given the relatively recent emergence of COVID-19 infection. It is promising that the question posed in this review is being addressed by a number of RCTs and other studies. We are concerned that few of the ongoing studies specifically state that they will evaluate adverse events such as changes in the sense of smell or to the oral and nasal microbiota, and any consequences thereof. Very few interventions have large and dramatic effect sizes. If a positive treatment effect is demonstrated when studies are available for inclusion in this review, it may not be large. In these circumstances in particular it may be a challenge to weigh up the benefits against the harms if the latter are of uncertain frequency and severity.


Subject(s)
Anti-Infective Agents/administration & dosage , Betacoronavirus , Coronavirus Infections/therapy , Health Personnel , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Mouthwashes/administration & dosage , Nasal Sprays , Pneumonia, Viral/therapy , Anti-Infective Agents/adverse effects , COVID-19 , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Humans , Mouth/virology , Mouthwashes/adverse effects , Nose/virology , Occupational Diseases/etiology , Occupational Diseases/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , SARS-CoV-2 , Therapeutic Irrigation
14.
Cochrane Database Syst Rev ; 9: CD013628, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32936947

ABSTRACT

BACKGROUND: COVID-19 infection poses a serious risk to patients and - due to its contagious nature - to those healthcare workers (HCWs) treating them. The risks of transmission of infection are greater when a patient is undergoing an aerosol-generating procedure (AGP). Not all those with COVID-19 infection are symptomatic, or suspected of harbouring the infection. If a patient who is not known to have or suspected of having COVID-19 infection is to undergo an AGP, it would nonetheless be sensible to minimise the risk to those HCWs treating them. If the mouth and nose of an individual undergoing an AGP are irrigated with antimicrobial solutions, this may be a simple and safe method of reducing the risk of any covert infection being passed to HCWs through droplet transmission or direct contact. Alternatively, the use of antimicrobial solutions by the HCW may decrease the chance of them acquiring COVID-19 infection. However, the use of such antimicrobial solutions may be associated with harms related to the toxicity of the solutions themselves or alterations in the natural microbial flora of the mouth or nose. OBJECTIVES: To assess the benefits and harms of antimicrobial mouthwashes and nasal sprays administered to HCWs and/or patients when undertaking AGPs on patients without suspected or confirmed COVID-19 infection. SEARCH METHODS: Information Specialists from Cochrane ENT and Cochrane Oral Health searched the Central Register of Controlled Trials (CENTRAL 2020, Issue 6); Ovid MEDLINE; Ovid Embase and additional sources for published and unpublished trials. The date of the search was 1 June 2020.  SELECTION CRITERIA: This is a question that urgently requires evidence, however at the present time we did not anticipate finding many completed RCTs. We therefore planned to include the following types of studies: randomised controlled trials (RCTs); quasi-RCTs; non-randomised controlled trials; prospective cohort studies; retrospective cohort studies; cross-sectional studies; controlled before-and-after studies. We set no minimum duration for the studies.   We sought studies comparing any antimicrobial mouthwash and/or nasal spray (alone or in combination) at any concentration, delivered to the patient or HCW before and/or after an AGP. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methodological procedures. Our primary outcomes were: 1) incidence of symptomatic or test-positive COVID-19 infection in HCWs or patients; 2) significant adverse event: anosmia (or disturbance in sense of smell). Our secondary outcomes were: 3) COVID-19 viral content of aerosol (when present); 4) change in COVID-19 viral load at site(s) of irrigation; 5) other adverse events: changes in microbiome in oral cavity, nasal cavity, oro- or nasopharynx; 6) other adverse events: allergy, irritation/burning of nasal, oral or oropharyngeal mucosa (e.g. erosions, ulcers, bleeding), long-term staining of mucous membranes or teeth, accidental ingestion. We planned to use GRADE to assess the certainty of the evidence for each outcome. MAIN RESULTS: We found no completed studies to include in this review.   AUTHORS' CONCLUSIONS: We identified no studies for inclusion in this review, nor any ongoing studies. The absence of completed studies is not surprising given the relatively recent emergence of COVID-19 infection. However, we are disappointed that this important clinical question is not being addressed by ongoing studies.


