Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Med Chem Res ; 31(2): 274-283, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35340752

ABSTRACT

Compound 1c, 5-chloro-2-(2-(3,4-dihydroisoquinolin-2(1H)-yl)ethyl)-2,3-dihydro-1H-inden-1-one was previously reported from our laboratory showing high affinity binding to the 5-HT7 receptor (Ki = 0.5 nM). However, compound 1c racemizes readily upon enantiomeric separation. To prevent racemization, we have redesigned and synthesized methyl and carboxyethyl analogs, compounds 2 and 3 respectively, whose binding affinities were similar to those of compound 1c. Compounds 2 and 3 cannot undergo racemization since tautomerism was no longer possible and thus, compound 2 was selected for enantiomeric separation and further evaluation. Upon enantiomeric separation, the levorotatory enantiomer, (-)2 or 2a demonstrated a higher affinity (Ki = 1.2 nM) than the (+)2 or 2b enantiomer (Ki = 93 nM) and a ß-arrestin biased functional selectivity for the 5-HT7 receptor. Although 2a showed about 8 times less activity than 5-HT in the Gs pathway, it showed over 31 times higher activity than 5-HT in the ß-arrestin pathway. This constitutes a significant ß-arrestin pathway preference and shows 2a to be more potent and more efficacious than the recently published ß-arrestin biased 3-(4-chlorophenyl)-1,4,5,6,7,8-hexahydropyrazolo[3,4-d]azepine, the N-debenzylated analog of JNJ18038683 (Compound 7).

2.
Bioorg Med Chem ; 30: 115943, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33338898

ABSTRACT

Dopamine (DA) and serotonin (5-HT) receptors are prime targets for the development of antipsychotics. The specific role of each receptor subtype to the pharmacological effects of antipsychotic drugs remains unclear. Understanding the relationship between antipsychotic drugs and their binding affinities at DA and 5-HT receptor subtypes is very important for antipsychotic drug discovery and could lead to new drugs with enhanced efficacies. We have previously disclosed SYA16263 (5) as an interesting compound with moderate radioligand binding affinity at the D2 & D3 receptors (Ki = 124 nM & 86 nM respectively) and high binding affinities towards D4 and 5-HT1A receptors (Ki = 3.5 nM & 1.1 nM respectively). Furthermore, we have demonstrated SYA16263 (5) is functionally selective and produces antipsychotic-like behavior but without inducing catalepsy in rats. Based on its pharmacological profile, we selected SYA16263 (5) to study its structure-affinity relationship with a view to obtaining new analogs that display receptor subtype selectivity. In this study, we present the synthesis of structurally modified SYA16263 (5) analogs and their receptor binding affinities at the DA and 5-HT receptor subtypes associated with antipsychotic action. Furthermore, we have identified compound 21 with no significant binding affinity at the D2 receptor subtype but with moderate binding affinity at the D3 and D4 receptors subtypes. However, because 21 is able to demonstrate antipsychotic-like activity in a preliminary test, using the reversal of apomorphine-induced climbing behavior experiment in mice with SYA16263 and haloperidol as positive controls, we question the essential need of the D2 receptor subtype in reversing apomorphine-induced climbing behavior.


Subject(s)
Antipsychotic Agents/pharmacology , Apomorphine/antagonists & inhibitors , Behavior, Animal/drug effects , Dopamine D2 Receptor Antagonists/pharmacology , Piperazines/pharmacology , Pyridines/pharmacology , Receptors, Dopamine D2/metabolism , Animals , Antipsychotic Agents/chemical synthesis , Antipsychotic Agents/chemistry , Apomorphine/pharmacology , Dopamine D2 Receptor Antagonists/chemical synthesis , Dopamine D2 Receptor Antagonists/chemistry , Dose-Response Relationship, Drug , Male , Mice , Molecular Structure , Piperazines/chemical synthesis , Piperazines/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship
3.
ACS Omega ; 8(24): 21736-21744, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37360419

ABSTRACT

We have previously identified 5-chloro-2-methyl-2-(3-(4-(pyridin-2-yl)piperazin-1-yl)propyl)-2,3-dihydro-1H-inden-1-one (SYA0340) as a dual 5-HT1A and 5-HT7 receptor ligand, and we posited such ligands might find utility in the treatment of various CNS related illnesses including cognitive and anxiolytic impairments. However, SYA0340 has a chiral center and its enantiomers may confound the readouts for their functional characteristics. Thus, in this study, we resynthesized SYA0340, separated the enantiomers, identified the absolute configurations, and evaluated their binding affinities and functional characteristics at both the 5-HT1A and 5-HT7A receptors. The results of this study show that the (+)-SYA0340-P1 [specific rotation [α] = +18.4 (deg.mL)/(g.dm)] has a binding affinity constant, Ki = 1.73 ± 0.55 nM at 5-HT1AR and Ki = 2.20 ± 0.33 nM at 5-HT7AR and (-)-SYA0340-P2 [specific rotation [α] = -18.2 (deg.mL)/(g.dm)] has Ki = 1.06 ± 0.32 nM (5-HT1AR) and 4.7 ± 1.1 nM (5-HT7AR). Using X-ray crystallographic techniques, the absolute configuration of the P2 isomer was identified as the S-enantiomer and, therefore, the P1 isomer as the R-enantiomer. Functionally, both SYA0340-P1 (EC50 = 1.12 ± 0.41 nM; Emax = 94.6 ± 3.1%) and SYA0340-P2 (EC50 = 2.21 ± 0.59 nM; Emax = 96.8 ± 5.1%) display similar agonist properties at the 5-HT1AR while both enantiomers display antagonist properties at the 5-HT7AR with P1 (IC50 = 32.1 ± 9.2 nM) displaying over 8 times greater potency as P2 (IC50 = 277 ± 46 nM). Thus, based on the functional evaluation results, SYA0340-P1 is considered as the eutomer of the pair of enantiomers of SYA0340. It is expected that these enantiomers will serve as new pharmacological probes for the 5-HT1A and 5-HT7A receptors.

4.
Eur J Med Chem ; 214: 113243, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33582388

ABSTRACT

We have previously reported that dual 5-HT1A and 5-HT7 receptor ligands might find utility as treatment options for various CNS related conditions including cognitive and anxiolytic impairments. We have also more recently reported that SYA16263 has antipsychotic-like properties with an absence of catalepsy in animal models ascribed to its ability to recruit ß-arrestin to the D2 receptor. However, SYA16263 also binds with very high affinity to 5-HT1AR (Ki = 1.1 nM) and a moderate affinity at 5-HT7R (Ki = 90 nM). Thus, it was of interest to exploit its pharmacophore elements in designing new dual receptor ligands. Using SYA16263 as the lead molecule, we have conducted a limited structure-affinity relationship (SAFIR) study by modifying various structural elements in the arylalkyl moiety, resulting in the identification of a new dual 5-HT1AR and 5-HT7R ligand, 6-chloro-2-methyl-2-(3-(4-(pyridin-2-yl)piperazin-1-yl)propyl)-2,3-dihydro-1H-inden-1-one (21), which unlike SYA16263, has a sub-nanomolar (5-HT1AR, Ki = 0.74 nM) and a low nanomolar (5-HT7R, Ki = 8.4 nM) affinity for these receptors. Interestingly, 21 is a full agonist at 5-HT1AR and antagonist at the 5-HT7R, functional characteristics which point to its potential as an antidepressant agent.


Subject(s)
Piperazines/pharmacology , Pyridines/pharmacology , Receptor, Serotonin, 5-HT1A/metabolism , Receptors, Serotonin/metabolism , Serotonin 5-HT1 Receptor Agonists/pharmacology , Serotonin Antagonists/pharmacology , Dose-Response Relationship, Drug , Humans , Ligands , Molecular Structure , Piperazines/chemical synthesis , Piperazines/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Serotonin 5-HT1 Receptor Agonists/chemical synthesis , Serotonin 5-HT1 Receptor Agonists/chemistry , Serotonin Antagonists/chemical synthesis , Serotonin Antagonists/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL