Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Nat Immunol ; 22(11): 1391-1402, 2021 11.
Article in English | MEDLINE | ID: mdl-34686865

ABSTRACT

Epithelial cells have an ability termed 'cell competition', which is an immune surveillance-like function that extrudes precancerous cells from the epithelial layer, leading to apoptosis and clearance. However, it remains unclear how epithelial cells recognize and extrude transformed cells. Here, we discovered that a PirB family protein, leukocyte immunoglobulin-like receptor B3 (LILRB3), which is expressed on non-transformed epithelial cells, recognizes major histocompatibility complex class I (MHC class I) that is highly expressed on transformed cells. MHC class I interaction with LILRB3 expressed on normal epithelial cells triggers an SHP2-ROCK2 pathway that generates a mechanical force to extrude transformed cells. Removal of transformed cells occurs independently of natural killer (NK) cell or CD8+ cytotoxic T cell-mediated activity. This is a new mechanism in that the immunological ligand-receptor system generates a mechanical force in non-immune epithelial cells to extrude precancerous cells in the same epithelial layer.


Subject(s)
Antigens, CD/metabolism , Apoptosis , Cell Competition , Epithelial Cells/metabolism , Histocompatibility Antigens Class I/metabolism , Lung Neoplasms/metabolism , Precancerous Conditions/metabolism , Receptors, Immunologic/metabolism , Animals , Antigens, CD/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Dogs , Epithelial Cells/immunology , Epithelial Cells/pathology , HaCaT Cells , Humans , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Madin Darby Canine Kidney Cells , Mechanotransduction, Cellular , Mice , Mice, Inbred BALB C , Mice, Nude , Precancerous Conditions/genetics , Precancerous Conditions/immunology , Precancerous Conditions/pathology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , RAW 264.7 Cells , Receptors, Immunologic/genetics , Stress, Mechanical , rho-Associated Kinases/metabolism
2.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Article in English | MEDLINE | ID: mdl-34385317

ABSTRACT

The amino acid and oligopeptide transporter Solute carrier family 15 member A4 (SLC15A4), which resides in lysosomes and is preferentially expressed in immune cells, plays critical roles in the pathogenesis of lupus and colitis in murine models. Toll-like receptor (TLR)7/9- and nucleotide-binding oligomerization domain-containing protein 1 (NOD1)-mediated inflammatory responses require SLC15A4 function for regulating the mechanistic target of rapamycin complex 1 (mTORC1) or transporting L-Ala-γ-D-Glu-meso-diaminopimelic acid, IL-12: interleukin-12 (Tri-DAP), respectively. Here, we further investigated the mechanism of how SLC15A4 directs inflammatory responses. Proximity-dependent biotin identification revealed glycolysis as highly enriched gene ontology terms. Fluxome analyses in macrophages indicated that SLC15A4 loss causes insufficient biotransformation of pyruvate to the tricarboxylic acid cycle, while increasing glutaminolysis to the cycle. Furthermore, SLC15A4 was required for M1-prone metabolic change and inflammatory IL-12 cytokine productions after TLR9 stimulation. SLC15A4 could be in close proximity to AMP-activated protein kinase (AMPK) and mTOR, and SLC15A4 deficiency impaired TLR-mediated AMPK activation. Interestingly, SLC15A4-intact but not SLC15A4-deficient macrophages became resistant to fluctuations in environmental nutrient levels by limiting the use of the glutamine source; thus, SLC15A4 was critical for macrophage's respiratory homeostasis. Our findings reveal a mechanism of metabolic regulation in which an amino acid transporter acts as a gatekeeper that protects immune cells' ability to acquire an M1-prone metabolic phenotype in inflammatory tissues by mitigating metabolic stress.


Subject(s)
Gene Expression Regulation/physiology , Macrophages/physiology , Membrane Transport Proteins/metabolism , Nerve Tissue Proteins/metabolism , 4-Chloro-7-nitrobenzofurazan/analogs & derivatives , 4-Chloro-7-nitrobenzofurazan/metabolism , Animals , Cell Differentiation , Cell Line , Dendritic Cells/metabolism , Deoxyglucose/analogs & derivatives , Deoxyglucose/metabolism , Energy Metabolism/drug effects , Energy Metabolism/physiology , Gene Expression Regulation/drug effects , Gene Silencing , Humans , Macrophages/drug effects , Membrane Transport Proteins/genetics , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Oligodeoxyribonucleotides/pharmacology
3.
Genes Cells ; 27(2): 145-151, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34918430

