Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
Add more filters

Publication year range
1.
Nature ; 623(7989): 992-1000, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37968397

ABSTRACT

Cerebral oedema is associated with morbidity and mortality after traumatic brain injury (TBI)1. Noradrenaline levels are increased after TBI2-4, and the amplitude of the increase in noradrenaline predicts both the extent of injury5 and the likelihood of mortality6. Glymphatic impairment is both a feature of and a contributor to brain injury7,8, but its relationship with the injury-associated surge in noradrenaline is unclear. Here we report that acute post-traumatic oedema results from a suppression of glymphatic and lymphatic fluid flow that occurs in response to excessive systemic release of noradrenaline. This post-TBI adrenergic storm was associated with reduced contractility of cervical lymphatic vessels, consistent with diminished return of glymphatic and lymphatic fluid to the systemic circulation. Accordingly, pan-adrenergic receptor inhibition normalized central venous pressure and partly restored glymphatic and cervical lymphatic flow in a mouse model of TBI, and these actions led to substantially reduced brain oedema and improved functional outcomes. Furthermore, post-traumatic inhibition of adrenergic signalling boosted lymphatic export of cellular debris from the traumatic lesion, substantially reducing secondary inflammation and accumulation of phosphorylated tau. These observations suggest that targeting the noradrenergic control of central glymphatic flow may offer a therapeutic approach for treating acute TBI.


Subject(s)
Brain Edema , Brain Injuries, Traumatic , Glymphatic System , Norepinephrine , Animals , Mice , Adrenergic Antagonists/pharmacology , Adrenergic Antagonists/therapeutic use , Brain Edema/complications , Brain Edema/drug therapy , Brain Edema/metabolism , Brain Edema/prevention & control , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Disease Models, Animal , Glymphatic System/drug effects , Glymphatic System/metabolism , Inflammation/complications , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/prevention & control , Lymphatic Vessels/metabolism , Norepinephrine/metabolism , Phosphorylation , Receptors, Adrenergic/metabolism
2.
Cell ; 146(1): 53-66, 2011 Jul 08.
Article in English | MEDLINE | ID: mdl-21729780

ABSTRACT

Malignant gliomas are aggressive brain tumors with limited therapeutic options, and improvements in treatment require a deeper molecular understanding of this disease. As in other cancers, recent studies have identified highly tumorigenic subpopulations within malignant gliomas, known generally as cancer stem cells. Here, we demonstrate that glioma stem cells (GSCs) produce nitric oxide via elevated nitric oxide synthase-2 (NOS2) expression. GSCs depend on NOS2 activity for growth and tumorigenicity, distinguishing them from non-GSCs and normal neural progenitors. Gene expression profiling identified many NOS2-regulated genes, including the cell-cycle inhibitor cell division autoantigen-1 (CDA1). Further, high NOS2 expression correlates with decreased survival in human glioma patients, and NOS2 inhibition slows glioma growth in a murine intracranial model. These data provide insight into how GSCs are mechanistically distinct from their less tumorigenic counterparts and suggest that NOS2 inhibition may be an efficacious approach to treating this devastating disease.


Subject(s)
Cell Proliferation , Glioma/metabolism , Neoplastic Stem Cells/metabolism , Nitric Oxide Synthase Type II/metabolism , Animals , Autoantigens/metabolism , Cells, Cultured , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Neural Stem Cells/metabolism , Nitric Oxide/metabolism , Tumor Cells, Cultured
3.
Proc Natl Acad Sci U S A ; 120(24): e2210719120, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37279261

ABSTRACT

Astroglial dysfunction contributes to the pathogenesis of Huntington's disease (HD), and glial replacement can ameliorate the disease course. To establish the topographic relationship of diseased astrocytes to medium spiny neuron (MSN) synapses in HD, we used 2-photon imaging to map the relationship of turboRFP-tagged striatal astrocytes and rabies-traced, EGFP-tagged coupled neuronal pairs in R6/2 HD and wild-type (WT) mice. The tagged, prospectively identified corticostriatal synapses were then studied by correlated light electron microscopy followed by serial block-face scanning EM, allowing nanometer-scale assessment of synaptic structure in 3D. By this means, we compared the astrocytic engagement of single striatal synapses in HD and WT brains. R6/2 HD astrocytes exhibited constricted domains, with significantly less coverage of mature dendritic spines than WT astrocytes, despite enhanced engagement of immature, thin spines. These data suggest that disease-dependent changes in the astroglial engagement and sequestration of MSN synapses enable the high synaptic and extrasynaptic levels of glutamate and K+ that underlie striatal hyperexcitability in HD. As such, these data suggest that astrocytic structural pathology may causally contribute to the synaptic dysfunction and disease phenotype of those neurodegenerative disorders characterized by network overexcitation.