Subject(s)
Anti-Infective Agents/administration & dosage , Betacoronavirus , Coronavirus Infections/transmission , Health Personnel , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Mouthwashes/administration & dosage , Nasal Sprays , Pneumonia, Viral/transmission , Administration, Intranasal , Air Microbiology , Anti-Infective Agents/adverse effects , Asymptomatic Infections/therapy , COVID-19 , Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Humans , Mouth/virology , Mouthwashes/adverse effects , Nose/virology , Occupational Diseases/etiology , Occupational Diseases/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/therapy , SARS-CoV-2
15.
Cochrane Database Syst Rev ; 9: CD013626, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32936949

ABSTRACT

BACKGROUND: COVID-19 infection poses a serious risk to patients and - due to its contagious nature - to those healthcare workers (HCWs) treating them. If the mouth and nose of HCWs are irrigated with antimicrobial solutions, this may help reduce the risk of active infection being passed from infected patients to HCWs through droplet transmission or direct contact. However, the use of such antimicrobial solutions may be associated with harms related to the toxicity of the solutions themselves, or alterations in the natural microbial flora of the mouth or nose. Understanding these possible side effects is particularly important when the HCWs are otherwise fit and well. OBJECTIVES: To assess the benefits and harms of antimicrobial mouthwashes and nasal sprays used by healthcare workers (HCWs) to protect themselves when treating patients with suspected or confirmed COVID-19 infection. SEARCH METHODS: Information Specialists from Cochrane ENT and Cochrane Oral Health searched the Central Register of Controlled Trials (CENTRAL 2020, Issue 6); Ovid MEDLINE; Ovid Embase and additional sources for published and unpublished trials. The date of the search was 1 June 2020.  SELECTION CRITERIA: This is a question that urgently requires evidence, however at the present time we did not anticipate finding many completed randomised controlled trials (RCTs). We therefore planned to include the following types of studies: RCTs; quasi-RCTs; non-randomised controlled trials; prospective cohort studies; retrospective cohort studies; cross-sectional studies; controlled before-and-after studies. We set no minimum duration for the studies.   We sought studies comparing any antimicrobial mouthwash and/or nasal spray (alone or in combination) at any concentration, delivered to HCWs, with or without the same intervention being given to the patients with COVID-19. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methodological procedures. Our primary outcomes were: 1) incidence of symptomatic or test-positive COVID-19 infection in HCWs; 2) significant adverse event: anosmia (or disturbance in sense of smell). Our secondary outcomes were: 3) viral content of aerosol, when present (if intervention administered to patients); 4) other adverse events: changes in microbiome in oral cavity, nasal cavity, oro- or nasopharynx; 5) other adverse events: allergy, irritation/burning of nasal, oral or oropharyngeal mucosa (e.g. erosions, ulcers, bleeding), long-term staining of mucous membranes or teeth, accidental ingestion. We planned to use GRADE to assess the certainty of the evidence for each outcome. MAIN RESULTS: We found no completed studies to include in this review. We identified three ongoing studies (including two RCTs), which aim to enrol nearly 700 participants. The interventions included in these trials are povidone iodine, nitric oxide and GLS-1200 oral spray (the constituent of this spray is unclear and may not be antimicrobial in nature).   AUTHORS' CONCLUSIONS: We identified no studies for inclusion in this review. This is not surprising given the relatively recent emergence of COVID-19 infection. It is promising that the question posed in this review is being addressed by two RCTs and a non-randomised study. We are concerned that only one of the ongoing studies specifically states that it will evaluate adverse events and it is not clear if this will include changes in the sense of smell or to the oral and nasal microbiota, and any consequences thereof. Very few interventions have large and dramatic effect sizes. If a positive treatment effect is demonstrated when studies are available for inclusion in this review, it may not be large. In these circumstances in particular, where those receiving the intervention are otherwise fit and well, it may be a challenge to weigh up the benefits against the harms if the latter are of uncertain frequency and severity.


Subject(s)
Anti-Infective Agents/administration & dosage , Betacoronavirus , Coronavirus Infections/transmission , Health Personnel , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Mouthwashes/administration & dosage , Nasal Sprays , Pneumonia, Viral/transmission , Anti-Infective Agents/adverse effects , COVID-19 , Coronavirus Infections/prevention & control , Humans , Mouth/virology , Mouthwashes/adverse effects , Nose/virology , Occupational Diseases/etiology , Occupational Diseases/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , SARS-CoV-2 , Therapeutic Irrigation
16.
Clin Oral Implants Res ; : 715-726, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32460381

ABSTRACT

OBJECTIVES: To investigate the full publication proportion (FPP) of abstracts presented at the 2010 and 2011 EAO Congresses, analyse the discrepancies between abstracts and their full publications, and explore potential predictors of FPP and discrepancies. METHODS: Abstracts presented at the 2010 and 2011 EAO Congresses were retrieved. Associated full publications were identified by searching PubMed, Embase and Google Scholar. Discrepancies between abstracts and full publications were identified, classified and evaluated using a discrepancy score. The Kaplan-Meier survival analysis was used to describe cumulative FPP over time. Predictors for FPP and the discrepancy score were analysed using cox regression modelling and a linear regression model, respectively. RESULTS: 850 abstracts were included. The overall FPP was 36.4% with a median time lapse of 12 months. Higher FPP were significantly associated with oral presentation (HR=2.33; 95% CI: 1.68 to 3.22; p<0.001), multiple affiliations (HR =1.32; 95% CI: 1.00 to 1.73; p=0.048) and presence of statistical tests (HR =1.78; 95% CI: 1.36 to 2.32; p<0.001). 91.3% pairs had at least one minor change from the abstract and 70.9% had at least one major change. Greater discrepancy score was significantly associated with longer time lapse (B=0.06; 95% CI: 0.04 to 0.08; p<0.001) and being clinical research (B=1.30; 95% CI: 0.52 to 2.08; p=0.001). CONCLUSIONS: Thirty-six percent of abstracts presented at the EAO Congresses were published. Among these, more than two-thirds showed at least one major change in their full publications. Abstracts presented in oral implantology conferences should not be relied upon to inform practice.