ABSTRACT

Limited oxygen availability impairs normal body growth, although the underlying mechanisms are not fully understood. In Drosophila, hypoxic responses in the larval fat body (FB) disturb the secretion of insulin-like peptides from the brain, inhibiting body growth. However, the cell-autonomous effects of hypoxia on the insulin-signaling pathway in larval FB have been underexplored. In this study, we aimed to examine the effects of overexpression of Sima, a Drosophila hypoxia-inducible factor-1 (HIF-1) α homolog and a key component of HIF-1 transcription factor essential for hypoxic adaptation, on the insulin-signaling pathway in larval FB. Forced expression of Sima in FB reduced the larval body growth with reduced Akt phosphorylation levels in FB cells and increased hemolymph sugar levels. Sima-mediated growth inhibition was reversed by overexpression of TOR or suppression of FOXO. After Sima overexpression, larvae showed higher expression levels of Tribbles, a negative regulator of Akt activity, and a simultaneous knockdown of Tribbles completely abolished the effects of Sima on larval body growth. Furthermore, a reporter analysis revealed Tribbles as a direct target gene of Sima. These results suggest that Sima in FB evokes Tribbles-mediated insulin resistance and consequently protects against aberrant insulin-dependent larval body growth under hypoxia.


Subject(s)
Cell Cycle Proteins , DNA-Binding Proteins , Drosophila Proteins , Drosophila , Protein Serine-Threonine Kinases , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drosophila/genetics , Drosophila/growth & development , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Fat Body/metabolism , Gene Expression , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Larva/growth & development , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
4.
J Biol Chem ; 296: 100563, 2021.
Article in English | MEDLINE | ID: mdl-33745970

ABSTRACT

Hematopoietic stem cells (HSCs) and their progeny sustain lifetime hematopoiesis. Aging alters HSC function, number, and composition and increases risk of hematological malignancies, but how these changes occur in HSCs remains unclear. Signaling via p38 mitogen-activated kinase (p38MAPK) has been proposed as a candidate mechanism underlying induction of HSC aging. Here, using genetic models of both chronological and premature aging, we describe a multimodal role for p38α, the major p38MAPK isozyme in hematopoiesis, in HSC aging. We report that p38α regulates differentiation bias and sustains transplantation capacity of HSCs in the early phase of chronological aging. However, p38α decreased HSC transplantation capacity in the late progression phase of chronological aging. Furthermore, codeletion of p38α in mice deficient in ataxia-telangiectasia mutated, a model of premature aging, exacerbated aging-related HSC phenotypes seen in ataxia-telangiectasia mutated single-mutant mice. Overall, these studies provide new insight into multiple functions of p38MAPK, which both promotes and suppresses HSC aging context dependently.


Subject(s)
Aging/pathology , Cell Differentiation , Cellular Senescence , Hematopoietic Stem Cells/metabolism , Mitogen-Activated Protein Kinase 14/physiology , Aging/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins/physiology , Cell Proliferation , Female , Hematopoiesis , Hematopoietic Stem Cells/cytology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Reactive Oxygen Species/metabolism
5.
Biochem Biophys Res Commun ; 524(1): 184-189, 2020 03 26.
Article in English | MEDLINE | ID: mdl-31982132

ABSTRACT

Plasma aldosterone concentration increases in proportion to the severity of heart failure, even during treatment with renin-angiotensin system inhibitors. This study investigated alternative regulatory mechanisms of aldosterone production that are significant in heart failure. Dahl salt-sensitive rats on a high-salt diet, a rat model of heart failure with cardio-renal syndrome, had high plasma aldosterone levels and elevated ß3-adrenergic receptor expression in hypoxic zona glomerulosa cells. In H295R cells (a human adrenocortical cell line), hypoxia-induced ß3-adrenergic receptor expression. Hypoxia-mediated ß3-adrenergic receptor expression augmented aldosterone production by facilitating hydrolysis of lipid droplets though ERK-mediated phosphorylation of hormone-sensitive lipase, also known as cholesteryl ester hydrolase. Hypoxia also accelerated the synthesis of cholesterol esters by acyl-CoA:cholesterol acyltransferase, thereby increasing the cholesterol ester content in lipid droplets. Thus, hypoxia enhanced aldosterone production by zona glomerulosa cells via promotion of the accumulation and hydrolysis of cholesterol ester in lipid droplets. In conclusion, hypoxic zona glomerulosa cells with heart failure show enhanced aldosterone production via increased catecholamine responsiveness and activation of cholesterol trafficking, irrespective of the renin-angiotensin system.


Subject(s)
Adrenal Cortex/pathology , Aldosterone/biosynthesis , Heart Failure/metabolism , Heart Failure/pathology , Hypoxia/metabolism , Hypoxia/pathology , Adrenal Cortex/drug effects , Animals , Cardio-Renal Syndrome/complications , Catecholamines/pharmacology , Cell Hypoxia/drug effects , Cell Line , Cholesterol/metabolism , Disease Models, Animal , Humans , Hypoxia/complications , Male , Phosphorylation/drug effects , Rats, Inbred Dahl , Receptors, Adrenergic, beta-3/metabolism , Sterol Esterase/metabolism , Zona Glomerulosa/metabolism , Zona Glomerulosa/pathology
6.
Int Immunol ; 31(12): 781-793, 2019 11 08.
Article in English | MEDLINE | ID: mdl-31201418

ABSTRACT

Macrophages are major components of tuberculosis (TB) granulomas and are responsible for host defenses against the intracellular pathogen, Mycobacterium tuberculosis. We herein showed the strong expression of hypoxia-inducible factor-1α (HIF-1α) in TB granulomas and more rapid death of HIF-1α-conditional knockout mice than wild-type (WT) mice after M. tuberculosis infection. Although interferon-γ (IFN-γ) is a critical host-protective cytokine against intracellular pathogens, HIF-1-deficient macrophages permitted M. tuberculosis growth even after activation with IFN-γ. These results prompted us to investigate the role of HIF-1α in host defenses against infection. We found that the expression of lactate dehydrogenase-A (LDH-A) was controlled by HIF-1α in M. tuberculosis-infected macrophages IFN-γ independently. LDH-A is an enzyme that converts pyruvate to lactate and we found that the intracellular level of pyruvate in HIF-1α-deficient bone marrow-derived macrophages (BMDMs) was significantly higher than in WT BMDMs. Intracellular bacillus replication was enhanced by an increase in intracellular pyruvate concentrations, which were decreased by LDH-A. Mycobacteria in phagosomes took up exogenous pyruvate more efficiently than glucose, and used it as the feasible carbon source for intracellular growth. These results demonstrate that HIF-1α prevents the hijacking of pyruvate in macrophages, making it a fundamental host-protective mechanism against M. tuberculosis.


Subject(s)
Glycolysis , Macrophages/metabolism , Tuberculosis/metabolism , Animals , Homeodomain Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mycobacterium tuberculosis/metabolism
7.
Heart Vessels ; 34(3): 545-555, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30386918

ABSTRACT

Fatty acid (FA) oxidation is impaired and glycolysis is promoted in the damaged heart. However, the factor(s) in the early stages of myocardial metabolic impairment remain(s) unclear. C57B6 mice were subcutaneously administered monocrotaline (MCT) in doses of 0.3 mg/g body weight twice a week for 3 or 6 weeks. Right and left ventricles at 3 and 6 weeks after administration were subjected to capillary electrophoresis-mass spectrometry metabolomic analysis. We also examined mRNA and protein levels of key metabolic molecules. Although no evidence of PH and right ventricular failure was found in the MCT-administered mice by echocardiographic and histological analyzes, the expression levels of stress markers such as TNFα and IL-6 were increased in right and left ventricles even at 3 weeks, suggesting that there was myocardial damage. Metabolites in the tricarboxylic acid (TCA) cycle were decreased and those in glycolysis were increased at 6 weeks. The expression levels of FA oxidation-related factors were decreased at 6 weeks. The phosphorylation level of pyruvate dehydrogenase (PDH) was significantly decreased at 3 weeks. FA oxidation and the TCA cycle were down-regulated, whereas glycolysis was partially up-regulated by MCT-induced myocardial damage. PDH activation preceded these alterations, suggesting that PDH activation is one of the earliest events to compensate for a subtle metabolic impairment from myocardial damage.


