ABSTRACT
Histologic transformation from adenocarcinoma to squamous cell carcinoma in lung cancer has not been reported as a mechanism of resistance to ALK inhibition. This report describes the clinical course of a female former light smoker with metastatic lung adenocarcinoma whose tumor underwent histologic transformation from a well-differentiated lung adenocarcinoma to a well-differentiated lung squamous cell carcinoma in the same location at the left mainstem bronchus while maintaining the ALK fusion oncogene without any resistance mutations. After experiencing disease progression while on crizotinib, the patient participated in clinical trials that provided early access to the novel ALK inhibitors ceritinib and alectinib before they were commercially available. Tumor recurrence occurred at the primary and metastatic central nervous system sites (ie, brain and spine). At tumor progression, liquid biopsy and tumor genomic profiling of plasma cell-free DNA next-generation sequencing (NGS) provided an accurate diagnosis with a short turnaround time compared with the tissue-based targeted capture NGS. The patient received several courses of radiation primarily to the brain and spine during her disease course. Her disease did not respond to the immune checkpoint inhibitor nivolumab, and she died on home hospice approximately 4 years after diagnosis. This case supports the importance of both histopathologic assessment and comprehensive genomic profiling in selecting appropriate treatment for patients with refractory, metastatic, ALK oncogene-driven non-small cell lung cancer. Use of symptom-directed radiation in tandem with ALK inhibitors contributed to the disease and symptomatic control and prolonged survival in this patient.
Subject(s)
Adenocarcinoma of Lung/drug therapy , Carcinoma, Squamous Cell/drug therapy , Oncogene Proteins, Fusion/genetics , Protein Kinase Inhibitors/therapeutic use , HumansABSTRACT
BACKGROUND: This retrospective study was undertaken to determine if the plasma circulating tumor DNA (ctDNA) level and tumor biological features in patients with advanced solid tumors affected the detection of genomic alterations (GAs) by a plasma ctDNA assay. METHOD: Cell-free DNA (cfDNA) extracted from frozen plasma (N = 35) or fresh whole blood (N = 90) samples were subjected to a 62-gene hybrid capture-based next-generation sequencing assay FoundationACT. Concordance was analyzed for 51 matched FoundationACT and FoundationOne (tissue) cases. The maximum somatic allele frequency (MSAF) was used to estimate the amount of tumor fraction of cfDNA in each sample. The detection of GAs was correlated with the amount of cfDNA, MSAF, total tumor anatomic burden (dimensional sum), and total tumor metabolic burden (SUVmax sum) of the largest ten tumor lesions on PET/CT scans. RESULTS: FoundationACT detected GAs in 69 of 81 (85%) cases with MSAF > 0. Forty-two of 51 (82%) cases had ≥ 1 concordance GAs matched with FoundationOne, and 22 (52%) matched to the National Comprehensive Cancer Network (NCCN)-recommended molecular targets. FoundationACT also detected 8 unique molecular targets, which changed the therapy in 7 (88%) patients who did not have tumor rebiopsy or sufficient tumor DNA for genomic profiling assay. In all samples (N = 81), GAs were detected in plasma cfDNA from cancer patients with high MSAF quantity (P = 0.0006) or high tumor metabolic burden (P = 0.0006) regardless of cfDNA quantity (P = 0.2362). CONCLUSION: This study supports the utility of using plasma-based genomic assays in cancer patients with high plasma MSAF level or high tumor metabolic burden.