17.
Cochrane Database Syst Rev ; 3: CD007868, 2019 03 04.
Article in English | MEDLINE | ID: mdl-30829399

ABSTRACT

BACKGROUND: Caries (dental decay) is a disease of the hard tissues of the teeth caused by an imbalance, over time, in the interactions between cariogenic bacteria in dental plaque and fermentable carbohydrates (mainly sugars). Regular toothbrushing with fluoride toothpaste is the principal non-professional intervention to prevent caries, but the caries-preventive effect varies according to different concentrations of fluoride in toothpaste, with higher concentrations associated with increased caries control. Toothpastes with higher fluoride concentration increases the risk of fluorosis (enamel defects) in developing teeth. This is an update of the Cochrane Review first published in 2010. OBJECTIVES: To determine and compare the effects of toothpastes of different fluoride concentrations (parts per million (ppm)) in preventing dental caries in children, adolescents, and adults. SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 15 August 2018); the Cochrane Central Register of Controlled Trials (CENTRAL; 2018, Issue 7) in the Cochrane Library (searched 15 August 2018); MEDLINE Ovid (1946 to 15 August 2018); and Embase Ovid (1980 to 15 August 2018). The US National Institutes of Health Ongoing Trials Register (ClinicalTrials.gov) and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials (15 August 2018). No restrictions were placed on the language or date of publication when searching the electronic databases. SELECTION CRITERIA: Randomised controlled trials that compared toothbrushing with fluoride toothpaste with toothbrushing with a non-fluoride toothpaste or toothpaste of a different fluoride concentration, with a follow-up period of at least 1 year. The primary outcome was caries increment measured by the change from baseline in the decayed, (missing), and filled surfaces or teeth index in all permanent or primary teeth (D(M)FS/T or d(m)fs/t). DATA COLLECTION AND ANALYSIS: Two members of the review team, independently and in duplicate, undertook the selection of studies, data extraction, and risk of bias assessment. We graded the certainty of the evidence through discussion and consensus. The primary effect measure was the mean difference (MD) or standardised mean difference (SMD) caries increment. Where it was appropriate to pool data, we used random-effects pairwise or network meta-analysis. MAIN RESULTS: We included 96 studies published between 1955 and 2014 in this updated review. Seven studies with 11,356 randomised participants (7047 evaluated) reported the effects of fluoride toothpaste up to 1500 ppm on the primary dentition; one study with 2500 randomised participants (2008 evaluated) reported the effects of 1450 ppm fluoride toothpaste on the primary and permanent dentition; 85 studies with 48,804 randomised participants (40,066 evaluated) reported the effects of toothpaste up to 2400 ppm on the immature permanent dentition; and three studies with 2675 randomised participants (2162 evaluated) reported the effects of up to 1100 ppm fluoride toothpaste on the mature permanent dentition. Follow-up in most studies was 36 months.In the primary dentition of young children, 1500 ppm fluoride toothpaste reduces caries increment when compared with non-fluoride toothpaste (MD -1.86 dfs, 95% confidence interval (CI) -2.51 to -1.21; 998 participants, one study, moderate-certainty evidence); the caries-preventive effects for the head-to-head comparison of 1055 ppm versus 550 ppm fluoride toothpaste are similar (MD -0.05, dmfs, 95% CI -0.38 to 0.28; 1958 participants, two studies, moderate-certainty evidence), but toothbrushing with 1450 ppm fluoride toothpaste slightly reduces decayed, missing, filled teeth (dmft) increment when compared with 440 ppm fluoride toothpaste (MD -0.34, dmft, 95%CI -0.59 to -0.09; 2362 participants, one study, moderate-certainty evidence). The certainty of the remaining evidence for this comparison was judged to be low.We included 81 studies in the network meta-analysis of D(M)FS increment in the permanent dentition of children and adolescents. The network included 21 different comparisons of seven fluoride concentrations. The certainty of the evidence was judged to be low with the following exceptions: there was high- and moderate-certainty evidence that 1000 to 1250 ppm or 1450 to 1500 ppm fluoride toothpaste reduces caries increments when compared with non-fluoride toothpaste (SMD -0.28, 95% CI -0.32 to -0.25, 55 studies; and SMD -0.36, 95% CI -0.43 to -0.29, four studies); there was moderate-certainty evidence that 1450 to 1500 ppm fluoride toothpaste slightly reduces caries increments when compared to 1000 to 1250 ppm (SMD -0.08, 95% CI -0.14 to -0.01, 10 studies); and moderate-certainty evidence that the caries increments are similar for 1700 to 2200 ppm and 2400 to 2800 ppm fluoride toothpaste when compared to 1450 to 1500 ppm (SMD 0.04, 95% CI -0.07 to 0.15, indirect evidence only; SMD -0.05, 95% CI -0.14 to 0.05, two studies).In the adult permanent dentition, 1000 or 1100 ppm fluoride toothpaste reduces DMFS increment when compared with non-fluoride toothpaste in adults of all ages (MD -0.53, 95% CI -1.02 to -0.04; 2162 participants, three studies, moderate-certainty evidence). The evidence for DMFT was low certainty.Only a minority of studies assessed adverse effects of toothpaste. When reported, effects such as soft tissue damage and tooth staining were minimal. AUTHORS' CONCLUSIONS: This Cochrane Review supports the benefits of using fluoride toothpaste in preventing caries when compared to non-fluoride toothpaste. Evidence for the effects of different fluoride concentrations is more limited, but a dose-response effect was observed for D(M)FS in children and adolescents. For many comparisons of different concentrations the caries-preventive effects and our confidence in these effect estimates are uncertain and could be challenged by further research. The choice of fluoride toothpaste concentration for young children should be balanced against the risk of fluorosis.


Subject(s)
Cariostatic Agents/therapeutic use , Dental Caries/prevention & control , Fluorides/therapeutic use , Toothpastes/therapeutic use , Adolescent , Adult , Cariostatic Agents/administration & dosage , Child , DMF Index , Dentition, Permanent , Fluorides/administration & dosage , Humans , Network Meta-Analysis , Randomized Controlled Trials as Topic , Tooth, Deciduous , Toothpastes/chemistry
18.
Cleft Palate Craniofac J ; 56(2): 222-230, 2019 02.
Article in English | MEDLINE | ID: mdl-29665338

ABSTRACT

OBJECTIVE: To identify outcomes relating to sleep-disordered breathing (SDB) that are relevant to parents, during the early weeks of caring for infants with cleft palate (CP), and compare these with clinical outcomes identified in a systematic search of research literature. DESIGN: A qualitative study using telephone/face-to-face interviews with parents explored their understanding of breathing and respiratory effort in infants with CP. SETTING: Care provided by 3 specialist cleft centers in the United Kingdom, with study conducted in parents' homes. PARTICIPANTS: Criteria for participation were parents of infants with isolated CP aged 12 to 16 weeks. Thirty-one parents of infants with CP (over 12 weeks) were invited to participate in the interview. Interviews were completed with 27 parents; 4 parents could not be contacted after completing the sleep monitoring. RESULTS: Parents' description of infants' sleep suggests that breathing is not considered as a separate priority from their principal concerns of feeding and sleeping. They observe indicators of infants' breathing, but these are not perceived as signs of SDB. Parents' decision to use lateral or supine sleep positioning reflects their response to advice from specialists, observation of their infants' comfort, ease of breathing, and personal experience. Outcomes, identified in published research of SDB, coincide with parents' concerns but are expressed in medical language and fit into distinct domains of "snoring," "sleep," "gas exchange," and "apnea." CONCLUSIONS: Parents' description of sleeping and respiration in infants with CP reflect their everyday experience, offering insight into their understanding, priorities, and language used to describe respiration. Understanding parents' individual priorities and how these are expressed could be fundamental to selecting meaningful outcomes for future studies of airway interventions.


Subject(s)
Cleft Palate , Sleep Apnea Syndromes , Humans , Infant , Parents , Snoring , United Kingdom
19.
BMC Med Res Methodol ; 18(1): 6, 2018 Jan 10.
Article in English | MEDLINE | ID: mdl-29316880

ABSTRACT

BACKGROUND: The reporting of randomised controlled trial (RCT) abstracts is of vital importance. The primary objective of this study was to investigate the association between structure format and RCT abstracts' quality of methodology reporting, informed by the current requirement and usage of structure formats by leading general medical/internal medicine journals (secondary objective). METHODS: A two-part cross-sectional study. First, through hand searches, we identified all RCTs published in the top-50 high-impact general medical/internal medicine journals during July-December 2015 (n = 370), and retrieved the 'instructions to authors' of these journals. From these, we extracted the actual usage of structure formats and headings, as well as relevant journal policies. Then, after a pilot study and sample size calculation, we assessed the methodology reporting quality of 176 IMRaD (Introduction, Methods, Results, and Discussion) and 165 HS (Highly Structured) RCT abstracts sampled from 33 of the 50 selected journals, using a 9-item checklist developed based on the CONSORT for Abstracts guidelines (primary outcome: overall quality score, OQS; score range 0 to 9). RESULTS: 88% (324/370) of all identified RCT abstracts were structured, among which 66% (215/324) used the IMRaD format and 34% (109/324) used HS. According to journals' 'instructions to authors', 48% (24/50) journals required IMRaD, 32% (16/50) required HS, 8% (4/50) required unstructured, while the rest did not state any requirement on structure format. According to generalised estimation equation analysis adjusting for potential confounders and clustering effects, the OQS of HS abstracts was 0.5 (95% CI 0.1 to 1.0, p = 0.028) higher than IMRaD abstracts. More HS abstracts reported study setting (adjusted odds ratio, 4.2; 95% CI: 1.7 to 10.0; p = 0.001), definition of the main outcome measure (2.5; 1.3 to 4.9; p = 0.006) and the time point for main outcome assessment (3.0; 1.5 to 6.2; p = 0.002), whereas more IMRaD abstracts described the unit of randomisation (0.4; 0.3 to 0.8; p = 0.004). CONCLUSIONS: For RCT abstracts, the IMRaD format is more frequently used and required by leading general medical/internal medicine journals than the HS format. Abstracts in the HS format report trial methodology more completely than those in the IMRaD format.

20.
Cochrane Database Syst Rev ; 12: CD006205, 2018 12 24.
Article in English | MEDLINE | ID: mdl-30582609

ABSTRACT

BACKGROUND: Surgery is an important part of the management of oral cavity cancer with regard to both the removal of the primary tumour and removal of lymph nodes in the neck. Surgery is less frequently used in oropharyngeal cancer. Surgery alone may be treatment for early-stage disease or surgery may be used in combination with radiotherapy, chemotherapy and immunotherapy/biotherapy. There is variation in the recommended timing and extent of surgery in the overall treatment regimens of people with these cancers. This is an update of a review originally published in 2007 and first updated in 2011. OBJECTIVES: To determine which surgical treatment modalities for oral and oropharyngeal cancers result in increased overall survival, disease-free survival and locoregional control and reduced recurrence. To determine the implication of treatment modalities in terms of morbidity, quality of life, costs, hospital days of treatment, complications and harms. SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 20 December 2017), the Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 11), MEDLINE Ovid (1946 to 20 December 2017) and Embase Ovid (1980 to 20 December 2017). We searched the US National Institutes of Health Trials Registry (ClinicalTrials.gov) and the World Health Organization International Clinical Trials Registry Platform for ongoing trials. There were no restrictions on the language or date of publication. SELECTION CRITERIA: Randomised controlled trials where more than 50% of participants had primary tumours of the oral cavity or oropharynx, or where separate data could be extracted for these participants, and that compared two or more surgical treatment modalities, or surgery versus other treatment modalities. DATA COLLECTION AND ANALYSIS: Two or more review authors independently extracted data and assessed risk of bias. We contacted study authors for additional information as required. We collected adverse events data from included studies. MAIN RESULTS: We identified five new trials in this update, bringing the total number of included trials to 12 (2300 participants; 2148 with cancers of the oral cavity). We assessed four trials at high risk of bias, and eight at unclear. None of the included trials compared different surgical approaches for the excision of the primary tumour. We grouped the trials into seven main comparisons.Future research may change the findings as there is only very low-certainty evidence available for all results.Five trials compared elective neck dissection (ND) with therapeutic (delayed) ND in participants with oral cavity cancer and clinically negative neck nodes, but differences in type of surgery and duration of follow-up made meta-analysis inappropriate in most cases. Four of these trials reported overall and disease-free survival. The meta-analyses of two trials found no evidence of either intervention leading to greater overall survival (hazard ratio (HR) 0.84, 95% confidence interval (CI) 0.41 to 1.72; 571 participants), or disease-free survival (HR 0.73, 95% CI 0.25 to 2.11; 571 participants), but one trial found a benefit for elective supraomohyoid ND compared to therapeutic ND in overall survival (RR 0.40, 95% CI 0.19 to 0.84; 67 participants) and disease-free survival (HR 0.32, 95% CI 0.12 to 0.84; 67 participants). Four individual trials assessed locoregional recurrence, but could not be meta-analysed; one trial favoured elective ND over therapeutic delayed ND, while the others were inconclusive.Two trials compared elective radical ND with elective selective ND, but we were unable to pool the data for two outcomes. Neither study found evidence of a difference in overall survival or disease-free survival. A single trial found no evidence of a difference in recurrence.One trial compared surgery plus radiotherapy with radiotherapy alone, but data were unreliable because the trial stopped early and there were multiple protocol violations.One trial comparing positron-emission tomography-computed tomography (PET-CT) following chemoradiotherapy (with ND only if no or incomplete response) versus planned ND (either before or after chemoradiotherapy), showed no evidence of a difference in mortality (HR 0.92, 95% CI 0.65 to 1.31; 564 participants). The trial did not provide usable data for the other outcomes.Three single trials compared: surgery plus adjunctive radiotherapy versus chemoradiotherapy; supraomohyoid ND versus modified radical ND; and super selective ND versus selective ND. There were no useable data from these trials.The reporting of adverse events was poor. Four trials measured adverse events. Only one of the trials reported quality of life as an outcome. AUTHORS' CONCLUSIONS: Twelve randomised controlled trials evaluated ND surgery in people with oral cavity cancers; however, the evidence available for all comparisons and outcomes is very low certainty, therefore we cannot rely on the findings. The evidence is insufficient to draw conclusions about elective ND of clinically negative neck nodes at the time of removal of the primary tumour compared to therapeutic (delayed) ND. Two trials combined in meta-analysis suggested there is no difference between these interventions, while one trial (which evaluated elective supraomohyoid ND) found that it may be associated with increased overall and disease-free survival. One trial found elective ND reduced locoregional recurrence, while three were inconclusive. There is no evidence that radical ND increases overall or disease-free survival compared to more conservative ND surgery, or that there is a difference in mortality between PET-CT surveillance following chemoradiotherapy versus planned ND (before or after chemoradiotherapy). Reporting of adverse events in all trials was poor and it was not possible to compare the quality of life of people undergoing different surgical treatments.


Subject(s)
Lymph Node Excision , Mouth Neoplasms/surgery , Oropharyngeal Neoplasms/surgery , Disease Progression , Disease-Free Survival , Elective Surgical Procedures/methods , Elective Surgical Procedures/mortality , Humans , Lymph Node Excision/methods , Lymph Node Excision/mortality , Mouth Neoplasms/mortality , Oropharyngeal Neoplasms/mortality , Randomized Controlled Trials as Topic
SELECTION OF CITATIONS
SEARCH DETAIL