Subject(s)
Huntington Disease , Mice , Animals , Mice, Transgenic , Huntington Disease/pathology , Astrocytes/pathology , Synapses/physiology , Corpus Striatum/pathology , Disease Models, Animal
4.
Brain ; 147(5): 1726-1739, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38462589

ABSTRACT

Progressive neuronal loss is a hallmark feature distinguishing neurodegenerative diseases from normal ageing. However, the underlying mechanisms remain unknown. Extracellular K+ homeostasis is a potential mediator of neuronal injury as K+ elevations increase excitatory activity. The dysregulation of extracellular K+ and potassium channel expressions during neurodegeneration could contribute to this distinction. Here we measured the cortical extracellular K+ concentration ([K+]e) in awake wild-type mice as well as murine models of neurodegeneration using K+-sensitive microelectrodes. Unexpectedly, aged wild-type mice exhibited significantly lower cortical [K+]e than young mice. In contrast, cortical [K+]e was consistently elevated in Alzheimer's disease (APP/PS1), amyotrophic lateral sclerosis (ALS) (SOD1G93A) and Huntington's disease (R6/2) models. Cortical resting [K+]e correlated inversely with neuronal density and the [K+]e buffering rate but correlated positively with the predicted neuronal firing rate. Screening of astrocyte-selective genomic datasets revealed a number of potassium channel genes that were downregulated in these disease models but not in normal ageing. In particular, the inwardly rectifying potassium channel Kcnj10 was downregulated in ALS and Huntington's disease models but not in normal ageing, while Fxyd1 and Slc1a3, each of which acts as a negative regulator of potassium uptake, were each upregulated by astrocytes in both Alzheimer's disease and ALS models. Chronic elevation of [K+]e in response to changes in gene expression and the attendant neuronal hyperexcitability may drive the neuronal loss characteristic of these neurodegenerative diseases. These observations suggest that the dysregulation of extracellular K+ homeostasis in a number of neurodegenerative diseases could be due to aberrant astrocytic K+ buffering and as such, highlight a fundamental role for glial dysfunction in neurodegeneration.


Subject(s)
Aging , Neurodegenerative Diseases , Potassium , Animals , Potassium/metabolism , Aging/metabolism , Mice , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Mice, Transgenic , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Male , Mice, Inbred C57BL , Neurons/metabolism , Humans , Disease Models, Animal , Cerebral Cortex/metabolism , Huntington Disease/metabolism , Huntington Disease/genetics , Female , Astrocytes/metabolism
5.
Semin Cell Dev Biol ; 116: 62-70, 2021 08.
Article in English | MEDLINE | ID: mdl-33414060

ABSTRACT

Demyelinating disorders of the central white matter are among the most prevalent and disabling conditions in neurology. Since myelin-producing oligodendrocytes comprise the principal cell type deficient or lost in these conditions, their replacement by new cells generated from transplanted bipotential oligodendrocyte-astrocyte progenitor cells has emerged as a therapeutic strategy for a variety of primary dysmyelinating diseases. In this review, we summarize the research and clinical considerations supporting current efforts to bring this treatment approach to patients.


Subject(s)
Demyelinating Diseases/physiopathology , Neuroglia/metabolism , Stem Cells/metabolism , Animals , Cell Differentiation , Humans
6.
Glia ; 71(3): 524-540, 2023 03.
Article in English | MEDLINE | ID: mdl-36334067

ABSTRACT

Genomic analyses have revealed heterogeneity among glial progenitor cells (GPCs), but the compartment selectivity of human GPCs (hGPCs) is unclear. Here, we asked if GPCs of human grey and white brain matter are distinct in their architecture and associated gene expression. RNA profiling of NG2-defined hGPCs derived from adult human neocortex and white matter differed in their expression of genes involved in Wnt, NOTCH, BMP and TGFß signaling, suggesting compartment-selective biases in fate and self-renewal. White matter hGPCs over-expressed the BMP antagonists BAMBI and CHRDL1, suggesting their tonic suppression of astrocytic fate relative to cortical hGPCs, whose relative enrichment of cytoskeletal genes presaged their greater morphological complexity. In human glial chimeric mice, cortical hGPCs assumed larger and more complex morphologies than white matter hGPCs, and both were more complex than their mouse counterparts. These findings suggest that human grey and white matter GPCs comprise context-specific pools with distinct functional biases.