Subject(s)
Cardiomyopathies/metabolism , Down-Regulation , Fatty Acids/metabolism , Heart Ventricles/metabolism , Myocardium/metabolism , Pyruvate Dehydrogenase Complex/metabolism , Animals , Blotting, Western , Cardiomyopathies/chemically induced , Disease Models, Animal , Heart Ventricles/drug effects , Male , Mice , Mice, Inbred C57BL , Monocrotaline/toxicity , Myocardium/pathology , Oxidation-Reduction
8.
Exp Cell Res ; 359(1): 86-93, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28827061

ABSTRACT

The mitochondria-associated ER membrane (MAM) is a specialized subdomain of ER that physically connects with mitochondria. Although disruption of inter-organellar crosstalk via the MAM impairs cellular homeostasis, its pathological significance in insulin resistance in type 2 diabetes mellitus remains unclear. Here, we reveal the importance of reduced MAM formation in the induction of fatty acid-evoked insulin resistance in hepatocytes. Palmitic acid (PA) repressed insulin-stimulated Akt phosphorylation in HepG2 cells within 12h. Treatment with an inhibitor of the ER stress response failed to restore PA-mediated suppression of Akt activation. Mitochondrial reactive oxygen species (ROS) production did not increase in PA-treated cells. Even short-term exposure (3h) to PA reduced the calcium flux from ER to mitochondria, followed by a significant decrease in MAM contact area, suggesting that PA suppressed the functional interaction between ER and mitochondria. Forced expression of mitofusin-2, a critical component of the MAM, partially restored MAM contact area and ameliorated the PA-elicited suppression of insulin sensitivity with Ser473 phosphorylation of Akt selectively improved. These results suggest that loss of proximity between ER and mitochondria, but not perturbation of homeostasis in the two organelles individually, plays crucial roles in PA-evoked Akt inactivation in hepatic insulin resistance.


Subject(s)
Endoplasmic Reticulum/metabolism , Insulin Resistance , Intracellular Membranes/metabolism , Mitochondria/metabolism , Palmitic Acid/pharmacology , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum Stress/drug effects , GTP Phosphohydrolases , Hep G2 Cells , Humans , Insulin/pharmacology , Intracellular Membranes/drug effects , Membrane Proteins/metabolism , Mitochondria/drug effects , Mitochondrial Proteins/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , eIF-2 Kinase/metabolism
9.
Lipids Health Dis ; 17(1): 135, 2018 Jun 06.
Article in English | MEDLINE | ID: mdl-29875018

ABSTRACT

BACKGROUND: Aging is known to be associated with increased risk of lipid disorders related to the development of type 2 diabetes. Recent evidence revealed that change of lipid molecule species in blood is associated with the risk of type 2 diabetes. However, changes in lipid molecular species induced by aging are still unknown. We assessed the effects of age on the serum levels of lipid molecular species as determined by lipidomics analysis. METHODS: Serum samples were collected from ten elderly men (71.7 ± 0.5 years old) and women (70.2 ± 1.0 years old), ten young men (23.9 ± 0.4 years old), and women (23.9 ± 0.7 years old). Serum levels of lipid molecular species were determined by liquid chromatography mass spectrometry-based lipidomics analysis. RESULTS: Our mass spectrometry analysis revealed increases in the levels of multiple triacylglycerol molecular species in the serum of elderly men and women. Moreover, serum levels of total ester-linked phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were increased by aging. In contrast, serum levels of specific ether-linked PC and PE molecular species were lower in elderly individuals than in young individuals. CONCLUSIONS: Our finding indicates that specific lipid molecular species, such as ether- and ester- linked phospholipids, may be selectively altered by aging.


Subject(s)
Aging/blood , Fatty Acids, Nonesterified/blood , Phosphatidylcholines/blood , Phosphatidylethanolamines/blood , Triglycerides/blood , Adult , Aged , Chromatography, Liquid , Female , Humans , Japan , Lipid Metabolism/physiology , Male , Mass Spectrometry , Metabolome/physiology
10.
J Immunol ; 195(4): 1883-90, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26170385

ABSTRACT

Immunodeficient hosts exhibit high acceptance of xenogeneic or neoplastic cells mainly due to lack of adaptive immunity, although it still remains to be elucidated how innate response affects the engraftment. IL-2R common γ-chain (IL-2Rγc) signaling is required for development of NK cells and a subset of dendritic cells producing IFN-γ. To better understand innate response in the absence of adaptive immunity, we examined amounts of metastatic foci in the livers after intrasplenic transfer of human colon cancer HCT116 cells into NOD/SCID versus NOD/SCID/IL-2Rγc (null) (NOG) hosts. The intravital microscopic imaging of livers in the hosts depleted of NK cells and/or macrophages revealed that IL-2Rγc function critically contributes to elimination of cancer cells without the need for NK cells and macrophages. In the absence of IL-2Rγc, macrophages play a role in the defense against tumors despite the NOD Sirpa allele, which allows human CD47 to bind to the encoded signal regulatory protein α to inhibit macrophage phagocytosis of human cells. Analogous experiments using human pancreas cancer MIA PaCa-2 cells provided findings roughly similar to those from the experiments using HCT116 cells except for lack of suppression of metastases by macrophages in NOG hosts. Administration of mouse IFN-γ to NOG hosts appeared to partially compensate lack of IL-2Rγc-dependent elimination of transferred HCT116 cells. These results provide insights into the nature of innate response in the absence of adaptive immunity, aiding in developing tumor xenograft models in experimental oncology.


Subject(s)
Adaptive Immunity , Immunity, Innate , Interleukin Receptor Common gamma Subunit/genetics , Neoplasms/genetics , Neoplasms/immunology , Receptors, Interleukin-2/genetics , Animals , Cell Cycle Checkpoints , Disease Models, Animal , HCT116 Cells , Humans , Interferon-gamma/administration & dosage , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Liver Neoplasms/secondary , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasms/pathology
11.
Am J Physiol Heart Circ Physiol ; 310(1): H92-103, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26519028

ABSTRACT

Sarcolipin (SLN) is a small proteolipid and a regulator of sarco(endo)plasmic reticulum Ca(2+)-ATPase. In heart tissue, SLN is exclusively expressed in the atrium. Previously, we inserted Cre recombinase into the endogenous SLN locus by homologous recombination and succeeded in generating SLN-Cre knockin (Sln(Cre/+)) mice. This Sln(Cre/+) mouse can be used to generate an atrium-specific gene-targeting mutant, and it is based on the Cre-loxP system. In the present study, we used adult Sln(Cre/+) mice atria and analyzed the effects of heterozygous SLN deletion by Cre knockin before use as the gene targeting mouse. Both SLN mRNA and protein levels were decreased in Sln(Cre/+) mouse atria, but there were no morphological, physiological, or molecular biological abnormalities. The properties of contractility and Ca(2+) handling were similar to wild-type (WT) mice, and expression levels of several stress markers and sarcoplasmic reticulum-related protein levels were not different between Sln(Cre/+) and WT mice. Moreover, there was no significant difference in sarco(endo)plasmic reticulum Ca(2+)-ATPase activity between the two groups. We showed that Sln(Cre/+) mice were not significantly different from WT mice in all aspects that were examined. The present study provides basic characteristics of Sln(Cre/+) mice and possibly information on the usefulness of Sln(Cre/+) mice as an atrium-specific gene-targeting model.


Subject(s)
Gene Deletion , Heterozygote , Muscle Proteins/genetics , Myocardial Contraction/genetics , Myocytes, Cardiac/metabolism , Proteolipids/genetics , Ventricular Function, Left/genetics , Adrenergic beta-Agonists/pharmacology , Animals , Calcium Signaling/genetics , Female , Fibrosis , Genotype , Isoproterenol/pharmacology , Male , Mice, Inbred C57BL , Mice, Knockout , Muscle Proteins/deficiency , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Phenotype , Proteolipids/deficiency , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Ventricular Function, Left/drug effects
12.
J Hepatol ; 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-25681160

ABSTRACT

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.

13.
Development ; 139(7): 1327-35, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22357924

ABSTRACT

Interactions between astrocytes and endothelial cells (ECs) are crucial for retinal vascular formation. Astrocytes induce migration and proliferation of ECs via their production of vascular endothelial growth factor (VEGF) and, conversely, ECs induce maturation of astrocytes possibly by the secretion of leukemia inhibitory factor (LIF). Together with the maturation of astrocytes, this finalizes angiogenesis. Thus far, the mechanisms triggering LIF production in ECs are unclear. Here we show that apelin, a ligand for the endothelial receptor APJ, induces maturation of astrocytes mediated by the production of LIF from ECs. APJ (Aplnr)- and Apln-deficient mice show delayed angiogenesis; however, aberrant overgrowth of endothelial networks with immature astrocyte overgrowth was induced. When ECs were stimulated with apelin, LIF expression was upregulated and intraocular injection of LIF into APJ-deficient mice suppressed EC and astrocyte overgrowth. These data suggest an involvement of apelin/APJ in the maturation process of retinal angiogenesis.


Subject(s)
Astrocytes/cytology , Endothelial Cells/cytology , Intercellular Signaling Peptides and Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Adipokines , Animals , Apelin , Apelin Receptors , Cell Proliferation , Endothelial Cells/metabolism , Humans , Leukemia Inhibitory Factor/metabolism , Ligands , Mice , Mice, Inbred C57BL , Mice, Knockout , Neovascularization, Pathologic , Retina/pathology
14.
Circ J ; 78(5): 1224-33, 2014.
Article in English | MEDLINE | ID: mdl-24647370

ABSTRACT

BACKGROUND: Patent ductus arteriosus (PDA) is one of the most common congenital cardiovascular defects in children. The Brown-Norway (BN) inbred rat presents a higher frequency of PDA. A previous study reported that 2 different quantitative trait loci on chromosomes 8 and 9 were significantly linked to PDA in this strain. Nevertheless, the genetic or molecular mechanisms underlying PDA phenotypes in BN rats have not been fully investigated yet. METHODS AND RESULTS: It was found that the elastic fibers were abundant in the subendothelial area but scarce in the media even in the closed ductus arteriosus (DA) of full-term BN neonates. DNA microarray analysis identified 52 upregulated genes (fold difference >2.5) and 23 downregulated genes (fold difference <0.4) when compared with those of F344 control neonates. Among these genes, 8 (Tbx20, Scn3b, Stac, Sphkap, Trpm8, Rup2, Slc37a2, and RGD1561216) are located in chromosomes 8 and 9. Interestingly, it was also suggested that the significant decrease in the expression levels of the PGE2-specfic receptor, EP4, plays a critical role in elastogenesis in the DA. CONCLUSIONS: BN rats exhibited dysregulation of elastogenesis in the DA. DNA microarray analysis identified the candidate genes including EP4 involved in the DNA phenotype. Further investigation of these newly identified genes will hopefully clarify the molecular mechanisms underlying the irregular formation of elastic fibers in PDA.


Subject(s)
Ductus Arteriosus, Patent/metabolism , Ductus Arteriosus/metabolism , Elastic Tissue/metabolism , Gene Expression Regulation , Muscle Proteins/biosynthesis , Transcription, Genetic , Animals , Animals, Newborn , Chromosomes, Mammalian/genetics , Ductus Arteriosus/pathology , Ductus Arteriosus, Patent/genetics , Ductus Arteriosus, Patent/pathology , Elastic Tissue/pathology , Muscle Proteins/genetics , Quantitative Trait Loci , Rats , Rats, Inbred F344
15.
Front Immunol ; 15: 1401294, 2024.
Article in English | MEDLINE | ID: mdl-38720899

ABSTRACT

Inhibitory natural killer (NK) cell receptors recognize MHC class I (MHC-I) in trans on target cells and suppress cytotoxicity. Some NK cell receptors recognize MHC-I in cis, but the role of this interaction is uncertain. Ly49Q, an atypical Ly49 receptor expressed in non-NK cells, binds MHC-I in cis and mediates chemotaxis of neutrophils and type I interferon production by plasmacytoid dendritic cells. We identified a lipid-binding motif in the juxtamembrane region of Ly49Q and found that Ly49Q organized functional membrane domains comprising sphingolipids via sulfatide binding. Ly49Q recruited actin-remodeling molecules to an immunoreceptor tyrosine-based inhibitory motif, which enabled the sphingolipid-enriched membrane domain to mediate complicated actin remodeling at the lamellipodia and phagosome membranes during phagocytosis. Thus, Ly49Q facilitates integrative regulation of proteins and lipid species to construct a cell type-specific membrane platform. Other Ly49 members possess lipid binding motifs; therefore, membrane platform organization may be a primary role of some NK cell receptors.


Subject(s)
Sphingolipids , Animals , Humans , Sphingolipids/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Phagocytosis , Phagocytes/immunology , Phagocytes/metabolism , NK Cell Lectin-Like Receptor Subfamily A/metabolism , Cell Membrane/metabolism , Protein Binding
16.
Cell Stem Cell ; 31(8): 1145-1161.e15, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38772377

ABSTRACT

Aging generally predisposes stem cells to functional decline, impairing tissue homeostasis. Here, we report that hematopoietic stem cells (HSCs) acquire metabolic resilience that promotes cell survival. High-resolution real-time ATP analysis with glucose tracing and metabolic flux analysis revealed that old HSCs reprogram their metabolism to activate the pentose phosphate pathway (PPP), becoming more resistant to oxidative stress and less dependent on glycolytic ATP production at steady state. As a result, old HSCs can survive without glycolysis, adapting to the physiological cytokine environment in bone marrow. Mechanistically, old HSCs enhance mitochondrial complex II metabolism during stress to promote ATP production. Furthermore, increased succinate dehydrogenase assembly factor 1 (SDHAF1) in old HSCs, induced by physiological low-concentration thrombopoietin (TPO) exposure, enables rapid mitochondrial ATP production upon metabolic stress, thereby improving survival. This study provides insight into the acquisition of resilience through metabolic reprogramming in old HSCs and its molecular basis to ameliorate age-related hematopoietic abnormalities.


Subject(s)
Adenosine Triphosphate , Hematopoietic Stem Cells , Mitochondria , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Animals , Mitochondria/metabolism , Adenosine Triphosphate/metabolism , Mice , Cellular Senescence , Mice, Inbred C57BL , Glycolysis , Aging/metabolism , Oxidative Stress
17.
Elife ; 122024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573813

ABSTRACT

Metabolic pathways are plastic and rapidly change in response to stress or perturbation. Current metabolic profiling techniques require lysis of many cells, complicating the tracking of metabolic changes over time after stress in rare cells such as hematopoietic stem cells (HSCs). Here, we aimed to identify the key metabolic enzymes that define differences in glycolytic metabolism between steady-state and stress conditions in murine HSCs and elucidate their regulatory mechanisms. Through quantitative 13C metabolic flux analysis of glucose metabolism using high-sensitivity glucose tracing and mathematical modeling, we found that HSCs activate the glycolytic rate-limiting enzyme phosphofructokinase (PFK) during proliferation and oxidative phosphorylation (OXPHOS) inhibition. Real-time measurement of ATP levels in single HSCs demonstrated that proliferative stress or OXPHOS inhibition led to accelerated glycolysis via increased activity of PFKFB3, the enzyme regulating an allosteric PFK activator, within seconds to meet ATP requirements. Furthermore, varying stresses differentially activated PFKFB3 via PRMT1-dependent methylation during proliferative stress and via AMPK-dependent phosphorylation during OXPHOS inhibition. Overexpression of Pfkfb3 induced HSC proliferation and promoted differentiated cell production, whereas inhibition or loss of Pfkfb3 suppressed them. This study reveals the flexible and multilayered regulation of HSC glycolytic metabolism to sustain hematopoiesis under stress and provides techniques to better understand the physiological metabolism of rare hematopoietic cells.


Subject(s)
Glycolysis , Phosphofructokinase-2 , Animals , Mice , Adenosine Triphosphate/metabolism , Anaerobiosis , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Oxidative Phosphorylation , Phosphofructokinase-2/genetics , Phosphofructokinase-2/metabolism , Phosphoric Monoester Hydrolases/metabolism
18.
Dev Biol ; 363(1): 106-14, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22226979

ABSTRACT

The vascular and nervous systems display a high degree of cross-talk and depend on each other functionally. In the vascularization of the central nervous system, astrocytes have been thought to sense tissue oxygen levels in hypoxia-inducible factors (HIFs)-dependent manner and control the vascular growth into the hypoxic area by secreting VEGF. However, recent genetic evidences demonstrate that not only astrocyte HIFs but also astrocyte VEGF expression is dispensable for developmental angiogenesis of the retina. This study demonstrates that hypoxia-inducible factor 1 alpha subunit (HIF-1α), a key transcription factor involved in cellular responses to hypoxia, is most abundantly expressed in the neuroretina, especially retinal progenitor cells (RPCs). A neuroretina-specific knockout of HIF-1α (αCre(+)Hif1α(flox/flox)) showed impaired vascular development characterized by decreased tip cell filopodia and reduced vessel branching. The astrocyte network was hypoplastic in αCre(+)Hif1α(flox/flox) mice. Mechanistically, platelet-derived growth factor A (PDGF-A), a mitogen for astrocytes, was downregulated in the neuroretina of αCre(+)Hif1α(flox/flox) mice. Supplementing PDGF-A restored reduced astrocytic and vascular density in αCre(+)Hif1α(flox/flox) mice. Our data demonstrates that the neuroretina but not astrocytes acts as a primary oxygen sensor which ultimately controls the retinal vascular development by regulating an angiogenic astrocyte template.


Subject(s)
Astrocytes/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Neovascularization, Physiologic , Retina/metabolism , Animals , Endothelial Cells/metabolism , Gene Expression Regulation, Developmental , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Immunohistochemistry , In Situ Hybridization , Mice , Mice, Knockout , Mice, Transgenic , Microscopy, Confocal , Oxygen/metabolism , Platelet-Derived Growth Factor/genetics , Platelet-Derived Growth Factor/metabolism , Pseudopodia/genetics , Pseudopodia/metabolism , Retina/cytology , Retina/growth & development , Retinal Neurons/metabolism , Retinal Vessels/cytology , Retinal Vessels/growth & development , Retinal Vessels/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
19.
Am J Physiol Heart Circ Physiol ; 305(4): H494-505, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23792677

ABSTRACT

Energy of the cardiac muscle largely depends on fatty acid oxidation. It is known that the atrium and ventricle have chamber-specific functions, structures, gene expressions, and pathologies. The left ventricle works as a high-pressure chamber to pump blood toward the body, and its muscle wall is thicker than those of the other chambers, suggesting that energy utilization in each of the chambers should be different. However, a chamber-specific pattern of metabolism remains incompletely understood. Recently, innovative techniques have enabled the comprehensive analysis of metabolites. Therefore, we aimed to clarify differences in metabolic patterns among the chambers. Male C57BL6 mice at 6 wk old were subject to a comprehensive measurement of metabolites in the atria and ventricles by capillary electrophoresis and mass spectrometry. We found that overall metabolic profiles, including nucleotides and amino acids, were similar between the right and left ventricles. On the other hand, the atria exhibited a distinct metabolic pattern from those of the ventricles. Importantly, the high-energy phosphate pool (the total concentration of ATP, ADP, and AMP) was higher in both ventricles. In addition, the levels of lactate, acetyl CoA, and tricarboxylic acid cycle contents were higher in the ventricles. Accordingly, the activities and/or expression levels of key enzymes were higher in the ventricles to produce more energy. The present study provides a basis for understanding the chamber-specific metabolism underlining pathophysiology in the heart.


Subject(s)
Energy Metabolism , Heart Ventricles/metabolism , Metabolomics , Myocardium/metabolism , Adenine Nucleotides/metabolism , Amino Acids/metabolism , Animals , Atrial Function , Blotting, Western , Electrophoresis, Capillary , Fatty Acids/metabolism , Gene Expression Regulation, Enzymologic , Heart Atria/metabolism , Lactic Acid/metabolism , Male , Metabolomics/methods , Mice , Mice, Inbred C57BL , Oxidation-Reduction , Pyruvic Acid/metabolism , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Ventricular Function
20.
Development ; 137(9): 1563-71, 2010 May.
Article in English | MEDLINE | ID: mdl-20388654

ABSTRACT

In early neonates, the fetal circulatory system undergoes dramatic transition to the adult circulatory system. Normally, embryonic connecting vessels, such as the ductus arteriosus and the foramen ovale, close and regress. In the neonatal retina, hyaloid vessels maintaining blood flow in the embryonic retina regress, and retinal vessels take over to form the adult-type circulatory system. This process is regulated by a programmed cell death switch mediated by macrophages via Wnt and angiopoietin 2 pathways. In this study, we seek other mechanisms that regulate this process, and focus on the dramatic change in oxygen environment at the point of birth. The von Hippel-Lindau tumor suppressor protein (pVHL) is a substrate recognition component of an E3-ubiquitin ligase that rapidly destabilizes hypoxia-inducible factor alphas (HIF-alphas) under normoxic, but not hypoxic, conditions. To examine the role of oxygen-sensing mechanisms in retinal circulatory system transition, we generated retina-specific conditional-knockout mice for VHL (Vhl(alpha)(-CreKO) mice). These mice exhibit arrested transition from the fetal to the adult circulatory system, persistence of hyaloid vessels and poorly formed retinal vessels. These defects are suppressed by intraocular injection of FLT1-Fc protein [a vascular endothelial growth factor (VEGF) receptor-1 (FLT1)/Fc chimeric protein that can bind VEGF and inhibit its activity], or by inactivating the HIF-1alpha gene. Our results suggest that not only macrophages but also tissue oxygen-sensing mechanisms regulate the transition from the fetal to the adult circulatory system in the retina.


Subject(s)
Blood Vessels/metabolism , Retina/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Animals , Blood Vessels/cytology , Blood Vessels/growth & development , Blood Vessels/pathology , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Immunohistochemistry , In Situ Hybridization , Macrophages/cytology , Macrophages/physiology , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Retina/cytology , Retina/pathology , Reverse Transcriptase Polymerase Chain Reaction , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL