Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Cell ; 176(4): 716-728.e18, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30712871

ABSTRACT

Sensory axons degenerate following separation from their cell body, but partial injury to peripheral nerves may leave the integrity of damaged axons preserved. We show that an endogenous ligand for the natural killer (NK) cell receptor NKG2D, Retinoic Acid Early 1 (RAE1), is re-expressed in adult dorsal root ganglion neurons following peripheral nerve injury, triggering selective degeneration of injured axons. Infiltration of cytotoxic NK cells into the sciatic nerve by extravasation occurs within 3 days following crush injury. Using a combination of genetic cell ablation and cytokine-antibody complex stimulation, we show that NK cell function correlates with loss of sensation due to degeneration of injured afferents and reduced incidence of post-injury hypersensitivity. This neuro-immune mechanism of selective NK cell-mediated degeneration of damaged but intact sensory axons complements Wallerian degeneration and suggests the therapeutic potential of modulating NK cell function to resolve painful neuropathy through the clearance of partially damaged nerves.


Subject(s)
Killer Cells, Natural/physiology , Nuclear Matrix-Associated Proteins/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , Peripheral Nerve Injuries/metabolism , Animals , Axons , Ganglia, Spinal/cytology , Ganglia, Spinal/metabolism , Killer Cells, Natural/metabolism , Male , Mice , Mice, Inbred C57BL , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Nerve Regeneration , Neurons/cytology , Neurons, Afferent/immunology , Neurons, Afferent/metabolism , Nuclear Matrix-Associated Proteins/physiology , Nucleocytoplasmic Transport Proteins/physiology , Pain , Peripheral Nerve Injuries/immunology , Peripheral Nervous System Diseases , Sciatic Nerve , Sensory Receptor Cells/metabolism
2.
PLoS Biol ; 16(2): e2003452, 2018 02.
Article in English | MEDLINE | ID: mdl-29444090

ABSTRACT

Chronic pain is a debilitating problem, and insights in the neurobiology of chronic pain are needed for the development of novel pain therapies. A genome-wide association study implicated the 5p15.2 region in chronic widespread pain. This region includes the coding region for FAM173B, a functionally uncharacterized protein. We demonstrate here that FAM173B is a mitochondrial lysine methyltransferase that promotes chronic pain. Knockdown and sensory neuron overexpression strategies showed that FAM173B is involved in persistent inflammatory and neuropathic pain via a pathway dependent on its methyltransferase activity. FAM173B methyltransferase activity in sensory neurons hyperpolarized mitochondria and promoted macrophage/microglia activation through a reactive oxygen species-dependent pathway. In summary, we uncover a role for methyltransferase activity of FAM173B in the neurobiology of pain. These results also highlight FAM173B methyltransferase activity as a potential therapeutic target to treat debilitating chronic pain conditions.


Subject(s)
Chronic Pain/enzymology , Histone-Lysine N-Methyltransferase/metabolism , Animals , Chromosomes, Human, Pair 5 , Chronic Pain/genetics , Female , Gene Knockdown Techniques , Genome-Wide Association Study , HEK293 Cells , Histone-Lysine N-Methyltransferase/genetics , Humans , Male , Mice, Inbred C57BL , Microglia/metabolism , Polymorphism, Single Nucleotide , Reactive Oxygen Species/metabolism
3.
Pharmacol Res ; 163: 105339, 2021 01.
Article in English | MEDLINE | ID: mdl-33276102

ABSTRACT

Immune and glial cells play a pivotal role in chronic pain. Therefore, it is possible that the pharmacological modulation of neurotransmission from an exclusively neuronal perspective may not be enough for adequate pain management, and the modulation of complex interactions between neurons and other cell types might be needed for successful pain relief. In this article, we review the current scientific evidence for the modulatory effects of sigma-1 receptors on communication between the immune and nervous systems during inflammation, as well as the influence of this receptor on peripheral and central neuroinflammation. Several experimental models of pathological pain are considered, including peripheral and central neuropathic pain, osteoarthritic, and cancer pain. Sigma-1 receptor inhibition prevents peripheral (macrophage infiltration into the dorsal root ganglion) and central (activation of microglia and astrocytes) neuroinflammation in several pain models, and enhances immune-driven peripheral opioid analgesia during painful inflammation, maximizing the analgesic potential of peripheral immune cells. Therefore, sigma-1 antagonists may constitute a new class of analgesics with an unprecedented mechanism of action and potential utility in several painful disorders.


Subject(s)
Chronic Pain/metabolism , Neuralgia/metabolism , Receptors, sigma/metabolism , Analgesia , Analgesics/therapeutic use , Animals , Chronic Pain/drug therapy , Humans , Inflammation/drug therapy , Inflammation/metabolism , Morpholines/therapeutic use , Neuralgia/drug therapy , Neuroglia/metabolism , Pyrazoles/therapeutic use , Receptors, sigma/antagonists & inhibitors , Sex Characteristics , Sigma-1 Receptor
4.
Pharmacol Res ; 155: 104724, 2020 05.
Article in English | MEDLINE | ID: mdl-32105755

ABSTRACT

No adequate treatment is available for painful urinary bladder disorders such as interstitial cystitis/bladder pain syndrome, and the identification of new urological therapeutic targets is an unmet need. The sigma-1 receptor (σ1-R) modulates somatic pain, but its role in painful urological disorders is unexplored. The urothelium expresses many receptors typical of primary sensory neurons (e.g. TRPV1, TRPA1 and P2X3) and high levels of σ1-R have been found in these neurons; we therefore hypothesized that σ1-R may also be expressed in the urothelium and may have functional relevance in this tissue. With western blotting and immunohistochemical methods, we detected σ1-R in the urinary bladder in wild-type (WT) but not in σ1-R-knockout (σ1-KO) mice. Interestingly, σ1-R was located in the bladder urothelium not only in mouse, but also in human bladder sections. The severity of histopathological (edema, hemorrhage and urothelial desquamation) and biochemical alterations (enhanced myeloperoxidase activity and phosphorylation of extracellular regulated kinases 1/2 [pERK1/2]) that characterize cyclophosphamide-induced cystitis was lower in σ1-KO than in WT mice. Moreover, cyclophosphamide-induced pain behaviors and referred mechanical hyperalgesia were dose-dependently reduced by σ1-R antagonists (BD-1063, NE-100 and S1RA) in WT but not in σ1-KO mice. In contrast, the analgesic effect of morphine was greater in σ1-KO than in WT mice. Together these findings suggest that σ1-R plays a functional role in the mechanisms underlying cyclophosphamide-induced cystitis, and modulates morphine analgesia against urological pain. Therefore, σ1-R may represent a new drug target for urinary bladder disorders.


Subject(s)
Cystitis/drug therapy , Hyperalgesia/drug therapy , Pain/drug therapy , Receptors, sigma/antagonists & inhibitors , Analgesics, Opioid/therapeutic use , Animals , Anisoles/pharmacology , Anisoles/therapeutic use , Cyclophosphamide , Cystitis/chemically induced , Female , Humans , Mice, Knockout , Morphine/therapeutic use , Morpholines/pharmacology , Morpholines/therapeutic use , Pain/chemically induced , Piperazines/pharmacology , Piperazines/therapeutic use , Propylamines/pharmacology , Propylamines/therapeutic use , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Receptors, sigma/genetics , Urinary Bladder/metabolism , Urinary Bladder/pathology , Sigma-1 Receptor
5.
Proc Natl Acad Sci U S A ; 114(31): 8396-8401, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28716934

ABSTRACT

Sigma-1 antagonism potentiates the antinociceptive effects of opioid drugs, so sigma-1 receptors constitute a biological brake to opioid drug-induced analgesia. The pathophysiological role of this process is unknown. We aimed to investigate whether sigma-1 antagonism reduces inflammatory pain through the disinhibition of the endogenous opioidergic system in mice. The selective sigma-1 antagonists BD-1063 and S1RA abolished mechanical and thermal hyperalgesia in mice with carrageenan-induced acute (3 h) inflammation. Sigma-1-mediated antihyperalgesia was reversed by the opioid antagonists naloxone and naloxone methiodide (a peripherally restricted naloxone analog) and by local administration at the inflamed site of monoclonal antibody 3-E7, which recognizes the pan-opioid sequence Tyr-Gly-Gly-Phe at the N terminus of most endogenous opioid peptides (EOPs). Neutrophils expressed pro-opiomelanocortin, the precursor of ß-endorphin (a known EOP), and constituted the majority of the acute immune infiltrate. ß-endorphin levels increased in the inflamed paw, and this increase and the antihyperalgesic effects of sigma-1 antagonism were abolished by reducing the neutrophil load with in vivo administration of an anti-Ly6G antibody. The opioid-dependent sigma-1 antihyperalgesic effects were preserved 5 d after carrageenan administration, where macrophages/monocytes were found to express pro-opiomelanocortin and to now constitute the majority of the immune infiltrate. These results suggest that immune cells harboring EOPs are needed for the antihyperalgesic effects of sigma-1 antagonism during inflammation. In conclusion, sigma-1 receptors curtail immune-driven peripheral opioid analgesia, and sigma-1 antagonism produces local opioid analgesia by enhancing the action of EOPs of immune origin, maximizing the analgesic potential of immune cells that naturally accumulate in painful inflamed areas.


Subject(s)
Analgesia/methods , Analgesics, Opioid/pharmacology , Morpholines/pharmacology , Naloxone/analogs & derivatives , Narcotic Antagonists/pharmacology , Receptors, sigma/antagonists & inhibitors , Animals , Antigens, Ly/immunology , Carrageenan/toxicity , Female , Inflammation/drug therapy , Inflammation/pathology , Macrophages/metabolism , Mice , Naloxone/pharmacology , Neutrophils/metabolism , Oligopeptides/metabolism , Pain/drug therapy , Piperazines/pharmacology , Pro-Opiomelanocortin/biosynthesis , Pyrazoles/pharmacology , Quaternary Ammonium Compounds/pharmacology , Receptors, sigma/metabolism , Sigma-1 Receptor
6.
Pharmacol Res ; 131: 224-230, 2018 05.
Article in English | MEDLINE | ID: mdl-29454675

ABSTRACT

Immune cells have a known role in pronociception, since they release a myriad of inflammatory algogens which interact with neurons to facilitate pain signaling. However, these cells also produce endogenous opioid peptides with analgesic potential. The sigma-1 receptor is a ligand-operated chaperone that modulates neurotransmission by interacting with multiple protein partners, including the µ-opioid receptor. We recently found that sigma-1 antagonists are able to induce opioid analgesia by enhancing the action of endogenous opioid peptides of immune origin during inflammation. This opioid analgesia is seen only at the inflamed site, where immune cells naturally accumulate. In this article we review the difficulties of targeting the opioid system for selective pain relief, and discuss the dual role of immune cells in pain and analgesia. Our discussion creates perspectives for possible novel therapeutic uses of sigma-1 antagonists as agents able to maximize the analgesic potential of the immune system.


Subject(s)
Analgesics, Opioid/therapeutic use , Molecular Targeted Therapy/methods , Pain/drug therapy , Receptors, sigma/antagonists & inhibitors , Analgesia/methods , Analgesics, Opioid/pharmacology , Animals , Humans , Inflammation/complications , Inflammation/drug therapy , Inflammation/immunology , Pain/complications , Pain/immunology , Receptors, sigma/immunology , Sigma-1 Receptor
7.
J Physiol ; 595(8): 2661-2679, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28105664

ABSTRACT

KEY POINTS: Voltage-gated sodium channels play a fundamental role in determining neuronal excitability. Specifically, voltage-gated sodium channel subtype NaV 1.7 is required for sensing acute and inflammatory somatic pain in mice and humans but its significance in pain originating from the viscera is unknown. Using comparative behavioural models evoking somatic and visceral pain pathways, we identify the requirement for NaV 1.7 in regulating somatic (noxious heat pain threshold) but not in visceral pain signalling. These results enable us to better understand the mechanisms underlying the transduction of noxious stimuli from the viscera, suggest that the investigation of pain pathways should be undertaken in a modality-specific manner and help to direct drug discovery efforts towards novel visceral analgesics. ABSTRACT: Voltage-gated sodium channel NaV 1.7 is required for acute and inflammatory pain in mice and humans but its significance for visceral pain is unknown. Here we examine the role of NaV 1.7 in visceral pain processing and the development of referred hyperalgesia using a conditional nociceptor-specific NaV 1.7 knockout mouse (NaV 1.7Nav1.8 ) and selective small-molecule NaV 1.7 antagonist PF-5198007. NaV 1.7Nav1.8 mice showed normal nociceptive behaviours in response to intracolonic application of either capsaicin or mustard oil, stimuli known to evoke sustained nociceptor activity and sensitization following tissue damage, respectively. Normal responses following induction of cystitis by cyclophosphamide were also observed in both NaV 1.7Nav1.8 and littermate controls. Loss, or blockade, of NaV 1.7 did not affect afferent responses to noxious mechanical and chemical stimuli in nerve-gut preparations in mouse, or following antagonism of NaV 1.7 in resected human appendix stimulated by noxious distending pressures. However, expression analysis of voltage-gated sodium channel α subunits revealed NaV 1.7 mRNA transcripts in nearly all retrogradely labelled colonic neurons, suggesting redundancy in function. By contrast, using comparative somatic behavioural models we identify that genetic deletion of NaV 1.7 (in NaV 1.8-expressing neurons) regulates noxious heat pain threshold and that this can be recapitulated by the selective NaV 1.7 antagonist PF-5198007. Our data demonstrate that NaV 1.7 (in NaV 1.8-expressing neurons) contributes to defined pain pathways in a modality-dependent manner, modulating somatic noxious heat pain, but is not required for visceral pain processing, and advocate that pharmacological block of NaV 1.7 alone in the viscera may be insufficient in targeting chronic visceral pain.


Subject(s)
NAV1.7 Voltage-Gated Sodium Channel/deficiency , Nociceptors/metabolism , Visceral Pain/metabolism , Adult , Aged , Aged, 80 and over , Animals , Capsaicin/toxicity , Female , Humans , Male , Mice , Mice, Knockout , Mustard Plant/toxicity , NAV1.7 Voltage-Gated Sodium Channel/genetics , Nociceptive Pain/chemically induced , Nociceptive Pain/genetics , Nociceptive Pain/metabolism , Nociceptors/drug effects , Plant Oils/toxicity , Signal Transduction/drug effects , Signal Transduction/physiology , Sodium Channel Blockers/pharmacology , Visceral Pain/chemically induced , Visceral Pain/genetics
8.
Mar Drugs ; 15(6)2017 Jun 21.
Article in English | MEDLINE | ID: mdl-28635651

ABSTRACT

Visceral pain is very common and represents a major unmet clinical need for which current pharmacological treatments are often insufficient. Tetrodotoxin (TTX) is a potent neurotoxin that exerts analgesic actions in both humans and rodents under different somatic pain conditions, but its effect has been unexplored in visceral pain. Therefore, we tested the effects of systemic TTX in viscero-specific mouse models of chemical stimulation of the colon (intracolonic instillation of capsaicin and mustard oil) and intraperitoneal cyclophosphamide-induced cystitis. The subcutaneous administration of TTX dose-dependently inhibited the number of pain-related behaviors in all evaluated pain models and reversed the referred mechanical hyperalgesia (examined by stimulation of the abdomen with von Frey filaments) induced by capsaicin and cyclophosphamide, but not that induced by mustard oil. Morphine inhibited both pain responses and the referred mechanical hyperalgesia in all tests. Conditional nociceptor­specific Nav1.7 knockout mice treated with TTX showed the same responses as littermate controls after the administration of the algogens. No motor incoordination after the administration of TTX was observed. These results suggest that blockade of TTX-sensitive sodium channels, but not Nav1.7 subtype alone, by systemic administration of TTX might be a potential therapeutic strategy for the treatment of visceral pain.


Subject(s)
Pain Measurement/drug effects , Tetrodotoxin/pharmacology , Visceral Pain/drug therapy , Analgesics/pharmacology , Animals , Capsaicin/pharmacology , Colon/drug effects , Colon/metabolism , Cystitis/drug therapy , Cystitis/metabolism , Disease Models, Animal , Female , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Male , Mice , Mice, Knockout , Morphine/pharmacology , Mustard Plant , Nociceptors/metabolism , Plant Oils/pharmacology , Sodium Channels/metabolism , Visceral Pain/metabolism
9.
Beilstein J Org Chem ; 11: 335-47, 2015.
Article in English | MEDLINE | ID: mdl-25815088

ABSTRACT

The electrocopolymerization of 3,4-ethylenedioxythiophene (EDOT) with the branched thiophene building block 2,2':3',2″-terthiophene (3T) is presented as a versatile route to functional polymer films. Comparisons to blend systems of the respective homopolymers PEDOT and P3T by in situ spectroelectrochemistry and Raman spectroscopy prove the successful copolymer formation and the access to tailored redox properties and energy levels. The use of EDOT-N3 as co-monomer furthermore allows modifications of the films by polymer analogous reactions. Here, we exemplarily describe the post-functionalization with ionic moieties by 1,3-dipolar cycloaddition ("click"-chemistry) which allows to tune the surface polarity of the copolymer films from water contact angles of 140° down to 40°.

10.
J Pharmacol Exp Ther ; 348(1): 32-45, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24155346

ABSTRACT

We evaluated the effects of σ1-receptor inhibition on µ-opioid-induced mechanical antinociception and constipation. σ1-Knockout mice exhibited marked mechanical antinociception in response to several µ-opioid analgesics (fentanyl, oxycodone, morphine, buprenorphine, and tramadol) at systemic (subcutaneous) doses that were inactive in wild-type mice and even unmasked the antinociceptive effects of the peripheral µ-opioid agonist loperamide. Likewise, systemic (subcutaneous) or local (intraplantar) treatment of wild-type mice with the selective σ1 antagonists BD-1063 [1-[2-(3,4-dichlorophenyl)ethyl]-4-methylpiperazine dihydrochloride] or S1RA [4-[2-[[5-methyl-1-(2-naphthalenyl)1H-pyrazol-3-yl]oxy]ethyl] morpholine hydrochloride] potentiated µ-opioid antinociception; these effects were fully reversed by the σ1 agonist PRE-084 [2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate) hydrochloride], showing the selectivity of the pharmacological approach. The µ-opioid antinociception potentiated by σ1 inhibition (by σ1-receptor knockout or σ1-pharmacological antagonism) was more sensitive to the peripherally restricted opioid antagonist naloxone methiodide than opioid antinociception under normal conditions, indicating a key role for peripheral opioid receptors in the enhanced antinociception. Direct interaction between the opioid drugs and σ1 receptor cannot account for our results, since the former lacked affinity for σ1 receptors (labeled with [(3)H](+)-pentazocine). A peripheral role for σ1 receptors was also supported by their higher density (Western blot results) in peripheral nervous tissue (dorsal root ganglia) than in several central areas involved in opioid antinociception (dorsal spinal cord, basolateral amygdala, periaqueductal gray, and rostroventral medulla). In contrast to its effects on nociception, σ1-receptor inhibition did not alter fentanyl- or loperamide-induced constipation, a peripherally mediated nonanalgesic opioid effect. Therefore, σ1-receptor inhibition may be used as a systemic or local adjuvant to enhance peripheral µ-opioid analgesia without affecting opioid-induced constipation.


Subject(s)
Analgesics, Opioid/pharmacology , Pain Measurement/methods , Receptors, Opioid, mu/physiology , Receptors, sigma/physiology , Analgesics, Opioid/antagonists & inhibitors , Animals , Constipation/chemically induced , Constipation/genetics , Constipation/metabolism , Female , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Ganglia, Spinal/physiology , Mice , Mice, Knockout , Receptors, Opioid, mu/metabolism , Receptors, sigma/deficiency , Receptors, sigma/genetics , Sigma-1 Receptor
11.
Phys Chem Chem Phys ; 16(45): 24841-52, 2014 Dec 07.
Article in English | MEDLINE | ID: mdl-25319050

ABSTRACT

Infrared (IR) absorption and vibrational Raman spectra of a family of branched oligothiophenes have been determined experimentally as well as theoretically. The molecular spectra have been compared to those of the linear analogues, with identification made of spectral features due to structural properties that are valued in organic solar cell applications. The theoretical spectra have been obtained through a newly developed method in which individual conformer spectra, calculated at the time-dependent DFT level in this work, are weighted by statistics extracted from classical molecular dynamics trajectories. The agreement with experiment for the resulting averaged spectra is at least as good as, and often better than, what is observed for Boltzmann-weighted spectra. As the weights are available before the costly step of spectrum calculation, the method has the additional advantage of enabling efficient approximations. For simulating the molecular dynamics of the studied α,ß-linked thiophenes and 2-methylthiophenes, high quality parameters have been derived for the CHARMM force field. Furthermore, the temperature dependence of the IR and Raman spectra has been investigated, both experimentally and theoretically.

12.
J Chem Phys ; 140(5): 054706, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24511967

ABSTRACT

A analysis of the electronic and molecular structures of new molecular materials based on zethrene is presented with particular attention to those systems having a central benzo-quinoidal core able to generate Kekulé biradicals whose stability is provided by the aromaticity recovery in this central unit. These Kekulé biradicals display singlet ground electronic states thanks to double spin polarization and have low-energy lying triplet excited states also featured by the aromaticity gain. Pro-aromatization is also the driving force for the stabilization of the ionized species. Moreover, the low energy lying singlet excited states also display a profound biradical fingerprint allowing to singlet exciton fission. These properties are discussed in the context of the size of the zethrene core and of its substitution. The work encompasses all known long zethrenes and makes use of a variety of experimental techniques, such as Raman, UV-Vis-NIR absorption, transient absorption, in situ spectroelectrochemistry and quantum chemical calculations. This study reveals how the insertion of suitable molecular modules (i.e., quinoidal) opens the door to new intriguing molecular properties exploitable in organic electronics.

13.
J Chem Phys ; 140(16): 164903, 2014 Apr 28.
Article in English | MEDLINE | ID: mdl-24784306

ABSTRACT

We present a complete Raman spectroscopic study in two structurally well-defined diradical species of different lengths incorporating oligo p-phenylene vinylene bridges between two polychlorinated triphenylmethyl radical units, a disposition that allows sizeable conjugation between the two radicals through and with the bridge. The spectroscopic data are interpreted and supported by quantum chemical calculations. We focus the attention on the Raman frequency changes, interpretable in terms of: (i) bridge length (conjugation length); (ii) bridge conformational structure; and (iii) electronic coupling between the terminal radical units with the bridge and through the bridge, which could delineate through-bond spin polarization, or spin delocalization. These items are addressed by using the "oligomer approach" in conjunction with pressure and temperature dependent Raman spectroscopic data. In summary, we have attempted to translate the well-known strategy to study the electron (charge) structure of π-conjugated molecules by Raman spectroscopy to the case of electron (spin) interactions via the spin delocalization mechanism.


Subject(s)
Molecular Conformation , Spectrum Analysis, Raman , Trityl Compounds/chemistry , Vinyl Compounds/chemistry , Electrons , Temperature
14.
Front Pharmacol ; 15: 1352464, 2024.
Article in English | MEDLINE | ID: mdl-38464715

ABSTRACT

Chronic pain occurs at epidemic levels throughout the population. Hypersensitivity to touch, is a cardinal symptom of chronic pain. Despite dedicated research for over a century, quantifying this hypersensitivity has remained impossible at scale. To address these issues, we developed the Chainmail Sensitivity Test (CST). Our results show that control mice spend significantly more time on the chainmail portion of the device than mice subject to neuropathy. Treatment with gabapentin abolishes this difference. CST-derived data correlate well with von Frey measurements and quantify hypersensitivity due to inflammation. Our study demonstrates the potential of the CST as a standardized tool for assessing mechanical hypersensitivity in mice with minimal operator input.

15.
Animals (Basel) ; 14(5)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38473178

ABSTRACT

Most of the previous studies on the genetic variability in Spanish "Berrenda" breeds have been carried out using DNA microsatellites. The present work aimed to estimate the genetic diversity, population structure, and potential genetic differences among individuals of both Berrenda breeds and groups based on the presence of the Robertsonian chromosomal translocation, rob (1;29). A total of 373 samples from animals belonging to the two breeds, including 169 cases diagnosed as rob (1;29)-positive, were genotyped using an SNP50K chip. The genetic diversity at the breed level did not show significant differences, but it was significantly lower in those subpopulations containing the rob (1;29). Runs of homozygosity identified a region of homozygosity on chromosome 6, where the KIT (KIT proto-oncogene, receptor tyrosine kinase) gene, which determines the typical spotted coat pattern in both breeds, is located. The four subpopulations considered showed minor genetic differences. The regions of the genome that most determined the differences between the breeds were observed on chromosomes 4, 6, 18, and 22. The presence of this Robertsonian translocation did not result in sub-structuring within each of the breeds considered. To improve the reproductive performance of Berrenda breeds, it would be necessary to implement strategies considering the involvement of potential breeding stock carrying rob (1;29).

16.
J Neuroimmune Pharmacol ; 19(1): 46, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162886

ABSTRACT

The mechanisms for neuropathic pain amelioration by sigma-1 receptor inhibition are not fully understood. We studied genome-wide transcriptomic changes (RNAseq) in the dorsal root ganglia (DRG) from wild-type and sigma-1 receptor knockout mice prior to and following Spared Nerve Injury (SNI). In wildtype mice, most of the transcriptomic changes following SNI are related to the immune function or neurotransmission. Immune function transcripts contain cytokines and markers for immune cells, including macrophages/monocytes and CD4 + T cells. Many of these immune transcripts were attenuated by sigma-1 knockout in response to SNI. Consistent with this we found, using flow cytometry, that sigma-1 knockout mice showed a reduction in macrophage/monocyte recruitment as well as an absence of CD4 + T cell recruitment in the DRG after nerve injury. Sigma-1 knockout mice showed a reduction of neuropathic (mechanical and cold) allodynia and spontaneous pain-like responses (licking of the injured paw) which accompany the decreased peripheral neuroinflammatory response after nerve injury. Treatment with maraviroc (a CCR5 antagonist which preferentially inhibits CD4 + T cells in the periphery) of neuropathic wild-type mice only partially replicated the sigma-1 knockout phenotype, as it did not alter cold allodynia but attenuated spontaneous pain-like responses and mechanical hypersensitivity. Therefore, modulation of peripheral CD4 + T cell activity might contribute to the amelioration of spontaneous pain and neuropathic tactile allodynia seen in the sigma-1 receptor knockout mice, but not to the effect on cold allodynia. We conclude that sigma-1 receptor inhibition decreases DRG neuroinflammation which might partially explain its anti-neuropathic effect.


Subject(s)
Mice, Inbred C57BL , Mice, Knockout , Neuralgia , Receptors, sigma , Sigma-1 Receptor , Transcriptome , Animals , Female , Mice , Ganglia, Spinal/metabolism , Neuralgia/metabolism , Neuroinflammatory Diseases/metabolism , Peripheral Nerve Injuries/metabolism , Receptors, sigma/genetics , Receptors, sigma/metabolism , Receptors, sigma/antagonists & inhibitors
17.
Biomed Pharmacother ; 180: 117459, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39305815

ABSTRACT

Postoperative pain management is challenging. We used mice with a transverse laparotomy to study tactile allodynia measured by the von Frey test, pain at rest measured by facial pain expressions detected by an artificial intelligence algorithm, and movement-induced pain measured by reductions in exploratory activity. The standard analgesics morphine and ibuprofen induced distinct patterns of outcome-dependent effects. Whereas morphine was more effective in reversing pain at rest compared to tactile allodynia, it was unable to alter movement-induced pain. Ibuprofen showed comparable effects across the three outcomes. Administered together, the compounds induced synergistic effects in the three aspects of postoperative pain, mirroring the known advantages of multimodal analgesia used in clinical practice. We explored the impact of neuroimmune interactions using a neutrophil depletion strategy. This reversed pain at rest and movement-induced pain, but did not alter cutaneous sensitivity. Non-peptidergic (IB4+) and peptidergic (CGRP+) nociceptors are segregated neuronal populations in the mouse. We tested the effects of gefapixant, an antitussive drug targeting non-peptidergic nociceptors through P2X3 antagonism, and olcegepant, an antimigraine drug acting as a CGRP antagonist. Both compounds reversed tactile allodynia, while only gefapixant reversed pain at rest, and none of them reversed movement-induced pain. In conclusion, tactile allodynia, pain at rest, and movement-induced pain after surgery have different pharmacological profiles, and none of the three aspects of postoperative pain can predict the effects of a given intervention on the other two. Combining these measures provides a more realistic view of postoperative pain and has the potential to benefit analgesic development.

18.
Chemistry ; 19(50): 17165-71, 2013 Dec 09.
Article in English | MEDLINE | ID: mdl-24222428

ABSTRACT

This article investigates the excited and charged states of three branched oligothiophenes with methyl-thienyl side groups as models to promote 3D arrangements. A comparison with the properties of the parent systems, linear all-α,α-oligothiophenes, is proposed. A wide variety of spectroscopic methods (i.e., absorption, emission, triplet-triplet transient absorption, and spectroelectrochemistry) in combination with DFT calculations have been used for this purpose. Whereas the absorption spectra are slightly blueshifted upon branching, both the emission spectra and triplet-triplet absorption spectra are moderately redshifted; this indicates a larger contribution of the ß-linked thienyl groups in the delocalization of the S1 and T1 states rather than into the S0 state. The delocalization through the α,ß-conjugated path was found to be crucial for the stabilization of the trication species in the larger branched systems, whereas the linear sexithiophene homologue can only be stabilized up to the dication species.

19.
Anesthesiology ; 118(3): 691-700, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23299362

ABSTRACT

BACKGROUND: Visceral pain is an important and prevalent clinical condition whose treatment is challenging. Sigma-1 (σ1) receptors modulate somatic pain, but their involvement in pure visceral pain is unexplored. METHODS: The authors evaluated the role of σ1 receptors in intracolonic capsaicin-induced visceral pain (pain-related behaviors and referred mechanical hyperalgesia to the abdominal wall) using wild-type (WT) (n = 12 per group) and σ1 receptor knockout (σ1-KO) (n = 10 per group) mice, selective σ1 receptor antagonists (BD-1063, S1RA, and NE-100), and control drugs (morphine and ketoprofen). RESULTS: The intracolonic administration of capsaicin (0.01-1%) induced concentration-dependent visceral pain-related behaviors and referred hyperalgesia in both WT and σ1-KO mice. However, the maximum number of pain-related behaviors induced by 1% capsaicin in σ1-KO mice (mean ± SEM, 22 ± 2.9) was 48% of that observed in WT animals (46 ± 4.2). Subcutaneous administration of the σ1 receptor antagonists BD-1063 (16-64 mg/kg), S1RA (32-128 mg/kg), and NE-100 (8-64 mg/kg) dose-dependently reduced the number of behavioral responses (by 53, 62, and 58%, respectively) and reversed the referred hyperalgesia to mechanical control threshold (0.53 ± 0.05 g) in WT mice. In contrast, these drugs produced no change in σ1-KO mice. Thus, the effects of these drugs are specifically mediated by σ1 receptors. Morphine produced an inhibition of capsaicin-induced visceral pain in WT and σ1-KO mice, whereas ketoprofen had no effect in either mouse type. CONCLUSION: These results suggest that σ1 receptors play a role in the mechanisms underlying capsaicin-induced visceral pain and raise novel perspectives for their potential therapeutic value.


Subject(s)
Capsaicin/administration & dosage , Capsaicin/toxicity , Colon/metabolism , Receptors, sigma/physiology , Visceral Pain/metabolism , Animals , Colon/drug effects , Female , Mice , Mice, Knockout , Pain Measurement/drug effects , Receptors, sigma/deficiency , Receptors, sigma/genetics , Visceral Pain/chemically induced , Visceral Pain/physiopathology
20.
J Pain ; 24(2): 304-319, 2023 02.
Article in English | MEDLINE | ID: mdl-36183969

ABSTRACT

Abdominal pain is a common feature in inflammatory bowel disease (IBD) patients, and greatly compromises their quality of life. Therefore, the identification of new therapeutic tools to reduce visceral pain is one of the main goals for IBD therapy. Minocycline, a broad-spectrum tetracycline antibiotic, has gained attention in the scientific community because of its immunomodulatory and anti-inflammatory properties. The aim of this study was to evaluate the potential of this antibiotic as a therapy for the management of visceral pain in dextran sodium sulfate (DSS)-induced colitis in mice. Preemptive treatment with minocycline markedly reduced histological features of intestinal inflammation and the expression of inflammatory markers (Tlr4, Tnfα, Il1ß, Ptgs2, Inos, Cxcl2, and Icam1), and attenuated the decrease of markers of epithelial integrity (Tjp1, Ocln, Muc2, and Muc3). In fact, minocycline restored normal epithelial permeability in colitic mice. Treatment with the antibiotic also reversed the changes in the gut microbiota profile induced by colitis. All these ameliorative effects of minocycline on both inflammation and dysbiosis correlated with a decrease in ongoing pain and referred hyperalgesia, and with the improvement of physical activity induced by the antibiotic in colitic mice. Minocycline might constitute a new therapeutic approach for the treatment of IBD-induced pain. PERSPECTIVE: This study found that the intestinal anti-inflammatory effects of minocycline ameliorate DSS-associated pain in mice. Therefore, minocycline might constitute a novel therapeutic strategy for the treatment of IBD-induced pain.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Visceral Pain , Mice , Animals , Minocycline/pharmacology , Minocycline/therapeutic use , Visceral Pain/drug therapy , Quality of Life , Colitis/chemically induced , Colitis/drug therapy , Colitis/pathology , Inflammation/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Mice, Inbred C57BL , Disease Models, Animal , Colon
SELECTION OF CITATIONS
SEARCH DETAIL