Subject(s)
Gray Matter , White Matter , Humans , Adult , Animals , Mice , Gray Matter/metabolism , Neuroglia/metabolism , Stem Cells/metabolism , Astrocytes/metabolism , Brain/metabolism , White Matter/metabolism , Membrane Proteins/metabolism , Eye Proteins/metabolism , Nerve Tissue Proteins/metabolism
7.
Brain ; 145(5): 1584-1597, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35262656

ABSTRACT

There has been substantial progress in the development of regenerative medicine strategies for CNS disorders over the last decade, with progression to early clinical studies for some conditions. However, there are multiple challenges along the translational pipeline, many of which are common across diseases and pertinent to multiple donor cell types. These include defining the point at which the preclinical data are sufficiently compelling to permit progression to the first clinical studies; scaling-up, characterization, quality control and validation of the cell product; design, validation and approval of the surgical device; and operative procedures for safe and effective delivery of cell product to the brain. Furthermore, clinical trials that incorporate principles of efficient design and disease-specific outcomes are urgently needed (particularly for those undertaken in rare diseases, where relatively small cohorts are an additional limiting factor), and all processes must be adaptable in a dynamic regulatory environment. Here we set out the challenges associated with the clinical translation of cell therapy, using Huntington's disease as a specific example, and suggest potential strategies to address these challenges. Huntington's disease presents a clear unmet need, but, importantly, it is an autosomal dominant condition with a readily available gene test, full genetic penetrance and a wide range of associated animal models, which together mean that it is a powerful condition in which to develop principles and test experimental therapeutics. We propose that solving these challenges in Huntington's disease would provide a road map for many other neurological conditions. This white paper represents a consensus opinion emerging from a series of meetings of the international translational platforms Stem Cells for Huntington's Disease and the European Huntington's Disease Network Advanced Therapies Working Group, established to identify the challenges of cell therapy, share experience, develop guidance and highlight future directions, with the aim to expedite progress towards therapies for clinical benefit in Huntington's disease.


Subject(s)
Huntington Disease , Neurodegenerative Diseases , Animals , Brain/metabolism , Cell- and Tissue-Based Therapy , Humans , Huntington Disease/genetics , Huntington Disease/metabolism , Huntington Disease/therapy , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/therapy
8.
Am J Hum Genet ; 100(4): 617-634, 2017 Apr 06.
Article in English | MEDLINE | ID: mdl-28366443

ABSTRACT

Pelizaeus-Merzbacher disease (PMD) is a pediatric disease of myelin in the central nervous system and manifests with a wide spectrum of clinical severities. Although PMD is a rare monogenic disease, hundreds of mutations in the X-linked myelin gene proteolipid protein 1 (PLP1) have been identified in humans. Attempts to identify a common pathogenic process underlying PMD have been complicated by an incomplete understanding of PLP1 dysfunction and limited access to primary human oligodendrocytes. To address this, we generated panels of human induced pluripotent stem cells (hiPSCs) and hiPSC-derived oligodendrocytes from 12 individuals with mutations spanning the genetic and clinical diversity of PMD-including point mutations and duplication, triplication, and deletion of PLP1-and developed an in vitro platform for molecular and cellular characterization of all 12 mutations simultaneously. We identified individual and shared defects in PLP1 mRNA expression and splicing, oligodendrocyte progenitor development, and oligodendrocyte morphology and capacity for myelination. These observations enabled classification of PMD subgroups by cell-intrinsic phenotypes and identified a subset of mutations for targeted testing of small-molecule modulators of the endoplasmic reticulum stress response, which improved both morphologic and myelination defects. Collectively, these data provide insights into the pathogeneses of a variety of PLP1 mutations and suggest that disparate etiologies of PMD could require specific treatment approaches for subsets of individuals. More broadly, this study demonstrates the versatility of a hiPSC-based panel spanning the mutational heterogeneity within a single disease and establishes a widely applicable platform for genotype-phenotype correlation and drug screening in any human myelin disorder.


Subject(s)
Oligodendroglia/pathology , Pelizaeus-Merzbacher Disease/genetics , Pelizaeus-Merzbacher Disease/pathology , Cell Culture Techniques , Child , Child, Preschool , Endoplasmic Reticulum Stress , Female , Humans , Induced Pluripotent Stem Cells/pathology , Male , Myelin Proteolipid Protein , Oligodendroglia/metabolism
9.
Proc Natl Acad Sci U S A ; 113(4): 1074-9, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26755608

ABSTRACT

Microglia are integral functional elements of the central nervous system, but the contribution of these cells to the structural integrity of the neurovascular unit has not hitherto been assessed. We show here that following blood-brain barrier (BBB) breakdown, P2RY12 (purinergic receptor P2Y, G-protein coupled, 12)-mediated chemotaxis of microglia processes is required for the rapid closure of the BBB. Mice treated with the P2RY12 inhibitor clopidogrel, as well as those in which P2RY12 was genetically ablated, exhibited significantly diminished movement of juxtavascular microglial processes and failed to close laser-induced openings of the BBB. Thus, microglial cells play a previously unrecognized protective role in the maintenance of BBB integrity following cerebrovascular damage. Because clopidogrel antagonizes the platelet P2Y12 receptor, it is widely prescribed for patients with coronary artery and cerebrovascular disease. As such, these observations suggest the need for caution in the postincident continuation of P2RY12-targeted platelet inhibition.


Subject(s)
Blood-Brain Barrier , Microglia/physiology , Receptors, Purinergic P2Y12/physiology , Animals , Cell Movement , Clopidogrel , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Platelet Aggregation Inhibitors/pharmacology , Ticlopidine/analogs & derivatives , Ticlopidine/pharmacology
10.
J Neurosci ; 37(17): 4493-4507, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28336567

ABSTRACT

Astrocytes have in recent years become the focus of intense experimental interest, yet markers for their definitive identification remain both scarce and imperfect. Astrocytes may be recognized as such by their expression of glial fibrillary acidic protein, glutamine synthetase, glutamate transporter 1 (GLT1), aquaporin-4, aldehyde dehydrogenase 1 family member L1, and other proteins. However, these proteins may all be regulated both developmentally and functionally, restricting their utility. To identify a nuclear marker pathognomonic of astrocytic phenotype, we assessed differential RNA expression by FACS-purified adult astrocytes and, on that basis, evaluated the expression of the transcription factor SOX9 in both mouse and human brain. We found that SOX9 is almost exclusively expressed by astrocytes in the adult brain except for ependymal cells and in the neurogenic regions, where SOX9 is also expressed by neural progenitor cells. Transcriptome comparisons of SOX9+ cells with GLT1+ cells showed that the two populations of cells exhibit largely overlapping gene expression. Expression of SOX9 did not decrease during aging and was instead upregulated by reactive astrocytes in a number of settings, including a murine model of amyotrophic lateral sclerosis (SOD1G93A), middle cerebral artery occlusion, and multiple mini-strokes. We quantified the relative number of astrocytes using the isotropic fractionator technique in combination with SOX9 immunolabeling. The analysis showed that SOX9+ astrocytes constitute ∼10-20% of the total cell number in most CNS regions, a smaller fraction of total cell number than previously estimated in the normal adult brain.SIGNIFICANCE STATEMENT Astrocytes are traditionally identified immunohistochemically by antibodies that target cell-specific antigens in the cytosol or plasma membrane. We show here that SOX9 is an astrocyte-specific nuclear marker in all major areas of the CNS outside of the neurogenic regions. Based on SOX9 immunolabeling, we document that astrocytes constitute a smaller fraction of total cell number than previously estimated in the normal adult mouse brain.


Subject(s)
Astrocytes/metabolism , SOX9 Transcription Factor/metabolism , Adult , Aging , Animals , Biomarkers , Brain Ischemia/genetics , Brain Ischemia/metabolism , Excitatory Amino Acid Transporter 2/metabolism , Gene Expression Regulation/genetics , Gene Expression Regulation/physiology , Humans , Male , Mice , Mice, Inbred C57BL , Neural Stem Cells/metabolism , Neurogenesis , RNA/biosynthesis , SOX9 Transcription Factor/genetics , Stroke/genetics , Stroke/metabolism , Transcriptome/genetics
11.
Development ; 142(23): 3983-95, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26628089

ABSTRACT

Oligodendrocytes produce myelin, an insulating sheath required for the saltatory conduction of electrical impulses along axons. Oligodendrocyte loss results in demyelination, which leads to impaired neurological function in a broad array of diseases ranging from pediatric leukodystrophies and cerebral palsy, to multiple sclerosis and white matter stroke. Accordingly, replacing lost oligodendrocytes, whether by transplanting oligodendrocyte progenitor cells (OPCs) or by mobilizing endogenous progenitors, holds great promise as a therapeutic strategy for the diseases of central white matter. In this Primer, we describe the molecular events regulating oligodendrocyte development and how our understanding of this process has led to the establishment of methods for producing OPCs and oligodendrocytes from embryonic stem cells and induced pluripotent stem cells, as well as directly from somatic cells. In addition, we will discuss the safety of engrafted stem cell-derived OPCs, as well as approaches by which to modulate their differentiation and myelinogenesis in vivo following transplantation.


Subject(s)
Oligodendroglia/cytology , Oligodendroglia/physiology , Animals , Cell Culture Techniques , Cell Differentiation , Cell Transplantation , Demyelinating Diseases/metabolism , Developmental Biology/methods , Humans , Induced Pluripotent Stem Cells/cytology , Mice , Multiple Sclerosis/metabolism , Myelin Sheath/physiology , Phenotype , Pluripotent Stem Cells/cytology , Prosencephalon/cytology , Spinal Cord/cytology
12.
Stem Cells ; 35(2): 311-315, 2017 02.
Article in English | MEDLINE | ID: mdl-27882623

ABSTRACT

Pelizaeus-Merzbacher disease (PMD) is an X-linked disorder caused by mutation in the proteolipid protein-1 (PLP1) gene, which encodes the proteolipid protein of myelinating oligodendroglia. PMD exhibits phenotypic variability that reflects its considerable genotypic heterogeneity, but all forms of the disease result in central hypomyelination, associated in most cases with early neurological dysfunction, progressive deterioration, and ultimately death. PMD may present as a connatal, classic and transitional forms, or as the less severe spastic paraplegia type 2 and PLP-null phenotypes. These disorders are most often associated with duplications of the PLP1 gene, but can also be caused by coding and noncoding point mutations as well as full or partial deletion of the gene. A number of genetically-distinct but phenotypically-similar disorders of hypomyelination exist which, like PMD, lack any effective therapy. Yet as relatively pure CNS hypomyelinating disorders, with limited involvement of the PNS and relatively little attendant neuronal pathology, PMD and similar hypomyelinating disorders are attractive therapeutic targets for neural stem cell and glial progenitor cell transplantation, efforts at which are now underway in a number of research centers. Stem Cells 2017;35:311-315.


Subject(s)
Pelizaeus-Merzbacher Disease/therapy , Stem Cell Transplantation , Stem Cells/cytology , Animals , Disease Models, Animal , Humans , Mutation/genetics , Myelin Sheath/metabolism , Pelizaeus-Merzbacher Disease/pathology
13.
J Neurosci ; 35(34): 11848-61, 2015 Aug 26.
Article in English | MEDLINE | ID: mdl-26311768

ABSTRACT

Microglia are involved in synaptic pruning both in development and in the mature CNS. In this study, we investigated whether microglia might further contribute to circuit plasticity by modulating neuronal recruitment from the neurogenic subventricular zone (SVZ) of the adult mouse striatum. We found that microglia residing in the SVZ and adjacent rostral migratory stream (RMS) comprise a morphologically and antigenically distinct phenotype of immune effectors. Whereas exhibiting characteristics of alternatively activated microglia, the SVZ/RMS microglia were clearly distinguished by their low expression of purinoceptors and lack of ATP-elicitable chemotaxis. Furthermore, the in vivo depletion of these microglia hampered the survival and migration of newly generated neuroblasts through the RMS to the olfactory bulb. SVZ and RMS microglia thus appear to comprise a functionally distinct class that is selectively adapted to the support and direction of neuronal integration into the olfactory circuitry. Therefore, this unique microglial subpopulation may serve as a novel target with which to modulate cellular addition from endogenous neural stem and progenitor cells of the adult brain. SIGNIFICANCE STATEMENT: Microglial cells are a specialized population of macrophages in the CNS, playing key roles as immune mediators. As integral components in the CNS, the microglia stand out for using the same mechanisms, phagocytosis and cytochemokine release, to promote homeostasis, synaptic pruning, and neural circuitry sculpture. Here, we addressed microglial functions in the subventricular zone (SVZ), the major postnatal neurogenic niche. Our results depict microglia as a conspicuous component of SVZ and its anterior extension, the rostral migratory stream, a pathway used by neuroblasts during their transit toward olfactory bulb layers. In addition to other unique populations residing in the SVZ niche, microglia display distinct morphofunctional properties that boost neuronal progenitor survival and migration in the mammalian brain.


Subject(s)
Lateral Ventricles/cytology , Lateral Ventricles/physiology , Microglia/physiology , Neurogenesis/physiology , Animals , Animals, Newborn , Female , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Neural Stem Cells/physiology
14.
J Neurosci ; 34(48): 16153-61, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25429155

ABSTRACT

Neonatally transplanted human glial progenitor cells (hGPCs) densely engraft and myelinate the hypomyelinated shiverer mouse. We found that, in hGPC-xenografted mice, the human donor cells continue to expand throughout the forebrain, systematically replacing the host murine glia. The differentiation of the donor cells is influenced by the host environment, such that more donor cells differentiated as oligodendrocytes in the hypomyelinated shiverer brain than in myelin wild-types, in which hGPCs were more likely to remain as progenitors. Yet in each recipient, both the number and relative proportion of mouse GPCs fell as a function of time, concomitant with the mitotic expansion and spread of donor hGPCs. By a year after neonatal xenograft, the forebrain GPC populations of implanted mice were largely, and often entirely, of human origin. Thus, neonatally implanted hGPCs outcompeted and ultimately replaced the host population of mouse GPCs, ultimately generating mice with a humanized glial progenitor population. These human glial chimeric mice should permit us to define the specific contributions of glia to a broad variety of neurological disorders, using human cells in vivo.


Subject(s)
Chimera/physiology , Fetal Stem Cells/physiology , Fetal Stem Cells/transplantation , Neuroglia/physiology , Neuroglia/transplantation , Prosencephalon/physiology , Animals , Animals, Newborn , Female , Humans , Male , Mice , Mice, Transgenic , Prosencephalon/cytology , Stem Cell Transplantation/methods
15.
Glia ; 63(8): 1483-93, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26010831

ABSTRACT

As new methods for producing and isolating human glial progenitor cells (hGPCs) have been developed, the disorders of myelin have become especially compelling targets for cell-based therapy. Yet as animal modeling of glial progenitor cell-based therapies has progressed, it has become clear that transplanted hGPCs not only engraft and expand within murine hosts, but dynamically outcompete the resident progenitors so as to ultimately dominate the host brain. The engrafted human progenitor cells proceed to generate parenchymal astrocytes, and when faced with a hypomyelinated environment, oligodendrocytes as well. As a result, the recipient brains may become inexorably humanized with regards to their resident glial populations, yielding human glial chimeric mouse brains. These brains provide us a fundamentally new tool by which to assess the species-specific attributes of glia in modulating human cognition and information processing. In addition, the cellular humanization of these brains permits their use in studying glial infectious and inflammatory disorders unique to humans, and the effects of those disorders on the glial contributions to cognition. Perhaps most intriguingly, by pairing our ability to construct human glial chimeras with the production of patient-specific hGPCs derived from pluripotential stem cells, we may now establish mice in which a substantial proportion of resident glia are both human and disease-derived. These mice in particular may provide us new opportunities for studying the human-specific contributions of glia to psychopathology, as well as to higher cognition. As such, the assessment of human glial chimeric mice may provide us new insight into the species-specific contributions of glia to human cognitive evolution, as well as to the pathogenesis of human neurological and neuropsychiatric disease.


Subject(s)
Central Nervous System Diseases/physiopathology , Cognition/physiology , Neural Stem Cells/physiology , Neural Stem Cells/transplantation , Neuroglia/cytology , Neuroglia/physiology , Animals , Central Nervous System Diseases/surgery , Chimera , Humans , Mice , Models, Animal
16.
Mol Genet Metab ; 114(4): 527-36, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25684057

ABSTRACT

Leukodystrophies are a heterogeneous, often progressive group of disorders manifesting a wide range of symptoms and complications. Most of these disorders have historically had no etiologic or disease specific therapeutic approaches. Recently, a greater understanding of the pathologic mechanisms associated with leukodystrophies has allowed clinicians and researchers to prioritize treatment strategies and advance research in therapies for specific disorders, some of which are on the verge of pilot or Phase I/II clinical trials. This shifts the care of leukodystrophy patients from the management of the complex array of symptoms and sequelae alone to targeted therapeutics. The unmet needs of leukodystrophy patients still remain an overwhelming burden. While the overwhelming consensus is that these disorders collectively are symptomatically treatable, leukodystrophy patients are in need of advanced therapies and if possible, a cure.


Subject(s)
Demyelinating Diseases/therapy , Hereditary Central Nervous System Demyelinating Diseases/therapy , Leukodystrophy, Metachromatic/therapy , Leukoencephalopathies/therapy , Brain Diseases/prevention & control , Brain Diseases/therapy , Demyelinating Diseases/prevention & control , Hereditary Central Nervous System Demyelinating Diseases/prevention & control , Humans , Leukodystrophy, Metachromatic/prevention & control , Leukoencephalopathies/prevention & control
17.
J Neurosci ; 33(14): 6181-90, 2013 Apr 03.
Article in English | MEDLINE | ID: mdl-23554499

ABSTRACT

Activated protein C (APC) is a protease with anticoagulant and cell-signaling activities. In the CNS, APC and its analogs with reduced anticoagulant activity but preserved cell signaling activities, such as 3K3A-APC, exert neuroprotective, vasculoprotective, and anti-inflammatory effects. Murine APC promotes subependymal neurogenesis in rodents in vivo after ischemic and traumatic brain injury. Whether human APC can influence neuronal production from resident progenitor cells in humans is unknown. Here we show that 3K3A-APC, but not S360A-APC (an enzymatically inactive analog of APC), stimulates neuronal mitogenesis and differentiation from fetal human neural stem and progenitor cells (NPCs). The effects of 3K3A-APC on proliferation and differentiation were comparable to those obtained with fibroblast growth factor and brain-derived growth factor, respectively. Its promoting effect on neuronal differentiation was accompanied by inhibition of astroglial differentiation. In addition, 3K3A-APC exerted modest anti-apoptotic effects during neuronal production. These effects appeared to be mediated through specific protease activated receptors (PARs) and sphingosine-1-phosphate receptors (S1PRs), in that siRNA-mediated inhibition of PARs 1-4 and S1PRs 1-5 revealed that PAR1, PAR3, and S1PR1 are required for the neurogenic effects of 3K3A-APC. 3K3A-APC activated Akt, a downstream target of S1PR1, which was inhibited by S1PR1, PAR1, and PAR3 silencing. Adenoviral transduction of NPCs with a kinase-defective Akt mutant abolished the effects of 3K3A-APC on NPCs, confirming a key role of Akt activation in 3K3A-APC-mediated neurogenesis. Therefore, APC and its pharmacological analogs, by influencing PAR and S1PR signals in resident neural progenitor cells, may be potent modulators of both development and repair in the human CNS.


Subject(s)
Blood Coagulation Factors/agonists , Neural Stem Cells/physiology , Neurogenesis/drug effects , Oligopeptides/pharmacology , Receptors, Cell Surface/agonists , Signal Transduction/drug effects , Analysis of Variance , Animals , Apoptosis/drug effects , Brain-Derived Neurotrophic Factor/pharmacology , Bromodeoxyuridine , Cell Differentiation/drug effects , Cell Movement/drug effects , Cells, Cultured , Cerebral Ventricles/cytology , Dactinomycin/analogs & derivatives , Dactinomycin/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Fetus , Flow Cytometry , Humans , Intermediate Filament Proteins/metabolism , Ki-67 Antigen/metabolism , Lysophospholipids/metabolism , Male , Mutation/physiology , Nerve Tissue Proteins/metabolism , Nestin , Neural Stem Cells/drug effects , Oncogene Protein v-akt/metabolism , RNA Interference/physiology , RNA, Small Interfering/pharmacology , Receptors, Lysosphingolipid/metabolism , Receptors, Proteinase-Activated/metabolism , Serine/metabolism , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Sphingosine-1-Phosphate Receptors , Time Factors
18.
Nat Med ; 13(4): 477-85, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17401377

ABSTRACT

The germinal matrix of premature infants is selectively vulnerable to hemorrhage within the first 48 h of life. To assess the role of vascular immaturity in germinal matrix hemorrhage (GMH), we evaluated germinal matrix angiogenesis in human fetuses and premature infants, as well as in premature rabbit pups, and noted active vessel remodeling in all three. Vascular endothelial growth factor (VEGF), angiopoietin-2 and endothelial cell proliferation were present at consistently higher levels in the germinal matrix relative to the white matter anlagen and cortical mantle. On that basis, we asked whether prenatal treatment with either of two angiogenic inhibitors, the COX-2 inhibitor celecoxib, or the VEGFR2 inhibitor ZD6474, could suppress the incidence of GMH in premature rabbit pups. Celecoxib treatment decreased angiopoietin-2 and VEGF levels as well as germinal matrix endothelial proliferation. Furthermore, treatment with celecoxib or ZD6474 substantially decreased the incidence of GMH. Thus, by suppressing germinal matrix angiogenesis, prenatal celecoxib or ZD6474 treatment may be able to reduce both the incidence and severity of GMH in susceptible premature infants.


Subject(s)
Brain/blood supply , Intracranial Hemorrhages/prevention & control , Neovascularization, Physiologic/drug effects , Piperidines/pharmacology , Pyrazoles/pharmacology , Quinazolines/pharmacology , Sulfonamides/pharmacology , Aborted Fetus , Angiopoietin-2/metabolism , Animals , Blotting, Western , Celecoxib , Cell Proliferation/drug effects , Cyclooxygenase 2 Inhibitors/pharmacology , Endothelial Cells/drug effects , Humans , Immunohistochemistry , Infant, Newborn , Infant, Premature , Neovascularization, Physiologic/physiology , Rabbits , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors
19.
Article in English | MEDLINE | ID: mdl-38316552

ABSTRACT

The inability of the mammalian central nervous system (CNS) to undergo spontaneous regeneration has long been regarded as a central tenet of neurobiology. However, while this is largely true of the neuronal elements of the adult mammalian CNS, save for discrete populations of granule neurons, the same is not true of its glial elements. In particular, the loss of oligodendrocytes, which results in demyelination, triggers a spontaneous and often highly efficient regenerative response, remyelination, in which new oligodendrocytes are generated and myelin sheaths are restored to denuded axons. Yet remyelination in humans is not without limitation, and a variety of demyelinating conditions are associated with sustained and disabling myelin loss. In this work, we will (1) review the biology of remyelination, including the cells and signals involved; (2) describe when remyelination occurs and when and why it fails, including the consequences of its failure; and (3) discuss approaches for therapeutically enhancing remyelination in demyelinating diseases of both children and adults, both by stimulating endogenous oligodendrocyte progenitor cells and by transplanting these cells into demyelinated brain.


Subject(s)
Demyelinating Diseases , Remyelination , Animals , Adult , Child , Humans , Remyelination/physiology , Nerve Regeneration/physiology , Myelin Sheath/physiology , Central Nervous System , Mammals
20.
bioRxiv ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39005270

ABSTRACT

Human-mouse chimeric brain models, generated by transplanting human induced pluripotent stem cell (hiPSC)-derived neural cells, are valuable for studying the development and function of human neural cells in vivo. Understanding glial-glial and glial-neuronal interactions is essential for unraveling the complexities of brain function and developing treatments for neurological disorders. To explore these interactions between human neural cells within an intact brain environment, we employe a co-transplantation strategy involving the engraftment of hiPSC-derived neural progenitor cells along with primitive macrophage progenitors into the neonatal mouse brain. This approach creates human-mouse chimeric brains containing human microglia, macroglia (astroglia and oligodendroglia), and neurons. Using super-resolution imaging and 3D reconstruction techniques, we examine the dynamics between human neurons and glia, unveiling human microglia engulfing immature human neurons, microglia pruning synapses of human neurons, and significant interactions between human oligodendrocytes and neurons. Single-cell RNA sequencing analysis of the chimeric brain uncovers a close recapitulation of the human glial progenitor cell population, along with a dynamic stage in astroglial development that mirrors the processes found in the human brain. Furthermore, cell-cell communication analysis highlights significant neuronal-glial and glial-glial interactions, especially the interaction between adhesion molecules neurexins and neuroligins. This innovative co-transplantation model opens up new avenues for exploring the complex pathophysiological mechanisms underlying human neurological diseases. It holds particular promise for studying disorders where glial-neuronal interactions and non-cell-autonomous effects play crucial roles.

SELECTION OF CITATIONS
SEARCH DETAIL