Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Microbiology (Reading) ; 170(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38860877

ABSTRACT

The past decade has seen growing awareness of the challenges faced by LGBTQIA+ scientists, including discrimination in the workplace and the lack of representation. Initiatives such as 500 Queer Scientists, Pride in STEM and the Microbiology Society's LGBTQIA+ events have been instrumental in promoting inclusivity in science, technology, engineering, mathematics and medicine (STEMM). The Microbiology Society and its members have played a pivotal role in these efforts and summarized here are their initiatives towards safer and more inclusive scientific and research environments. Starting with a series of interviews and blog posts about the experiences of LGBTQIA+ microbiologists in research, the Society has promoted the organization of networking and social events and developed guidelines for creating more inclusive scientific conferences. These initiatives have not only improved the representation and visibility of LGBTQIA+ individuals in microbiology, but have also served as a blueprint for similar efforts in other scientific areas. Nevertheless, despite improvements in some areas, full inclusion of LGBTQIA+ scientists is still hindered by societal and institutional policies around the world. Here, we propose novel measures to support and empower LGBTQIA+ microbiological communities within learned societies.


Subject(s)
Microbiology , Sexual and Gender Minorities , Humans , Female , Male , Societies, Scientific
2.
PLoS Pathog ; 18(2): e1009202, 2022 02.
Article in English | MEDLINE | ID: mdl-35130321

ABSTRACT

Zinc-finger antiviral protein (ZAP), also known as poly(ADP-ribose) polymerase 13 (PARP13), is an antiviral factor that selectively targets viral RNA for degradation. ZAP is active against both DNA and RNA viruses, including important human pathogens such as hepatitis B virus and type 1 human immunodeficiency virus (HIV-1). ZAP selectively binds CpG dinucleotides through its N-terminal RNA-binding domain, which consists of four zinc fingers. ZAP also contains a central region that consists of a fifth zinc finger and two WWE domains. Through structural and biochemical studies, we found that the fifth zinc finger and tandem WWEs of ZAP combine into a single integrated domain that binds to poly(ADP-ribose) (PAR), a cellular polynucleotide. PAR binding is mediated by the second WWE module of ZAP and likely involves specific recognition of an adenosine diphosphate-containing unit of PAR. Mutation of the PAR binding site in ZAP abrogates the interaction in vitro and diminishes ZAP activity against a CpG-rich HIV-1 reporter virus and murine leukemia virus. In cells, PAR facilitates formation of non-membranous sub-cellular compartments such as DNA repair foci, spindle poles and cytosolic RNA stress granules. Our results suggest that ZAP-mediated viral mRNA degradation is facilitated by PAR, and provides a biophysical rationale for the reported association of ZAP with RNA stress granules.


Subject(s)
HIV-1/metabolism , Leukemia Virus, Murine/metabolism , Poly Adenosine Diphosphate Ribose/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Zinc Fingers , Animals , Antiviral Agents/pharmacology , Crystallography, X-Ray , HEK293 Cells , HeLa Cells , Humans , Mice , Mutation , Protein Binding , Protein Conformation , Protein Domains , RNA Stability , RNA, Viral , RNA-Binding Proteins/pharmacology
3.
PLoS Pathog ; 17(4): e1009545, 2021 04.
Article in English | MEDLINE | ID: mdl-33901262

ABSTRACT

The human zinc finger antiviral protein (ZAP) recognizes RNA by binding to CpG dinucleotides. Mammalian transcriptomes are CpG-poor, and ZAP may have evolved to exploit this feature to specifically target non-self viral RNA. Phylogenetic analyses reveal that ZAP and its paralogue PARP12 share an ancestral gene that arose prior to extensive eukaryote divergence, and the ZAP lineage diverged from the PARP12 lineage in tetrapods. Notably, the CpG content of modern eukaryote genomes varies widely, and ZAP-like genes arose subsequent to the emergence of CpG-suppression in vertebrates. Human PARP12 exhibited no antiviral activity against wild type and CpG-enriched HIV-1, but ZAP proteins from several tetrapods had antiviral activity when expressed in human cells. In some cases, ZAP antiviral activity required a TRIM25 protein from the same or related species, suggesting functional co-evolution of these genes. Indeed, a hypervariable sequence in the N-terminal domain of ZAP contributed to species-specific TRIM25 dependence in antiviral activity assays. Crosslinking immunoprecipitation coupled with RNA sequencing revealed that ZAP proteins from human, mouse, bat and alligator exhibit a high degree of CpG-specificity, while some avian ZAP proteins appear more promiscuous. Together, these data suggest that the CpG- rich RNA directed antiviral activity of ZAP-related proteins arose in tetrapods, subsequent to the onset of CpG suppression in certain eukaryote lineages, with subsequent species-specific adaptation of cofactor requirements and RNA target specificity.


Subject(s)
Antiviral Agents , Evolution, Molecular , Zinc Fingers/genetics , Alligators and Crocodiles , Animals , Antiviral Agents/metabolism , Cells, Cultured , Chickens , Ducks , Eagles , Finches , HEK293 Cells , Humans , Mice , Phylogeny , RNA-Binding Proteins/genetics , Transcription Factors/genetics , Tripartite Motif Proteins/genetics , Turkey , Ubiquitin-Protein Ligases/genetics , Zebrafish
4.
Nature ; 550(7674): 124-127, 2017 10 05.
Article in English | MEDLINE | ID: mdl-28953888

ABSTRACT

Vertebrate genomes exhibit marked CG suppression-that is, lower than expected numbers of 5'-CG-3' dinucleotides. This feature is likely to be due to C-to-T mutations that have accumulated over hundreds of millions of years, driven by CG-specific DNA methyl transferases and spontaneous methyl-cytosine deamination. Many RNA viruses of vertebrates that are not substrates for DNA methyl transferases mimic the CG suppression of their hosts. This property of viral genomes is unexplained. Here we show, using synonymous mutagenesis, that CG suppression is essential for HIV-1 replication. The deleterious effect of CG dinucleotides on HIV-1 replication was cumulative, associated with cytoplasmic RNA depletion, and was exerted by CG dinucleotides in both translated and non-translated exonic RNA sequences. A focused screen using small inhibitory RNAs revealed that zinc-finger antiviral protein (ZAP) inhibited virion production by cells infected with CG-enriched HIV-1. Crucially, HIV-1 mutants containing segments whose CG content mimicked random nucleotide sequence were defective in unmanipulated cells, but replicated normally in ZAP-deficient cells. Crosslinking-immunoprecipitation-sequencing assays demonstrated that ZAP binds directly and selectively to RNA sequences containing CG dinucleotides. These findings suggest that ZAP exploits host CG suppression to identify non-self RNA. The dinucleotide composition of HIV-1, and perhaps other RNA viruses, appears to have adapted to evade this host defence.


Subject(s)
Dinucleoside Phosphates/genetics , GC Rich Sequence/genetics , HIV-1/genetics , HIV-1/immunology , RNA, Viral/genetics , RNA, Viral/immunology , Cell Line , Cytoplasm/genetics , Cytoplasm/virology , HIV-1/growth & development , Humans , Immunoprecipitation , Mutagenesis , Mutation , Protein Binding , RNA, Viral/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Virus Replication/genetics
5.
Proc Natl Acad Sci U S A ; 116(48): 24303-24309, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31719195

ABSTRACT

Infection of animal cells by numerous viruses is detected and countered by a variety of means, including recognition of nonself nucleic acids. The zinc finger antiviral protein (ZAP) depletes cytoplasmic RNA that is recognized as foreign in mammalian cells by virtue of its elevated CG dinucleotide content compared with endogenous mRNAs. Here, we determined a crystal structure of a protein-RNA complex containing the N-terminal, 4-zinc finger human (h) ZAP RNA-binding domain (RBD) and a CG dinucleotide-containing RNA target. The structure reveals in molecular detail how hZAP is able to bind selectively to CG-rich RNA. Specifically, the 4 zinc fingers create a basic patch on the hZAP RBD surface. The highly basic second zinc finger contains a pocket that selectively accommodates CG dinucleotide bases. Structure guided mutagenesis, cross-linking immunoprecipitation sequencing assays, and RNA affinity assays show that the structurally defined CG-binding pocket is not required for RNA binding per se in human cells. However, the pocket is a crucial determinant of high-affinity, specific binding to CG dinucleotide-containing RNA. Moreover, variations in RNA-binding specificity among a panel of CG-binding pocket mutants quantitatively predict their selective antiviral activity against a CG-enriched HIV-1 strain. Overall, the hZAP RBD RNA structure provides an atomic-level explanation for how ZAP selectively targets foreign, CG-rich RNA.


Subject(s)
GC Rich Sequence , RNA, Viral/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Binding Sites , Crystallography, X-Ray , Fluorescence Polarization , HEK293 Cells , HIV-1/genetics , Humans , Models, Molecular , Mutagenesis , Mutation , Protein Domains , RNA, Viral/chemistry , RNA-Binding Proteins/genetics , Repressor Proteins/genetics , Zinc Fingers
6.
J Gen Virol ; 101(10): 1090-1102, 2020 10.
Article in English | MEDLINE | ID: mdl-32692647

ABSTRACT

Some free fatty acids derived from milk and vegetable oils are known to have potent antiviral and antibacterial properties. However, therapeutic applications of short- to medium-chain fatty acids are limited by physical characteristics such as immiscibility in aqueous solutions. We evaluated a novel proprietary formulation based on an emulsion of short-chain caprylic acid, ViroSAL, for its ability to inhibit a range of viral infections in vitro and in vivo. In vitro, ViroSAL inhibited the enveloped viruses Epstein-Barr, measles, herpes simplex, Zika and orf parapoxvirus, together with Ebola, Lassa, vesicular stomatitis and severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) pseudoviruses, in a concentration- and time-dependent manner. Evaluation of the components of ViroSAL revealed that caprylic acid was the main antiviral component; however, the ViroSAL formulation significantly inhibited viral entry compared with caprylic acid alone. In vivo, ViroSAL significantly inhibited Zika and Semliki Forest virus replication in mice following the inoculation of these viruses into mosquito bite sites. In agreement with studies investigating other free fatty acids, ViroSAL had no effect on norovirus, a non-enveloped virus, indicating that its mechanism of action may be surfactant disruption of the viral envelope. We have identified a novel antiviral formulation that is of great interest for the prevention and/or treatment of a broad range of enveloped viruses, particularly those of the skin and mucosal surfaces.


Subject(s)
Antiviral Agents , Severe acute respiratory syndrome-related coronavirus , Viruses , Zika Virus Infection , Zika Virus , Animals , Antiviral Agents/pharmacology , Lipids , Mice , Virus Internalization
7.
J Virol ; 92(23)2018 12 01.
Article in English | MEDLINE | ID: mdl-30232185

ABSTRACT

Morbilliviruses infect a broad range of mammalian hosts, including ruminants, carnivores, and humans. The recent eradication of rinderpest virus (RPV) and the active campaigns for eradication of the human-specific measles virus (MeV) have raised significant concerns that the remaining morbilliviruses may emerge in so-called vacated ecological niches. Seeking to assess the zoonotic potential of nonhuman morbilliviruses within human populations, we found that peste des petits ruminants virus (PPRV)-the small-ruminant morbillivirus-is restricted at the point of entry into human cells due to deficient interactions with human SLAMF1-the immune cell receptor for morbilliviruses. Using a structure-guided approach, we characterized a single amino acid change, mapping to the receptor-binding domain in the PPRV hemagglutinin (H) protein, which overcomes this restriction. The same mutation allowed escape from some cross-protective, human patient, anti-MeV antibodies, raising concerns that PPRV is a pathogen with zoonotic potential. Analysis of natural variation within human and ovine SLAMF1 also identified polymorphisms that could correlate with disease resistance. Finally, the mechanistic nature of the PPRV restriction was also investigated, identifying charge incompatibility and steric hindrance between PPRV H and human SLAMF1 proteins. Importantly, this research was performed entirely using surrogate virus entry assays, negating the requirement for in situ derivation of a human-tropic PPRV and illustrating alternative strategies for identifying gain-of-function mutations in viral pathogens.IMPORTANCE A significant proportion of viral pandemics occur following zoonotic transmission events, where animal-associated viruses jump species into human populations. In order to provide forewarnings of the emergence of these viruses, it is necessary to develop a better understanding of what determines virus host range, often at the genetic and structural levels. In this study, we demonstrated that the small-ruminant morbillivirus, a close relative of measles, is unable to use human receptors to enter cells; however, a change of a single amino acid in the virus is sufficient to overcome this restriction. This information will be important for monitoring this virus's evolution in the field. Of note, this study was undertaken in vitro, without generation of a fully infectious virus with this phenotype.


Subject(s)
Antibodies, Viral/immunology , Glycoproteins/metabolism , Mutation , Peste-des-Petits-Ruminants/virology , Peste-des-petits-ruminants virus/pathogenicity , Signaling Lymphocytic Activation Molecule Family Member 1/metabolism , Virus Replication , Amino Acid Sequence , Animals , Chlorocebus aethiops , Glycoproteins/chemistry , Glycoproteins/genetics , Glycoproteins/immunology , Humans , Models, Theoretical , Mutagenesis, Site-Directed , Peste-des-Petits-Ruminants/pathology , Peste-des-Petits-Ruminants/transmission , Peste-des-petits-ruminants virus/genetics , Peste-des-petits-ruminants virus/immunology , Protein Conformation , Sequence Homology , Sheep , Signaling Lymphocytic Activation Molecule Family Member 1/chemistry , Signaling Lymphocytic Activation Molecule Family Member 1/genetics , Signaling Lymphocytic Activation Molecule Family Member 1/immunology , Vero Cells
8.
J Virol ; 91(7)2017 04 01.
Article in English | MEDLINE | ID: mdl-28100610

ABSTRACT

The signaling lymphocyte activation molecule F1 (SLAMF1) is both a microbial sensor and entry receptor for measles virus (MeV). Herein, we describe a new role for SLAMF1 to mediate MeV endocytosis that is in contrast with the alternative, and generally accepted, model that MeV genome enters cells only after fusion at the cell surface. We demonstrated that MeV engagement of SLAMF1 induces dramatic but transient morphological changes, most prominently in the formation of membrane blebs, which were shown to colocalize with incoming viral particles, and rearrangement of the actin cytoskeleton in infected cells. MeV infection was dependent on these dynamic cytoskeletal changes as well as fluid uptake through a macropinocytosis-like pathway as chemical inhibition of these processes inhibited entry. Moreover, we identified a role for the RhoA-ROCK-myosin II signaling axis in this MeV internalization process, highlighting a novel role for this recently characterized pathway in virus entry. Our study shows that MeV can hijack a microbial sensor normally involved in bacterial phagocytosis to drive endocytosis using a complex pathway that shares features with canonical viral macropinocytosis, phagocytosis, and mechanotransduction. This uptake pathway is specific to SLAMF1-positive cells and occurs within 60 min of viral attachment. Measles virus remains a significant cause of mortality in human populations, and this research sheds new light on the very first steps of infection of this important pathogen.IMPORTANCE Measles is a significant disease in humans and is estimated to have killed over 200 million people since records began. According to current World Health Organization statistics, it still kills over 100,000 people a year, mostly children in the developing world. The causative agent, measles virus, is a small enveloped RNA virus that infects a broad range of cells during infection. In particular, immune cells are infected via interactions between glycoproteins found on the surface of the virus and SLAMF1, the immune cell receptor. In this study, we have investigated the steps governing entry of measles virus into SLAMF1-positive cells and identified endocytic uptake of viral particles. This research will impact our understanding of morbillivirus-related immunosuppression as well as the application of measles virus as an oncolytic therapeutic.


Subject(s)
Endocytosis , Measles virus/physiology , Measles/virology , Signaling Lymphocytic Activation Molecule Family Member 1/physiology , A549 Cells , Caveolins/metabolism , Clathrin/metabolism , Cytoskeleton/ultrastructure , Cytoskeleton/virology , Dynamin II , Dynamins/metabolism , HEK293 Cells , Humans , Membrane Microdomains/virology , Signal Transduction , Virion/physiology , Virus Attachment , Virus Internalization
9.
Biosci Rep ; 43(9)2023 09 27.
Article in English | MEDLINE | ID: mdl-37606964

ABSTRACT

Nucleotide composition plays a crucial role in the structure, function and recognition of RNA molecules. During infection, virus RNA is exposed to multiple endogenous proteins that detect local or global compositional biases and interfere with virus replication. Recent advancements in RNA:protein mapping technologies have enabled the identification of general RNA-binding preferences in the human proteome at basal level and in the context of virus infection. In this review, we explore how cellular proteins recognise nucleotide composition in virus RNA and the impact these interactions have on virus replication. Protein-binding G-rich and C-rich sequences are common examples of how host factors detect and limit infection, and, in contrast, viruses may have evolved to purge their genomes from such motifs. We also give examples of how human RNA-binding proteins inhibit virus replication, not only by destabilising virus RNA, but also by interfering with viral protein translation and genome encapsidation. Understanding the interplay between cellular proteins and virus RNA composition can provide insights into host-virus interactions and uncover potential targets for antiviral strategies.


Subject(s)
Antiviral Agents , RNA, Viral , Humans , RNA, Viral/genetics , Castor Oil , Nucleotides , Proteome
10.
Elife ; 122023 01 23.
Article in English | MEDLINE | ID: mdl-36688533

ABSTRACT

The encapsidation of HIV-1 gRNA into virions is enabled by the binding of the nucleocapsid (NC) domain of the HIV-1 Gag polyprotein to the structured viral RNA packaging signal (Ψ) at the 5' end of the viral genome. However, the subcellular location and oligomeric status of Gag during the initial Gag-Ψ encounter remain uncertain. Domains other than NC, such as capsid (CA), may therefore indirectly affect RNA recognition. To investigate the contribution of Gag domains to Ψ recognition in a cellular environment, we performed protein-protein crosslinking and protein-RNA crosslinking immunoprecipitation coupled with sequencing (CLIP-seq) experiments. We demonstrate that NC alone does not bind specifically to Ψ in living cells, whereas full-length Gag and a CANC subdomain bind to Ψ with high specificity. Perturbation of the Ψ RNA structure or NC zinc fingers affected CANC:Ψ binding specificity. Notably, CANC variants with substitutions that disrupt CA:CA dimer, trimer, or hexamer interfaces in the immature Gag lattice also affected RNA binding, and mutants that were unable to assemble a nascent Gag lattice were unable to specifically bind to Ψ. Artificially multimerized NC domains did not specifically bind Ψ. CA variants with substitutions in inositol phosphate coordinating residues that prevent CA hexamerization were also deficient in Ψ binding and second-site revertant mutants that restored CA assembly also restored specific binding to Ψ. Overall, these data indicate that the correct assembly of a nascent immature CA lattice is required for the specific interaction between Gag and Ψ in cells.


Subject(s)
HIV-1 , Viral Genome Packaging , RNA, Viral/genetics , HIV-1/genetics , Virus Assembly/genetics , Nucleocapsid/metabolism , Capsid Proteins/metabolism , Genome, Viral
11.
Nat Microbiol ; 7(10): 1558-1567, 2022 10.
Article in English | MEDLINE | ID: mdl-36075961

ABSTRACT

Attenuation of a virulent virus is a proven approach for generating vaccines but can be unpredictable. For example, synonymous recoding of viral genomes can attenuate replication but sometimes results in pleiotropic effects that confound rational vaccine design. To enable specific, conditional attenuation of viruses, we examined target RNA features that enable zinc finger antiviral protein (ZAP) function. ZAP recognized CpG dinucleotides and targeted CpG-rich RNAs for depletion, but RNA features such as CpG numbers, spacing and surrounding nucleotide composition that enable specific modulation by ZAP were undefined. Using synonymously mutated HIV-1 genomes, we defined several sequence features that govern ZAP sensitivity and enable stable attenuation. We applied rules derived from experiments with HIV-1 to engineer a mutant enterovirus A71 genome whose attenuation was stable and strictly ZAP-dependent, both in cell culture and in mice. The conditionally attenuated enterovirus A71 mutant elicited neutralizing antibodies that were protective against wild-type enterovirus A71 infection and disease in mice. ZAP sensitivity can thus be readily applied for the rational design of conditionally attenuated viral vaccines.


Subject(s)
HIV-1 , Viral Vaccines , Animals , Antibodies, Neutralizing/metabolism , Antiviral Agents/pharmacology , HIV-1/genetics , Mice , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Binding Proteins/metabolism , Viral Vaccines/genetics , Virus Replication , Zinc Fingers
12.
mBio ; 12(1)2021 01 05.
Article in English | MEDLINE | ID: mdl-33402534

ABSTRACT

The development of safe and effective vaccines against viruses is central to disease control. With advancements in DNA synthesis technology, the production of synthetic viral genomes has fueled many research efforts that aim to generate attenuated viruses by introducing synonymous mutations. Elucidation of the mechanisms underlying virus attenuation through synonymous mutagenesis is revealing interesting new biology that can be exploited for vaccine development. Here, we review recent advancements in this field of synthetic virology and focus on the molecular mechanisms of attenuation by genetic recoding of viruses. We highlight the action of the zinc finger antiviral protein (ZAP) and RNase L, two proteins involved in the inhibition of viruses enriched for CpG and UpA dinucleotides, that are often the products of virus recoding algorithms. Additionally, we discuss current challenges in the field as well as studies that may illuminate how other host functions, such as translation, are potentially involved in the attenuation of recoded viruses.


Subject(s)
Genome, Viral , Vaccines, Attenuated/genetics , Viral Vaccines/genetics , Viruses/genetics , Animals , DNA Viruses , Dinucleoside Phosphates , Endoribonucleases/genetics , Humans , Silent Mutation , Virus Replication
13.
Viruses ; 11(8)2019 07 30.
Article in English | MEDLINE | ID: mdl-31366072

ABSTRACT

The measles virus (MeV), a member of the genus Morbillivirus, is an established pathogen of humans. A key feature of morbilliviruses is their ability to spread by virus-cell and cell-cell fusion. The latter process, which leads to syncytia formation in vitro and in vivo, is driven by the viral fusion (F) and haemagglutinin (H) glycoproteins. In this study, we demonstrate that MeV glycoproteins are sensitive to inhibition by bone marrow stromal antigen 2 (BST2/Tetherin/CD317) proteins. BST2 overexpression causes a large reduction in MeV syncytia expansion. Using quantitative cell-cell fusion assays, immunolabeling, and biochemistry we further demonstrate that ectopically expressed BST2 directly inhibits MeV cell-cell fusion. This restriction is mediated by the targeting of the MeV H glycoprotein, but not other MeV proteins. Using truncation mutants, we further establish that the C-terminal glycosyl-phosphatidylinositol (GPI) anchor of BST2 is required for the restriction of MeV replication in vitro and cell-cell fusion. By extending our study to the ruminant morbillivirus peste des petits ruminants virus (PPRV) and its natural host, sheep, we also confirm this is a broad and cross-species specific phenotype.


Subject(s)
Antigens, CD/genetics , Cell Fusion , Glycoproteins/genetics , Host Microbial Interactions/genetics , Measles virus/genetics , Peste-des-petits-ruminants virus/genetics , Animals , Capsid Proteins/genetics , Cell Line , Epithelial Cells/virology , GPI-Linked Proteins/genetics , Glycoproteins/biosynthesis , HEK293 Cells , Humans , Measles virus/physiology , Peste-des-petits-ruminants virus/physiology , Sheep , Viral Fusion Proteins/genetics , Virus Replication/genetics
14.
Sci Rep ; 9(1): 7903, 2019 05 27.
Article in English | MEDLINE | ID: mdl-31133714

ABSTRACT

Viruses and bacteria colonize hosts by invading epithelial barriers. Recent studies have shown that interactions between the microbiota, pathogens and the host can potentiate infection through poorly understood mechanisms. Here, we investigated whether diverse bacterial species could modulate virus internalization into host cells, often a rate-limiting step in establishing infections. Lentiviral pseudoviruses expressing influenza, measles, Ebola, Lassa or vesicular stomatitis virus envelope glycoproteins enabled us to study entry of viruses that exploit diverse internalization pathways. Salmonella Typhimurium, Escherichia coli and Pseudomonas aeruginosa significantly increased viral uptake, even at low bacterial frequencies. This did not require bacterial contact with or invasion of host cells. Studies determined that the bacterial antigen responsible for this pro-viral activity was the Toll-Like Receptor 5 (TLR5) agonist flagellin. Exposure to flagellin increased virus attachment to epithelial cells in a temperature-dependent manner via TLR5-dependent activation of NF-ΚB. Importantly, this phenotype was both long lasting and detectable at low multiplicities of infection. Flagellin is shed from bacteria and our studies uncover a new bystander role for this protein in regulating virus entry. This highlights a new aspect of viral-bacterial interplay with significant implications for our understanding of polymicrobial-associated pathogenesis.


Subject(s)
Antigens, Bacterial/metabolism , Coinfection/immunology , Flagellin/metabolism , Host Microbial Interactions/immunology , Virus Internalization , A549 Cells , Bacterial Infections/immunology , Bacterial Infections/microbiology , Coinfection/microbiology , Disease Susceptibility/immunology , Disease Susceptibility/microbiology , Epithelial Cells/immunology , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Gene Knockdown Techniques , HEK293 Cells , Humans , Lung/cytology , Permeability , RNA, Small Interfering/metabolism , Signal Transduction/genetics , Signal Transduction/immunology , Toll-Like Receptor 5/agonists , Toll-Like Receptor 5/metabolism , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism , Virus Diseases/immunology , Virus Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL